remove additional unused scripts

This commit is contained in:
Lincoln Stein 2023-09-02 10:05:29 -04:00
parent 45259894e0
commit 85879d3013
4 changed files with 2 additions and 122 deletions

View File

@ -1,52 +0,0 @@
import os
import torch
import cv2
import numpy as np
from PIL import Image
from diffusers.utils import load_image
from diffusers.models.controlnet import ControlNetModel
from invokeai.backend.generator import Txt2Img
from invokeai.backend.model_management import ModelManager
print("loading 'Girl with a Pearl Earring' image")
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
)
image.show()
print("preprocessing image with Canny edge detection")
image_np = np.array(image)
low_threshold = 100
high_threshold = 200
canny_np = cv2.Canny(image_np, low_threshold, high_threshold)
canny_image = Image.fromarray(canny_np)
canny_image.show()
# using invokeai model management for base model
print("loading base model stable-diffusion-1.5")
model_config_path = os.getcwd() + "/../configs/models.yaml"
model_manager = ModelManager(model_config_path)
model = model_manager.get_model("stable-diffusion-1.5")
print("loading control model lllyasviel/sd-controlnet-canny")
canny_controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(
"cuda"
)
print("testing Txt2Img() constructor with control_model arg")
txt2img_canny = Txt2Img(model, control_model=canny_controlnet)
print("testing Txt2Img.generate() with control_image arg")
outputs = txt2img_canny.generate(
prompt="old man",
control_image=canny_image,
control_weight=1.0,
seed=0,
num_steps=30,
precision="float16",
)
generate_output = next(outputs)
out_image = generate_output.image
out_image.show()

View File

@ -1,33 +0,0 @@
#!/usr/bin/env python
"""
Read a checkpoint/safetensors file and write out a template .json file containing
its metadata for use in fast model probing.
"""
import argparse
import json
from pathlib import Path
from invokeai.backend.model_management.models.base import read_checkpoint_meta
parser = argparse.ArgumentParser(description="Create a .json template from checkpoint/safetensors model")
parser.add_argument("--checkpoint", "--in", type=Path, help="Path to the input checkpoint/safetensors file")
parser.add_argument("--template", "--out", type=Path, help="Path to the output .json file")
opt = parser.parse_args()
ckpt = read_checkpoint_meta(opt.checkpoint)
while "state_dict" in ckpt:
ckpt = ckpt["state_dict"]
tmpl = {}
for key, tensor in ckpt.items():
tmpl[key] = list(tensor.shape)
try:
with open(opt.template, "w") as f:
json.dump(tmpl, f)
print(f"Template written out as {opt.template}")
except Exception as e:
print(f"An exception occurred while writing template: {str(e)}")

2
scripts/invokeai-model-install.py Normal file → Executable file
View File

@ -1,3 +1,5 @@
#!/usr/bin/env python
from invokeai.frontend.install.model_install import main
main()

View File

@ -1,37 +0,0 @@
#!/usr/bin/env python
"""
Read a checkpoint/safetensors file and compare it to a template .json.
Returns True if their metadata match.
"""
import sys
import argparse
import json
from pathlib import Path
from invokeai.backend.model_management.models.base import read_checkpoint_meta
parser = argparse.ArgumentParser(description="Compare a checkpoint/safetensors file to a JSON metadata template.")
parser.add_argument("--checkpoint", "--in", type=Path, help="Path to the input checkpoint/safetensors file")
parser.add_argument("--template", "--out", type=Path, help="Path to the template .json file to match against")
opt = parser.parse_args()
ckpt = read_checkpoint_meta(opt.checkpoint)
while "state_dict" in ckpt:
ckpt = ckpt["state_dict"]
checkpoint_metadata = {}
for key, tensor in ckpt.items():
checkpoint_metadata[key] = list(tensor.shape)
with open(opt.template, "r") as f:
template = json.load(f)
if checkpoint_metadata == template:
print("True")
sys.exit(0)
else:
print("False")
sys.exit(-1)