moved scripts/dream_server.py into ldm/dream/server.py

This commit is contained in:
Lincoln Stein 2022-08-28 16:37:27 -04:00
parent 08a9702b73
commit 7dfca3dcb5
5 changed files with 594 additions and 128 deletions

View File

@ -155,17 +155,15 @@ a few seconds to image generation. However, if can afford a 3090s with
## Barebones Web Server
As of version 1.10, this distribution comes with a bare bones web
server (see screenshot). To use it, run the command:
~~~~
(ldm) ~/stable-diffusion$ python3 scripts/dream_web.py
~~~~
server (see screenshot). To use it, run the *dream.py* script by
adding the **--web** option.
You can then connect to the server by pointing your web browser at
http://localhost:9090, or to the network name or IP address of the server.
Kudos to [Tesseract Cat](https://github.com/TesseractCat) for
contributing this code.
contributing this code, and to [dagf2101](https://github.com/dagf2101)
for refining it.
![Dream Web Server](static/dream_web_server.png)
@ -307,6 +305,8 @@ repository and associated paper for details and limitations.
* v1.12 (28 August 2022)
* Improved file handling, including ability to read prompts from standard input.
(kudos to [Yunsaki](https://github.com/yunsaki)
* The web server is now integrated with the dream.py script. Invoke by adding --web to
the dream.py command arguments.
* v1.11 (26 August 2022)
* NEW FEATURE: Support upscaling and face enhancement using the GFPGAN module. (kudos to [Oceanswave](https://github.com/Oceanswave)

548
ldm/dream/server.py Normal file
View File

@ -0,0 +1,548 @@
#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
import argparse
import shlex
import os
import sys
import copy
import warnings
import ldm.dream.readline
from ldm.dream.pngwriter import PngWriter, PromptFormatter
from dream_server import DreamServer, ThreadingDreamServer
def main():
"""Initialize command-line parsers and the diffusion model"""
arg_parser = create_argv_parser()
opt = arg_parser.parse_args()
if opt.laion400m:
# defaults suitable to the older latent diffusion weights
width = 256
height = 256
config = 'configs/latent-diffusion/txt2img-1p4B-eval.yaml'
weights = 'models/ldm/text2img-large/model.ckpt'
else:
# some defaults suitable for stable diffusion weights
width = 512
height = 512
config = 'configs/stable-diffusion/v1-inference.yaml'
weights = 'models/ldm/stable-diffusion-v1/model.ckpt'
print('* Initializing, be patient...\n')
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
# the user input loop
t2i = T2I(
width=width,
height=height,
sampler_name=opt.sampler_name,
weights=weights,
full_precision=opt.full_precision,
config=config,
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
embedding_path=opt.embedding_path,
device=opt.device,
)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
# gets rid of annoying messages about random seed
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
# load the infile as a list of lines
infile = None
if opt.infile:
try:
if os.path.isfile(opt.infile):
infile = open(opt.infile,'r')
elif opt.infile=='-': # stdin
infile = sys.stdin
else:
raise FileNotFoundError(f'{opt.infile} not found.')
except (FileNotFoundError,IOError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
# preload the model
t2i.load_model()
# load GFPGAN if requested
if opt.use_gfpgan:
print('\n* --gfpgan was specified, loading gfpgan...')
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
try:
model_path = os.path.join(
opt.gfpgan_dir, opt.gfpgan_model_path
)
if not os.path.isfile(model_path):
raise Exception(
'GFPGAN model not found at path ' + model_path
)
sys.path.append(os.path.abspath(opt.gfpgan_dir))
from gfpgan import GFPGANer
bg_upsampler = load_gfpgan_bg_upsampler(
opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile
)
t2i.gfpgan = GFPGANer(
model_path=model_path,
upscale=opt.gfpgan_upscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=bg_upsampler,
)
except Exception:
import traceback
print('Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
log_path = os.path.join(opt.outdir, 'dream_log.txt')
with open(log_path, 'a') as log:
cmd_parser = create_cmd_parser()
if opt.web:
dream_server_loop(t2i)
else:
main_loop(t2i, opt.outdir, cmd_parser, log_path, infile)
log.close()
def main_loop(t2i, outdir, parser, log_path, infile):
print(
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)..."
)
"""prompt/read/execute loop"""
done = False
last_seeds = []
while not done:
try:
command = get_next_command(infile)
except EOFError:
done = True
break
# skip empty lines
if not command.strip():
continue
if command.startswith(('#', '//')):
continue
# before splitting, escape single quotes so as not to mess
# up the parser
command = command.replace("'", "\\'")
try:
elements = shlex.split(command)
except ValueError as e:
print(str(e))
continue
if elements[0] == 'q':
done = True
break
if elements[0].startswith(
'!dream'
): # in case a stored prompt still contains the !dream command
elements.pop(0)
# rearrange the arguments to mimic how it works in the Dream bot.
switches = ['']
switches_started = False
for el in elements:
if el[0] == '-' and not switches_started:
switches_started = True
if switches_started:
switches.append(el)
else:
switches[0] += el
switches[0] += ' '
switches[0] = switches[0][: len(switches[0]) - 1]
try:
opt = parser.parse_args(switches)
except SystemExit:
parser.print_help()
continue
if len(opt.prompt) == 0:
print('Try again with a prompt!')
continue
if opt.seed is not None and opt.seed < 0: # retrieve previous value!
try:
opt.seed = last_seeds[opt.seed]
print(f'reusing previous seed {opt.seed}')
except IndexError:
print(f'No previous seed at position {opt.seed} found')
opt.seed = None
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
individual_images = not opt.grid
if opt.outdir:
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
current_outdir = opt.outdir
else:
current_outdir = outdir
# Here is where the images are actually generated!
try:
file_writer = PngWriter(current_outdir, normalized_prompt, opt.batch_size)
callback = file_writer.write_image if individual_images else None
image_list = t2i.prompt2image(image_callback=callback, **vars(opt))
results = (
file_writer.files_written if individual_images else image_list
)
if opt.grid and len(results) > 0:
grid_img = file_writer.make_grid([r[0] for r in results])
filename = file_writer.unique_filename(results[0][1])
seeds = [a[1] for a in results]
results = [[filename, seeds]]
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
file_writer.save_image_and_prompt_to_png(
grid_img, metadata_prompt, filename
)
last_seeds = [r[1] for r in results]
except AssertionError as e:
print(e)
continue
except OSError as e:
print(e)
continue
print('Outputs:')
write_log_message(t2i, normalized_prompt, results, log_path)
print('goodbye!')
def get_next_command(infile=None) -> 'command string':
if infile is None:
command = input("dream> ")
else:
command = infile.readline()
if not command:
raise EOFError
else:
command = command.strip()
print(f'#{command}')
return command
def dream_server_loop(t2i):
print('\n* --web was specified, starting web server...')
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
)
# Start server
DreamServer.model = t2i
dream_server = ThreadingDreamServer(("0.0.0.0", 9090))
print("\nStarted Stable Diffusion dream server!")
print("Point your browser at http://localhost:9090 or use the host's DNS name or IP address.")
try:
dream_server.serve_forever()
except KeyboardInterrupt:
pass
dream_server.server_close()
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
import torch
if bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn(
'The unoptimized RealESRGAN is slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.'
)
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=bg_tile,
tile_pad=10,
pre_pad=0,
half=True,
) # need to set False in CPU mode
else:
bg_upsampler = None
return bg_upsampler
# variant generation is going to be superseded by a generalized
# "prompt-morph" functionality
# def generate_variants(t2i,outdir,opt,previous_gens):
# variants = []
# print(f"Generating {opt.variants} variant(s)...")
# newopt = copy.deepcopy(opt)
# newopt.iterations = 1
# newopt.variants = None
# for r in previous_gens:
# newopt.init_img = r[0]
# prompt = PromptFormatter(t2i,newopt).normalize_prompt()
# print(f"] generating variant for {newopt.init_img}")
# for j in range(0,opt.variants):
# try:
# file_writer = PngWriter(outdir,prompt,newopt.batch_size)
# callback = file_writer.write_image
# t2i.prompt2image(image_callback=callback,**vars(newopt))
# results = file_writer.files_written
# variants.append([prompt,results])
# except AssertionError as e:
# print(e)
# continue
# print(f'{opt.variants} variants generated')
# return variants
### the t2i variable doesn't seem to be necessary here. maybe remove it?
def write_log_message(t2i, prompt, results, log_path):
"""logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata"""
log_lines = [f"{r[0]}: {prompt} -S{r[1]}\n" for r in results]
print(*log_lines, sep="")
with open(log_path, "a") as file:
file.writelines(log_lines)
def create_argv_parser():
parser = argparse.ArgumentParser(
description="Parse script's command line args"
)
parser.add_argument(
'--laion400m',
'--latent_diffusion',
'-l',
dest='laion400m',
action='store_true',
help='fallback to the latent diffusion (laion400m) weights and config',
)
parser.add_argument(
'--from_file',
dest='infile',
type=str,
help='if specified, load prompts from this file',
)
parser.add_argument(
'-n',
'--iterations',
type=int,
default=1,
help='number of images to generate',
)
parser.add_argument(
'-F',
'--full_precision',
dest='full_precision',
action='store_true',
help='use slower full precision math for calculations',
)
parser.add_argument(
'--sampler',
'-m',
dest='sampler_name',
choices=[
'ddim',
'k_dpm_2_a',
'k_dpm_2',
'k_euler_a',
'k_euler',
'k_heun',
'k_lms',
'plms',
],
default='k_lms',
help='which sampler to use (k_lms) - can only be set on command line',
)
parser.add_argument(
'--outdir',
'-o',
type=str,
default='outputs/img-samples',
help='directory in which to place generated images and a log of prompts and seeds (outputs/img-samples',
)
parser.add_argument(
'--embedding_path',
type=str,
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
)
parser.add_argument(
'--device',
'-d',
type=str,
default='cuda',
help='device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible',
)
# GFPGAN related args
parser.add_argument(
'--gfpgan',
dest='use_gfpgan',
action='store_true',
help='load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory',
)
parser.add_argument(
'--gfpgan_upscale',
type=int,
default=2,
help='The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_bg_upsampler',
type=str,
default='realesrgan',
help='Background upsampler. Default: None. Options: realesrgan, none. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_bg_tile',
type=int,
default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_model_path',
type=str,
default='experiments/pretrained_models/GFPGANv1.3.pth',
help='indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified',
)
parser.add_argument(
'--gfpgan_dir',
type=str,
default='../GFPGAN',
help='indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified',
)
parser.add_argument(
'--web',
dest='web',
action='store_true',
help='start in web server mode.',
)
return parser
def create_cmd_parser():
parser = argparse.ArgumentParser(
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
)
parser.add_argument('prompt')
parser.add_argument('-s', '--steps', type=int, help='number of steps')
parser.add_argument(
'-S',
'--seed',
type=int,
help='image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
)
parser.add_argument(
'-n',
'--iterations',
type=int,
default=1,
help='number of samplings to perform (slower, but will provide seeds for individual images)',
)
parser.add_argument(
'-b',
'--batch_size',
type=int,
default=1,
help='number of images to produce per sampling (will not provide seeds for individual images!)',
)
parser.add_argument(
'-W', '--width', type=int, help='image width, multiple of 64'
)
parser.add_argument(
'-H', '--height', type=int, help='image height, multiple of 64'
)
parser.add_argument(
'-C',
'--cfg_scale',
default=7.5,
type=float,
help='prompt configuration scale',
)
parser.add_argument(
'-g', '--grid', action='store_true', help='generate a grid'
)
parser.add_argument(
'--outdir',
'-o',
type=str,
default=None,
help='directory in which to place generated images and a log of prompts and seeds (outputs/img-samples',
)
parser.add_argument(
'-i',
'--individual',
action='store_true',
help='generate individual files (default)',
)
parser.add_argument(
'-I',
'--init_img',
type=str,
help='path to input image for img2img mode (supersedes width and height)',
)
parser.add_argument(
'-f',
'--strength',
default=0.75,
type=float,
help='strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
)
parser.add_argument(
'-G',
'--gfpgan_strength',
default=None,
type=float,
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
)
# variants is going to be superseded by a generalized "prompt-morph" function
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
parser.add_argument(
'-x',
'--skip_normalize',
action='store_true',
help='skip subprompt weight normalization',
)
return parser
if __name__ == '__main__':
main()

View File

@ -9,6 +9,7 @@ import copy
import warnings
import ldm.dream.readline
from ldm.dream.pngwriter import PngWriter, PromptFormatter
from ldm.dream.server import DreamServer, ThreadingDreamServer
def main():
"""Initialize command-line parsers and the diffusion model"""
@ -113,17 +114,19 @@ def main():
print('Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if not infile:
print(
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
)
log_path = os.path.join(opt.outdir, 'dream_log.txt')
cmd_parser = create_cmd_parser()
main_loop(t2i, opt.outdir, cmd_parser, log_path, infile)
with open(log_path, 'a') as log:
cmd_parser = create_cmd_parser()
if opt.web:
dream_server_loop(t2i)
else:
main_loop(t2i, opt.outdir, cmd_parser, log_path, infile)
log.close()
def main_loop(t2i, outdir, parser, log_path, infile):
print(
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)..."
)
"""prompt/read/execute loop"""
done = False
last_seeds = []
@ -246,6 +249,26 @@ def get_next_command(infile=None) -> 'command string':
print(f'#{command}')
return command
def dream_server_loop(t2i):
print('\n* --web was specified, starting web server...')
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
)
# Start server
DreamServer.model = t2i
dream_server = ThreadingDreamServer(("0.0.0.0", 9090))
print("\nStarted Stable Diffusion dream server!")
print("Point your browser at http://localhost:9090 or use the host's DNS name or IP address.")
try:
dream_server.serve_forever()
except KeyboardInterrupt:
pass
dream_server.server_close()
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
import torch
@ -426,6 +449,12 @@ def create_argv_parser():
default='../GFPGAN',
help='indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified',
)
parser.add_argument(
'--web',
dest='web',
action='store_true',
help='start in web server mode.',
)
return parser

View File

@ -1,114 +0,0 @@
import json
import base64
import mimetypes
import os
from pytorch_lightning import logging
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
print("Loading model...")
from ldm.simplet2i import T2I
model = T2I(sampler_name='k_lms')
# to get rid of annoying warning messages from pytorch
import transformers
transformers.logging.set_verbosity_error()
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
print("Initializing model, be patient...")
model.load_model()
class DreamServer(BaseHTTPRequestHandler):
def do_GET(self):
if self.path == "/":
self.send_response(200)
self.send_header("Content-type", "text/html")
self.end_headers()
with open("./static/dream_web/index.html", "rb") as content:
self.wfile.write(content.read())
elif os.path.exists("." + self.path):
mime_type = mimetypes.guess_type(self.path)[0]
if mime_type is not None:
self.send_response(200)
self.send_header("Content-type", mime_type)
self.end_headers()
with open("." + self.path, "rb") as content:
self.wfile.write(content.read())
else:
self.send_response(404)
else:
self.send_response(404)
def do_POST(self):
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
content_length = int(self.headers['Content-Length'])
post_data = json.loads(self.rfile.read(content_length))
prompt = post_data['prompt']
initimg = post_data['initimg']
iterations = int(post_data['iterations'])
steps = int(post_data['steps'])
width = int(post_data['width'])
height = int(post_data['height'])
cfgscale = float(post_data['cfgscale'])
seed = None if int(post_data['seed']) == -1 else int(post_data['seed'])
print(f"Request to generate with prompt: {prompt}")
outputs = []
if initimg is None:
# Run txt2img
outputs = model.txt2img(prompt,
iterations=iterations,
cfg_scale = cfgscale,
width = width,
height = height,
seed = seed,
steps = steps)
else:
# Decode initimg as base64 to temp file
with open("./img2img-tmp.png", "wb") as f:
initimg = initimg.split(",")[1] # Ignore mime type
f.write(base64.b64decode(initimg))
# Run img2img
outputs = model.img2img(prompt,
init_img = "./img2img-tmp.png",
iterations = iterations,
cfg_scale = cfgscale,
seed = seed,
steps = steps)
# Remove the temp file
os.remove("./img2img-tmp.png")
print(f"Prompt generated with output: {outputs}")
post_data['initimg'] = '' # Don't send init image back
# Append post_data to log
with open("./outputs/img-samples/dream_web_log.txt", "a") as log:
for output in outputs:
log.write(f"{output[0]}: {json.dumps(post_data)}\n")
outputs = [x + [post_data] for x in outputs] # Append config to each output
result = {'outputs': outputs}
self.wfile.write(bytes(json.dumps(result), "utf-8"))
if __name__ == "__main__":
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..'))
)
# Start server
dream_server = ThreadingHTTPServer(("0.0.0.0", 9090), DreamServer)
print("\n\n* Started Stable Diffusion dream server! Point your browser at http://localhost:9090 or use the host's DNS name or IP address. *")
try:
dream_server.serve_forever()
except KeyboardInterrupt:
pass
dream_server.server_close()

View File

@ -52,6 +52,9 @@
<label title="Set to -1 for random seed" for="seed">Seed:</label>
<input value="-1" type="number" id="seed" name="seed">
<button type="button" id="reset">&olarr;</button>
<br>
<label title="Strenght of the gfpgan algorithm ex: '1', --gfpgan startup flag is required." for="gfpgan_strength">GPFGAN Strength:</label>
<input value="0.75" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.01">
</fieldset>
</form>
<div id="about">For news and support for this web service, visit our <a href="http://github.com/lstein/stable-diffusion">GitHub site</a></div>