mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
when converting a ckpt/safetensors model, preserve vae in diffusers config
- After successfully converting a ckt file to diffusers, model_manager will attempt to create an equivalent 'vae' entry to the resulting diffusers stanza. - This is a bit of a hack, as it relies on a hard-coded dictionary to map ckpt VAEs to diffusers VAEs. The correct way to do this would be to convert the VAE to a diffusers model and then point to that. But since (almost) all models are using vae-ft-mse-840000-ema-pruned, I did it the easy way first and will work on the better solution later.
This commit is contained in:
parent
7bd2220a24
commit
7ee0edcb9e
@ -36,6 +36,10 @@ from ldm.invoke.globals import Globals, global_models_dir, global_autoscan_dir,
|
||||
from ldm.util import instantiate_from_config, ask_user
|
||||
|
||||
DEFAULT_MAX_MODELS=2
|
||||
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
||||
'vae-ft-mse-840000-ema-pruned': 'stabilityai/sd-vae-ft-mse',
|
||||
'autoencoder_fix_kl-f8-trinart_characters': 'stabilityai/sd-vae-ft-mse',
|
||||
}
|
||||
|
||||
class ModelManager(object):
|
||||
def __init__(self, config:OmegaConf, device_type:str, precision:str, max_loaded_models=DEFAULT_MAX_MODELS):
|
||||
@ -672,19 +676,34 @@ class ModelManager(object):
|
||||
|
||||
model_name = model_name or diffuser_path.name
|
||||
model_description = model_description or 'Optimized version of {model_name}'
|
||||
print(f'>> {model_name}: optimizing (30-60s).')
|
||||
print(f'>> Optimizing {model_name} (30-60s)')
|
||||
try:
|
||||
verbosity =transformers.logging.get_verbosity()
|
||||
transformers.logging.set_verbosity_error()
|
||||
convert_ckpt_to_diffuser(ckpt_path, diffuser_path,extract_ema=True)
|
||||
transformers.logging.set_verbosity(verbosity)
|
||||
print(f'>> Success. Optimized model is now located at {str(diffuser_path)}')
|
||||
print(f'>> Writing new config file entry for {model_name}...',end='')
|
||||
print(f'>> Writing new config file entry for {model_name}')
|
||||
new_config = dict(
|
||||
path=str(diffuser_path),
|
||||
description=model_description,
|
||||
format='diffusers',
|
||||
)
|
||||
|
||||
# HACK (LS): in the event that the original entry had a custom ckpt VAE, we try to
|
||||
# map that VAE onto a diffuser VAE using a hard-coded dictionary. This is not the
|
||||
# preferred way to do it. Instead we should should load the model into memory,
|
||||
# adding the VAE to the first_stage_model, and let the conversion function copy
|
||||
# the VAE into the new model. However, the simple implementation of this, which
|
||||
# uses _load_ckpt_model() method, causes the conversion to error out with
|
||||
# KeyError: 'time_embed.0.weight'
|
||||
if model_name in self.config and (vae_ckpt := self.model_info(model_name)['vae']):
|
||||
basename = Path(vae_ckpt).stem
|
||||
if (diffusers_vae := VAE_TO_REPO_ID.get(basename,None)):
|
||||
print(f'>> Adding VAE entry {diffusers_vae}')
|
||||
new_config.update(
|
||||
vae = {'repo_id': diffusers_vae}
|
||||
)
|
||||
self.del_model(model_name)
|
||||
self.add_model(model_name, new_config, True)
|
||||
if commit_to_conf:
|
||||
@ -693,7 +712,7 @@ class ModelManager(object):
|
||||
print(f'** Conversion failed: {str(e)}')
|
||||
traceback.print_exc()
|
||||
|
||||
print('done.')
|
||||
print('>> Conversion succeeded')
|
||||
return new_config
|
||||
|
||||
def search_models(self, search_folder):
|
||||
|
Loading…
Reference in New Issue
Block a user