mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix default vram cache size calculation
This commit is contained in:
parent
77c5c18542
commit
880727436c
@ -173,7 +173,7 @@ from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_ty
|
||||
INIT_FILE = Path("invokeai.yaml")
|
||||
DB_FILE = Path("invokeai.db")
|
||||
LEGACY_INIT_FILE = Path("invokeai.init")
|
||||
|
||||
DEFAULT_MAX_VRAM = 2.75
|
||||
|
||||
class InvokeAISettings(BaseSettings):
|
||||
"""
|
||||
@ -395,7 +395,7 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
|
||||
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='DEPRECATED')
|
||||
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
|
||||
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
|
||||
max_vram_cache_size : float = Field(default=DEFAULT_MAX_VRAM, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
|
||||
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
|
||||
nsfw_checker : bool = Field(default=True, description="DEPRECATED: use Web settings to enable/disable", category='DEPRECATED')
|
||||
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
|
||||
|
@ -82,6 +82,7 @@ PRECISION_CHOICES = ["auto", "float16", "float32"]
|
||||
HAS_CUDA = torch.cuda.is_available()
|
||||
_, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0)
|
||||
MAX_VRAM /= 1073741824 # GB in bytes
|
||||
MAX_VRAM_CACHE_RATIO = 0.55 # first guess of optimal vram cache based on total available
|
||||
|
||||
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
||||
# This is the InvokeAI initialization file, which contains command-line default values.
|
||||
@ -568,9 +569,11 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
|
||||
|
||||
def default_startup_options(init_file: Path) -> Namespace:
|
||||
opts = InvokeAIAppConfig.get_config()
|
||||
# dynamically adust vram for memory size
|
||||
if not init_file.exists():
|
||||
opts.max_vram_cache_size = round((MAX_VRAM * MAX_VRAM_CACHE_RATIO)*4) / 4
|
||||
return opts
|
||||
|
||||
|
||||
def default_user_selections(program_opts: Namespace) -> InstallSelections:
|
||||
try:
|
||||
installer = ModelInstall(config)
|
||||
@ -628,7 +631,6 @@ def maybe_create_models_yaml(root: Path):
|
||||
|
||||
# -------------------------------------
|
||||
def run_console_ui(program_opts: Namespace, initfile: Path = None) -> (Namespace, Namespace):
|
||||
# parse_args() will read from init file if present
|
||||
invokeai_opts = default_startup_options(initfile)
|
||||
invokeai_opts.root = program_opts.root
|
||||
|
||||
@ -711,7 +713,6 @@ def migrate_init_file(legacy_format: Path):
|
||||
# -------------------------------------
|
||||
def migrate_models(root: Path):
|
||||
from invokeai.backend.install.migrate_to_3 import do_migrate
|
||||
|
||||
do_migrate(root, root)
|
||||
|
||||
|
||||
@ -813,6 +814,7 @@ def main():
|
||||
|
||||
models_to_download = default_user_selections(opt)
|
||||
new_init_file = config.root_path / "invokeai.yaml"
|
||||
|
||||
if opt.yes_to_all:
|
||||
write_default_options(opt, new_init_file)
|
||||
init_options = Namespace(precision="float32" if opt.full_precision else "float16")
|
||||
|
Loading…
Reference in New Issue
Block a user