mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Split out the prepare_noise_and_latents(...) logic in DenoiseLatentsInvocation so that it can be called from other invocations.
This commit is contained in:
parent
084ccccfff
commit
7cb7f5107e
@ -656,19 +656,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
return 1 - mask, masked_latents, self.denoise_mask.gradient
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
@staticmethod
|
||||
def prepare_noise_and_latents(
|
||||
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
|
||||
) -> Tuple[float, torch.Tensor | None, torch.Tensor]:
|
||||
seed = None
|
||||
noise = None
|
||||
if self.noise is not None:
|
||||
noise = context.tensors.load(self.noise.latents_name)
|
||||
seed = self.noise.seed
|
||||
|
||||
if self.latents is not None:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
if noise_field is not None:
|
||||
noise = context.tensors.load(noise_field.latents_name)
|
||||
seed = noise_field.seed
|
||||
|
||||
if latents_field is not None:
|
||||
latents = context.tensors.load(latents_field.latents_name)
|
||||
if seed is None:
|
||||
seed = self.latents.seed
|
||||
seed = latents_field.seed
|
||||
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
@ -681,6 +683,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
if seed is None:
|
||||
seed = 0
|
||||
|
||||
return seed, noise, latents
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
|
||||
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
|
||||
|
||||
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
|
||||
|
Loading…
Reference in New Issue
Block a user