refactor(cross_attention_control): remove outer CrossAttentionControl class

Python has modules. We don't need to use a class to provide a namespace.
This commit is contained in:
Kevin Turner 2022-11-12 11:01:10 -08:00
parent 1b6bbfb4db
commit 853c6af623
3 changed files with 246 additions and 246 deletions

View File

@ -14,7 +14,7 @@ import torch
from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \
CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization
from ..models.diffusion.cross_attention_control import CrossAttentionControl
from ..models.diffusion import cross_attention_control
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder
@ -50,7 +50,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
print(f">> Parsed prompt to {parsed_prompt}")
conditioning = None
cac_args:CrossAttentionControl.Arguments = None
cac_args:cross_attention_control.Arguments = None
if type(parsed_prompt) is Blend:
blend: Blend = parsed_prompt
@ -121,7 +121,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
conditioning = original_embeddings
edited_conditioning = edited_embeddings
#print('>> got edit_opcodes', edit_opcodes, 'options', edit_options)
cac_args = CrossAttentionControl.Arguments(
cac_args = cross_attention_control.Arguments(
edited_conditioning = edited_conditioning,
edit_opcodes = edit_opcodes,
edit_options = edit_options

View File

@ -8,255 +8,254 @@ import torch
class CrossAttentionControl:
class Arguments:
def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict):
"""
:param edited_conditioning: if doing cross-attention control, the edited conditioning [1 x 77 x 768]
:param edit_opcodes: if doing cross-attention control, a list of difflib.SequenceMatcher-like opcodes describing how to map original conditioning tokens to edited conditioning tokens (only the 'equal' opcode is required)
:param edit_options: if doing cross-attention control, per-edit options. there should be 1 item in edit_options for each item in edit_opcodes.
"""
# todo: rewrite this to take embedding fragments rather than a single edited_conditioning vector
self.edited_conditioning = edited_conditioning
self.edit_opcodes = edit_opcodes
if edited_conditioning is not None:
assert len(edit_opcodes) == len(edit_options), \
"there must be 1 edit_options dict for each edit_opcodes tuple"
non_none_edit_options = [x for x in edit_options if x is not None]
assert len(non_none_edit_options)>0, "missing edit_options"
if len(non_none_edit_options)>1:
print('warning: cross-attention control options are not working properly for >1 edit')
self.edit_options = non_none_edit_options[0]
class Context:
class Arguments:
def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict):
"""
:param edited_conditioning: if doing cross-attention control, the edited conditioning [1 x 77 x 768]
:param edit_opcodes: if doing cross-attention control, a list of difflib.SequenceMatcher-like opcodes describing how to map original conditioning tokens to edited conditioning tokens (only the 'equal' opcode is required)
:param edit_options: if doing cross-attention control, per-edit options. there should be 1 item in edit_options for each item in edit_opcodes.
"""
# todo: rewrite this to take embedding fragments rather than a single edited_conditioning vector
self.edited_conditioning = edited_conditioning
self.edit_opcodes = edit_opcodes
class Action(enum.Enum):
NONE = 0
SAVE = 1,
APPLY = 2
if edited_conditioning is not None:
assert len(edit_opcodes) == len(edit_options), \
"there must be 1 edit_options dict for each edit_opcodes tuple"
non_none_edit_options = [x for x in edit_options if x is not None]
assert len(non_none_edit_options)>0, "missing edit_options"
if len(non_none_edit_options)>1:
print('warning: cross-attention control options are not working properly for >1 edit')
self.edit_options = non_none_edit_options[0]
def __init__(self, arguments: 'CrossAttentionControl.Arguments', step_count: int):
"""
:param arguments: Arguments for the cross-attention control process
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
"""
self.arguments = arguments
self.step_count = step_count
self.self_cross_attention_module_identifiers = []
self.tokens_cross_attention_module_identifiers = []
class Context:
class Action(enum.Enum):
NONE = 0
SAVE = 1,
APPLY = 2
def __init__(self, arguments: Arguments, step_count: int):
"""
:param arguments: Arguments for the cross-attention control process
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
"""
self.arguments = arguments
self.step_count = step_count
self.self_cross_attention_module_identifiers = []
self.tokens_cross_attention_module_identifiers = []
self.saved_cross_attention_maps = {}
self.clear_requests(cleanup=True)
def register_cross_attention_modules(self, model):
for name,module in get_attention_modules(model,
CrossAttentionType.SELF):
self.self_cross_attention_module_identifiers.append(name)
for name,module in get_attention_modules(model,
CrossAttentionType.TOKENS):
self.tokens_cross_attention_module_identifiers.append(name)
def request_save_attention_maps(self, cross_attention_type: 'CrossAttentionType'):
if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.SAVE
else:
self.tokens_cross_attention_action = Context.Action.SAVE
def request_apply_saved_attention_maps(self, cross_attention_type: 'CrossAttentionType'):
if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.APPLY
else:
self.tokens_cross_attention_action = Context.Action.APPLY
def is_tokens_cross_attention(self, module_identifier) -> bool:
return module_identifier in self.tokens_cross_attention_module_identifiers
def get_should_save_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == Context.Action.SAVE
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == Context.Action.SAVE
return False
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == Context.Action.APPLY
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == Context.Action.APPLY
return False
def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\
-> list['CrossAttentionType']:
"""
Should cross-attention control be applied on the given step?
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
"""
if percent_through is None:
return [CrossAttentionType.SELF, CrossAttentionType.TOKENS]
opts = self.arguments.edit_options
to_control = []
if opts['s_start'] <= percent_through and percent_through < opts['s_end']:
to_control.append(CrossAttentionType.SELF)
if opts['t_start'] <= percent_through and percent_through < opts['t_end']:
to_control.append(CrossAttentionType.TOKENS)
return to_control
def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int,
slice_size: Optional[int]):
if identifier not in self.saved_cross_attention_maps:
self.saved_cross_attention_maps[identifier] = {
'dim': dim,
'slice_size': slice_size,
'slices': {offset or 0: slice}
}
else:
self.saved_cross_attention_maps[identifier]['slices'][offset or 0] = slice
def get_slice(self, identifier: str, requested_dim: Optional[int], requested_offset: int, slice_size: int):
saved_attention_dict = self.saved_cross_attention_maps[identifier]
if requested_dim is None:
if saved_attention_dict['dim'] is not None:
raise RuntimeError(f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}")
return saved_attention_dict['slices'][0]
if saved_attention_dict['dim'] == requested_dim:
if slice_size != saved_attention_dict['slice_size']:
raise RuntimeError(
f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}")
return saved_attention_dict['slices'][requested_offset]
if saved_attention_dict['dim'] == None:
whole_saved_attention = saved_attention_dict['slices'][0]
if requested_dim == 0:
return whole_saved_attention[requested_offset:requested_offset + slice_size]
elif requested_dim == 1:
return whole_saved_attention[:, requested_offset:requested_offset + slice_size]
raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
def get_slicing_strategy(self, identifier: str) -> Optional[tuple[int, int]]:
saved_attention = self.saved_cross_attention_maps.get(identifier, None)
if saved_attention is None:
return None, None
return saved_attention['dim'], saved_attention['slice_size']
def clear_requests(self, cleanup=True):
self.tokens_cross_attention_action = Context.Action.NONE
self.self_cross_attention_action = Context.Action.NONE
if cleanup:
self.saved_cross_attention_maps = {}
self.clear_requests(cleanup=True)
def offload_saved_attention_slices_to_cpu(self):
for key, map_dict in self.saved_cross_attention_maps.items():
for offset, slice in map_dict['slices'].items():
map_dict[offset] = slice.to('cpu')
def register_cross_attention_modules(self, model):
for name,module in CrossAttentionControl.get_attention_modules(model,
CrossAttentionControl.CrossAttentionType.SELF):
self.self_cross_attention_module_identifiers.append(name)
for name,module in CrossAttentionControl.get_attention_modules(model,
CrossAttentionControl.CrossAttentionType.TOKENS):
self.tokens_cross_attention_module_identifiers.append(name)
def request_save_attention_maps(self, cross_attention_type: 'CrossAttentionControl.CrossAttentionType'):
if cross_attention_type == CrossAttentionControl.CrossAttentionType.SELF:
self.self_cross_attention_action = CrossAttentionControl.Context.Action.SAVE
def remove_cross_attention_control(model):
remove_attention_function(model)
def setup_cross_attention_control(model, context: Context):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
:param model: The unet model to inject into.
:param cross_attention_control_args: Arugments passeed to the CrossAttentionControl implementations
:return: None
"""
# adapted from init_attention_edit
device = context.arguments.edited_conditioning.device
# urgh. should this be hardcoded?
max_length = 77
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
mask = torch.zeros(max_length)
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.zeros(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length:
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
# these tokens have not been edited
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
context.register_cross_attention_modules(model)
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
inject_attention_function(model, context)
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
def get_attention_modules(model, which: CrossAttentionType):
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
return [(name,module) for name, module in model.named_modules() if
type(module).__name__ == "CrossAttention" and which_attn in name]
def inject_attention_function(unet, context: Context):
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size):
#memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement()
attention_slice = suggested_attention_slice
if context.get_should_save_maps(module.identifier):
#print(module.identifier, "saving suggested_attention_slice of shape",
# suggested_attention_slice.shape, "dim", dim, "offset", offset)
slice_to_save = attention_slice.to('cpu') if dim is not None else attention_slice
context.save_slice(module.identifier, slice_to_save, dim=dim, offset=offset, slice_size=slice_size)
elif context.get_should_apply_saved_maps(module.identifier):
#print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset)
saved_attention_slice = context.get_slice(module.identifier, dim, offset, slice_size)
# slice may have been offloaded to CPU
saved_attention_slice = saved_attention_slice.to(suggested_attention_slice.device)
if context.is_tokens_cross_attention(module.identifier):
index_map = context.cross_attention_index_map
remapped_saved_attention_slice = torch.index_select(saved_attention_slice, -1, index_map)
this_attention_slice = suggested_attention_slice
mask = context.cross_attention_mask
saved_mask = mask
this_mask = 1 - mask
attention_slice = remapped_saved_attention_slice * saved_mask + \
this_attention_slice * this_mask
else:
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.SAVE
# just use everything
attention_slice = saved_attention_slice
def request_apply_saved_attention_maps(self, cross_attention_type: 'CrossAttentionControl.CrossAttentionType'):
if cross_attention_type == CrossAttentionControl.CrossAttentionType.SELF:
self.self_cross_attention_action = CrossAttentionControl.Context.Action.APPLY
else:
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.APPLY
return attention_slice
def is_tokens_cross_attention(self, module_identifier) -> bool:
return module_identifier in self.tokens_cross_attention_module_identifiers
def get_should_save_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == CrossAttentionControl.Context.Action.SAVE
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == CrossAttentionControl.Context.Action.SAVE
return False
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == CrossAttentionControl.Context.Action.APPLY
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == CrossAttentionControl.Context.Action.APPLY
return False
def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\
-> list['CrossAttentionControl.CrossAttentionType']:
"""
Should cross-attention control be applied on the given step?
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
"""
if percent_through is None:
return [CrossAttentionControl.CrossAttentionType.SELF, CrossAttentionControl.CrossAttentionType.TOKENS]
opts = self.arguments.edit_options
to_control = []
if opts['s_start'] <= percent_through and percent_through < opts['s_end']:
to_control.append(CrossAttentionControl.CrossAttentionType.SELF)
if opts['t_start'] <= percent_through and percent_through < opts['t_end']:
to_control.append(CrossAttentionControl.CrossAttentionType.TOKENS)
return to_control
def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int,
slice_size: Optional[int]):
if identifier not in self.saved_cross_attention_maps:
self.saved_cross_attention_maps[identifier] = {
'dim': dim,
'slice_size': slice_size,
'slices': {offset or 0: slice}
}
else:
self.saved_cross_attention_maps[identifier]['slices'][offset or 0] = slice
def get_slice(self, identifier: str, requested_dim: Optional[int], requested_offset: int, slice_size: int):
saved_attention_dict = self.saved_cross_attention_maps[identifier]
if requested_dim is None:
if saved_attention_dict['dim'] is not None:
raise RuntimeError(f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}")
return saved_attention_dict['slices'][0]
if saved_attention_dict['dim'] == requested_dim:
if slice_size != saved_attention_dict['slice_size']:
raise RuntimeError(
f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}")
return saved_attention_dict['slices'][requested_offset]
if saved_attention_dict['dim'] == None:
whole_saved_attention = saved_attention_dict['slices'][0]
if requested_dim == 0:
return whole_saved_attention[requested_offset:requested_offset + slice_size]
elif requested_dim == 1:
return whole_saved_attention[:, requested_offset:requested_offset + slice_size]
raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
def get_slicing_strategy(self, identifier: str) -> Optional[tuple[int, int]]:
saved_attention = self.saved_cross_attention_maps.get(identifier, None)
if saved_attention is None:
return None, None
return saved_attention['dim'], saved_attention['slice_size']
def clear_requests(self, cleanup=True):
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.NONE
self.self_cross_attention_action = CrossAttentionControl.Context.Action.NONE
if cleanup:
self.saved_cross_attention_maps = {}
def offload_saved_attention_slices_to_cpu(self):
for key, map_dict in self.saved_cross_attention_maps.items():
for offset, slice in map_dict['slices'].items():
map_dict[offset] = slice.to('cpu')
@classmethod
def remove_cross_attention_control(cls, model):
cls.remove_attention_function(model)
@classmethod
def setup_cross_attention_control(cls, model, context: Context):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
:param model: The unet model to inject into.
:param cross_attention_control_args: Arugments passeed to the CrossAttentionControl implementations
:return: None
"""
# adapted from init_attention_edit
device = context.arguments.edited_conditioning.device
# urgh. should this be hardcoded?
max_length = 77
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
mask = torch.zeros(max_length)
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.zeros(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length:
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
# these tokens have not been edited
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
context.register_cross_attention_modules(model)
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
cls.inject_attention_function(model, context)
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
module.identifier = name
module.set_attention_slice_wrangler(attention_slice_wrangler)
module.set_slicing_strategy_getter(lambda module, module_identifier=name: \
context.get_slicing_strategy(module_identifier))
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
@classmethod
def get_attention_modules(cls, model, which: CrossAttentionType):
which_attn = "attn1" if which is cls.CrossAttentionType.SELF else "attn2"
return [(name,module) for name, module in model.named_modules() if
type(module).__name__ == "CrossAttention" and which_attn in name]
@classmethod
def inject_attention_function(cls, unet, context: 'CrossAttentionControl.Context'):
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size):
#memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement()
attention_slice = suggested_attention_slice
if context.get_should_save_maps(module.identifier):
#print(module.identifier, "saving suggested_attention_slice of shape",
# suggested_attention_slice.shape, "dim", dim, "offset", offset)
slice_to_save = attention_slice.to('cpu') if dim is not None else attention_slice
context.save_slice(module.identifier, slice_to_save, dim=dim, offset=offset, slice_size=slice_size)
elif context.get_should_apply_saved_maps(module.identifier):
#print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset)
saved_attention_slice = context.get_slice(module.identifier, dim, offset, slice_size)
# slice may have been offloaded to CPU
saved_attention_slice = saved_attention_slice.to(suggested_attention_slice.device)
if context.is_tokens_cross_attention(module.identifier):
index_map = context.cross_attention_index_map
remapped_saved_attention_slice = torch.index_select(saved_attention_slice, -1, index_map)
this_attention_slice = suggested_attention_slice
mask = context.cross_attention_mask
saved_mask = mask
this_mask = 1 - mask
attention_slice = remapped_saved_attention_slice * saved_mask + \
this_attention_slice * this_mask
else:
# just use everything
attention_slice = saved_attention_slice
return attention_slice
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
module.identifier = name
module.set_attention_slice_wrangler(attention_slice_wrangler)
module.set_slicing_strategy_getter(lambda module, module_identifier=name: \
context.get_slicing_strategy(module_identifier))
@classmethod
def remove_attention_function(cls, unet):
# clear wrangler callback
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
module.set_attention_slice_wrangler(None)
module.set_slicing_strategy_getter(None)
def remove_attention_function(unet):
# clear wrangler callback
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
module.set_attention_slice_wrangler(None)
module.set_slicing_strategy_getter(None)

View File

@ -4,7 +4,8 @@ from typing import Callable, Optional, Union
import torch
from ldm.models.diffusion.cross_attention_control import CrossAttentionControl
from ldm.models.diffusion.cross_attention_control import Arguments, \
remove_cross_attention_control, setup_cross_attention_control, Context
from ldm.modules.attention import get_mem_free_total
@ -20,7 +21,7 @@ class InvokeAIDiffuserComponent:
class ExtraConditioningInfo:
def __init__(self, cross_attention_control_args: Optional[CrossAttentionControl.Arguments]):
def __init__(self, cross_attention_control_args: Optional[Arguments]):
self.cross_attention_control_args = cross_attention_control_args
@property
@ -40,16 +41,16 @@ class InvokeAIDiffuserComponent:
def setup_cross_attention_control(self, conditioning: ExtraConditioningInfo, step_count: int):
self.conditioning = conditioning
self.cross_attention_control_context = CrossAttentionControl.Context(
self.cross_attention_control_context = Context(
arguments=self.conditioning.cross_attention_control_args,
step_count=step_count
)
CrossAttentionControl.setup_cross_attention_control(self.model, self.cross_attention_control_context)
setup_cross_attention_control(self.model, self.cross_attention_control_context)
def remove_cross_attention_control(self):
self.conditioning = None
self.cross_attention_control_context = None
CrossAttentionControl.remove_cross_attention_control(self.model)
remove_cross_attention_control(self.model)
@ -71,7 +72,7 @@ class InvokeAIDiffuserComponent:
cross_attention_control_types_to_do = []
context: CrossAttentionControl.Context = self.cross_attention_control_context
context: Context = self.cross_attention_control_context
if self.cross_attention_control_context is not None:
percent_through = self.estimate_percent_through(step_index, sigma)
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through)
@ -133,7 +134,7 @@ class InvokeAIDiffuserComponent:
# representing batched uncond + cond, but then when it comes to applying the saved attention, the
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
context:CrossAttentionControl.Context = self.cross_attention_control_context
context:Context = self.cross_attention_control_context
try:
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)