(minor) Fix some documentation typos.

This commit is contained in:
Ryan Dick 2024-06-19 13:54:54 -04:00 committed by Kent Keirsey
parent c5ee415607
commit 7c032ea604
3 changed files with 3 additions and 3 deletions

View File

@ -735,7 +735,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# The image prompts are then passed to prep_ip_adapter_data().
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to dispatch_progress()
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:

View File

@ -170,7 +170,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
min_overlap=self.tile_min_overlap,
)
# Get the unet's config so that we can pass the base to dispatch_progress().
# Get the unet's config so that we can pass the base to sd_step_callback().
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:

View File

@ -56,7 +56,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
self._adjust_memory_efficient_attention(latents)
# Populate a weighted mask that will be used to combine the results from each region after every step.
# For now, we assume that each regions has the same weight (1.0).
# For now, we assume that each region has the same weight (1.0).
region_weight_mask = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)