mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Model Manager Refactor Phase 1 - SQL-based config storage (#5039)
## What type of PR is this? (check all applicable) - [X] Refactor ## Have you discussed this change with the InvokeAI team? - [X] Extensively - [ ] No, because: ## Have you updated all relevant documentation? - [X] Yes - [ ] No ## Description As discussed with @psychedelicious and @RyanJDick, this is the first phase of the model manager refactor. In this phase, I've added support for storing model configuration information the `invokeai.db` SQL3 database. All the code is separate from the original model manager, so for the time being the frontend is still using the original YAML-based configuration, so the web app still works. To keep things clean, I've added a new FastAPI route called `model_records` which can add, update, retrieve and delete model records. The architecture is described in the first section of `docs/contributing/MODEL_MANAGER.md`. ## QA Instructions, Screenshots, Recordings There is a pytest for the model sql storage backend in `tests/backend/model_manager_2/test_model_storage_sql.py`. To populate `invokeai.db` with models from your current `models.yaml`, do the following: 1. Stop the running server 2. Back up `invokeai.db` 3. Run `pip install -e .` to install the command used in the next step. 4. Run `invokeai-migrate-models-to-db` This will iterate through `models.yaml` and create equivalent database entries in the `model_config` table of `invokeai.db`. Only the models named in the yaml file will be migrated, so anything that is autoloaded will be ignored. Note that in order to get the `model_records` router to be recognized by the swagger API, I had to rebuild the frontend. Not sure why this was necessary and would appreciate a pointer on a less radical way to do this. ## Added/updated tests? - [X] Yes - [ ] No
This commit is contained in:
commit
8883ecb2bf
1213
docs/contributing/MODEL_MANAGER.md
Normal file
1213
docs/contributing/MODEL_MANAGER.md
Normal file
File diff suppressed because it is too large
Load Diff
@ -24,6 +24,7 @@ from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
|
||||
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
|
||||
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
|
||||
from ..services.model_manager.model_manager_default import ModelManagerService
|
||||
from ..services.model_records import ModelRecordServiceSQL
|
||||
from ..services.names.names_default import SimpleNameService
|
||||
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
|
||||
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
@ -85,6 +86,7 @@ class ApiDependencies:
|
||||
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
|
||||
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
|
||||
model_manager = ModelManagerService(config, logger)
|
||||
model_record_service = ModelRecordServiceSQL(db=db)
|
||||
names = SimpleNameService()
|
||||
performance_statistics = InvocationStatsService()
|
||||
processor = DefaultInvocationProcessor()
|
||||
@ -111,6 +113,7 @@ class ApiDependencies:
|
||||
latents=latents,
|
||||
logger=logger,
|
||||
model_manager=model_manager,
|
||||
model_records=model_record_service,
|
||||
names=names,
|
||||
performance_statistics=performance_statistics,
|
||||
processor=processor,
|
||||
|
164
invokeai/app/api/routers/model_records.py
Normal file
164
invokeai/app/api/routers/model_records.py
Normal file
@ -0,0 +1,164 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein
|
||||
"""FastAPI route for model configuration records."""
|
||||
|
||||
|
||||
from hashlib import sha1
|
||||
from random import randbytes
|
||||
from typing import List, Optional
|
||||
|
||||
from fastapi import Body, Path, Query, Response
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
InvalidModelException,
|
||||
UnknownModelException,
|
||||
)
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
)
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
model_records_router = APIRouter(prefix="/v1/model/record", tags=["models"])
|
||||
|
||||
|
||||
class ModelsList(BaseModel):
|
||||
"""Return list of configs."""
|
||||
|
||||
models: list[AnyModelConfig]
|
||||
|
||||
model_config = ConfigDict(use_enum_values=True)
|
||||
|
||||
|
||||
@model_records_router.get(
|
||||
"/",
|
||||
operation_id="list_model_records",
|
||||
)
|
||||
async def list_model_records(
|
||||
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
|
||||
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
|
||||
) -> ModelsList:
|
||||
"""Get a list of models."""
|
||||
record_store = ApiDependencies.invoker.services.model_records
|
||||
found_models: list[AnyModelConfig] = []
|
||||
if base_models:
|
||||
for base_model in base_models:
|
||||
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type))
|
||||
else:
|
||||
found_models.extend(record_store.search_by_attr(model_type=model_type))
|
||||
return ModelsList(models=found_models)
|
||||
|
||||
|
||||
@model_records_router.get(
|
||||
"/i/{key}",
|
||||
operation_id="get_model_record",
|
||||
responses={
|
||||
200: {"description": "Success"},
|
||||
400: {"description": "Bad request"},
|
||||
404: {"description": "The model could not be found"},
|
||||
},
|
||||
)
|
||||
async def get_model_record(
|
||||
key: str = Path(description="Key of the model record to fetch."),
|
||||
) -> AnyModelConfig:
|
||||
"""Get a model record"""
|
||||
record_store = ApiDependencies.invoker.services.model_records
|
||||
try:
|
||||
return record_store.get_model(key)
|
||||
except UnknownModelException as e:
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
@model_records_router.patch(
|
||||
"/i/{key}",
|
||||
operation_id="update_model_record",
|
||||
responses={
|
||||
200: {"description": "The model was updated successfully"},
|
||||
400: {"description": "Bad request"},
|
||||
404: {"description": "The model could not be found"},
|
||||
409: {"description": "There is already a model corresponding to the new name"},
|
||||
},
|
||||
status_code=200,
|
||||
response_model=AnyModelConfig,
|
||||
)
|
||||
async def update_model_record(
|
||||
key: Annotated[str, Path(description="Unique key of model")],
|
||||
info: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
|
||||
) -> AnyModelConfig:
|
||||
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
record_store = ApiDependencies.invoker.services.model_records
|
||||
try:
|
||||
model_response = record_store.update_model(key, config=info)
|
||||
logger.info(f"Updated model: {key}")
|
||||
except UnknownModelException as e:
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
except ValueError as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
return model_response
|
||||
|
||||
|
||||
@model_records_router.delete(
|
||||
"/i/{key}",
|
||||
operation_id="del_model_record",
|
||||
responses={
|
||||
204: {"description": "Model deleted successfully"},
|
||||
404: {"description": "Model not found"},
|
||||
},
|
||||
status_code=204,
|
||||
)
|
||||
async def del_model_record(
|
||||
key: str = Path(description="Unique key of model to remove from model registry."),
|
||||
) -> Response:
|
||||
"""Delete Model"""
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
|
||||
try:
|
||||
record_store = ApiDependencies.invoker.services.model_records
|
||||
record_store.del_model(key)
|
||||
logger.info(f"Deleted model: {key}")
|
||||
return Response(status_code=204)
|
||||
except UnknownModelException as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
@model_records_router.post(
|
||||
"/i/",
|
||||
operation_id="add_model_record",
|
||||
responses={
|
||||
201: {"description": "The model added successfully"},
|
||||
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
||||
415: {"description": "Unrecognized file/folder format"},
|
||||
},
|
||||
status_code=201,
|
||||
)
|
||||
async def add_model_record(
|
||||
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")]
|
||||
) -> AnyModelConfig:
|
||||
"""
|
||||
Add a model using the configuration information appropriate for its type.
|
||||
"""
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
record_store = ApiDependencies.invoker.services.model_records
|
||||
if config.key == "<NOKEY>":
|
||||
config.key = sha1(randbytes(100)).hexdigest()
|
||||
logger.info(f"Created model {config.key} for {config.name}")
|
||||
try:
|
||||
record_store.add_model(config.key, config)
|
||||
except DuplicateModelException as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
except InvalidModelException as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=415)
|
||||
|
||||
# now fetch it out
|
||||
return record_store.get_model(config.key)
|
@ -1,6 +1,5 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
|
||||
|
||||
|
||||
import pathlib
|
||||
from typing import Annotated, List, Literal, Optional, Union
|
||||
|
||||
|
@ -43,6 +43,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
||||
board_images,
|
||||
boards,
|
||||
images,
|
||||
model_records,
|
||||
models,
|
||||
session_queue,
|
||||
sessions,
|
||||
@ -106,6 +107,7 @@ app.include_router(sessions.session_router, prefix="/api")
|
||||
|
||||
app.include_router(utilities.utilities_router, prefix="/api")
|
||||
app.include_router(models.models_router, prefix="/api")
|
||||
app.include_router(model_records.model_records_router, prefix="/api")
|
||||
app.include_router(images.images_router, prefix="/api")
|
||||
app.include_router(boards.boards_router, prefix="/api")
|
||||
app.include_router(board_images.board_images_router, prefix="/api")
|
||||
|
@ -22,6 +22,7 @@ if TYPE_CHECKING:
|
||||
from .item_storage.item_storage_base import ItemStorageABC
|
||||
from .latents_storage.latents_storage_base import LatentsStorageBase
|
||||
from .model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from .model_records import ModelRecordServiceBase
|
||||
from .names.names_base import NameServiceBase
|
||||
from .session_processor.session_processor_base import SessionProcessorBase
|
||||
from .session_queue.session_queue_base import SessionQueueBase
|
||||
@ -49,6 +50,7 @@ class InvocationServices:
|
||||
latents: "LatentsStorageBase"
|
||||
logger: "Logger"
|
||||
model_manager: "ModelManagerServiceBase"
|
||||
model_records: "ModelRecordServiceBase"
|
||||
processor: "InvocationProcessorABC"
|
||||
performance_statistics: "InvocationStatsServiceBase"
|
||||
queue: "InvocationQueueABC"
|
||||
@ -76,6 +78,7 @@ class InvocationServices:
|
||||
latents: "LatentsStorageBase",
|
||||
logger: "Logger",
|
||||
model_manager: "ModelManagerServiceBase",
|
||||
model_records: "ModelRecordServiceBase",
|
||||
processor: "InvocationProcessorABC",
|
||||
performance_statistics: "InvocationStatsServiceBase",
|
||||
queue: "InvocationQueueABC",
|
||||
@ -101,6 +104,7 @@ class InvocationServices:
|
||||
self.latents = latents
|
||||
self.logger = logger
|
||||
self.model_manager = model_manager
|
||||
self.model_records = model_records
|
||||
self.processor = processor
|
||||
self.performance_statistics = performance_statistics
|
||||
self.queue = queue
|
||||
|
8
invokeai/app/services/model_records/__init__.py
Normal file
8
invokeai/app/services/model_records/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
"""Init file for model record services."""
|
||||
from .model_records_base import ( # noqa F401
|
||||
DuplicateModelException,
|
||||
InvalidModelException,
|
||||
ModelRecordServiceBase,
|
||||
UnknownModelException,
|
||||
)
|
||||
from .model_records_sql import ModelRecordServiceSQL # noqa F401
|
169
invokeai/app/services/model_records/model_records_base.py
Normal file
169
invokeai/app/services/model_records/model_records_base.py
Normal file
@ -0,0 +1,169 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""
|
||||
Abstract base class for storing and retrieving model configuration records.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType
|
||||
|
||||
# should match the InvokeAI version when this is first released.
|
||||
CONFIG_FILE_VERSION = "3.2.0"
|
||||
|
||||
|
||||
class DuplicateModelException(Exception):
|
||||
"""Raised on an attempt to add a model with the same key twice."""
|
||||
|
||||
|
||||
class InvalidModelException(Exception):
|
||||
"""Raised when an invalid model is detected."""
|
||||
|
||||
|
||||
class UnknownModelException(Exception):
|
||||
"""Raised on an attempt to fetch or delete a model with a nonexistent key."""
|
||||
|
||||
|
||||
class ConfigFileVersionMismatchException(Exception):
|
||||
"""Raised on an attempt to open a config with an incompatible version."""
|
||||
|
||||
|
||||
class ModelRecordServiceBase(ABC):
|
||||
"""Abstract base class for storage and retrieval of model configs."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def version(self) -> str:
|
||||
"""Return the config file/database schema version."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def add_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
|
||||
"""
|
||||
Add a model to the database.
|
||||
|
||||
:param key: Unique key for the model
|
||||
:param config: Model configuration record, either a dict with the
|
||||
required fields or a ModelConfigBase instance.
|
||||
|
||||
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def del_model(self, key: str) -> None:
|
||||
"""
|
||||
Delete a model.
|
||||
|
||||
:param key: Unique key for the model to be deleted
|
||||
|
||||
Can raise an UnknownModelException
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def update_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
|
||||
"""
|
||||
Update the model, returning the updated version.
|
||||
|
||||
:param key: Unique key for the model to be updated
|
||||
:param config: Model configuration record. Either a dict with the
|
||||
required fields, or a ModelConfigBase instance.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_model(self, key: str) -> AnyModelConfig:
|
||||
"""
|
||||
Retrieve the configuration for the indicated model.
|
||||
|
||||
:param key: Key of model config to be fetched.
|
||||
|
||||
Exceptions: UnknownModelException
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def exists(self, key: str) -> bool:
|
||||
"""
|
||||
Return True if a model with the indicated key exists in the databse.
|
||||
|
||||
:param key: Unique key for the model to be deleted
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search_by_path(
|
||||
self,
|
||||
path: Union[str, Path],
|
||||
) -> List[AnyModelConfig]:
|
||||
"""Return the model(s) having the indicated path."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search_by_hash(
|
||||
self,
|
||||
hash: str,
|
||||
) -> List[AnyModelConfig]:
|
||||
"""Return the model(s) having the indicated original hash."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search_by_attr(
|
||||
self,
|
||||
model_name: Optional[str] = None,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
model_type: Optional[ModelType] = None,
|
||||
) -> List[AnyModelConfig]:
|
||||
"""
|
||||
Return models matching name, base and/or type.
|
||||
|
||||
:param model_name: Filter by name of model (optional)
|
||||
:param base_model: Filter by base model (optional)
|
||||
:param model_type: Filter by type of model (optional)
|
||||
|
||||
If none of the optional filters are passed, will return all
|
||||
models in the database.
|
||||
"""
|
||||
pass
|
||||
|
||||
def all_models(self) -> List[AnyModelConfig]:
|
||||
"""Return all the model configs in the database."""
|
||||
return self.search_by_attr()
|
||||
|
||||
def model_info_by_name(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> AnyModelConfig:
|
||||
"""
|
||||
Return information about a single model using its name, base type and model type.
|
||||
|
||||
If there are more than one model that match, raises a DuplicateModelException.
|
||||
If no model matches, raises an UnknownModelException
|
||||
"""
|
||||
model_configs = self.search_by_attr(model_name=model_name, base_model=base_model, model_type=model_type)
|
||||
if len(model_configs) > 1:
|
||||
raise DuplicateModelException(
|
||||
f"More than one model matched the search criteria: base_model='{base_model}', model_type='{model_type}', model_name='{model_name}'."
|
||||
)
|
||||
if len(model_configs) == 0:
|
||||
raise UnknownModelException(
|
||||
f"More than one model matched the search criteria: base_model='{base_model}', model_type='{model_type}', model_name='{model_name}'."
|
||||
)
|
||||
return model_configs[0]
|
||||
|
||||
def rename_model(
|
||||
self,
|
||||
key: str,
|
||||
new_name: str,
|
||||
) -> AnyModelConfig:
|
||||
"""
|
||||
Rename the indicated model. Just a special case of update_model().
|
||||
|
||||
In some implementations, renaming the model may involve changing where
|
||||
it is stored on the filesystem. So this is broken out.
|
||||
|
||||
:param key: Model key
|
||||
:param new_name: New name for model
|
||||
"""
|
||||
config = self.get_model(key)
|
||||
config.name = new_name
|
||||
return self.update_model(key, config)
|
397
invokeai/app/services/model_records/model_records_sql.py
Normal file
397
invokeai/app/services/model_records/model_records_sql.py
Normal file
@ -0,0 +1,397 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""
|
||||
SQL Implementation of the ModelRecordServiceBase API
|
||||
|
||||
Typical usage:
|
||||
|
||||
from invokeai.backend.model_manager import ModelConfigStoreSQL
|
||||
store = ModelConfigStoreSQL(sqlite_db)
|
||||
config = dict(
|
||||
path='/tmp/pokemon.bin',
|
||||
name='old name',
|
||||
base_model='sd-1',
|
||||
type='embedding',
|
||||
format='embedding_file',
|
||||
)
|
||||
|
||||
# adding - the key becomes the model's "key" field
|
||||
store.add_model('key1', config)
|
||||
|
||||
# updating
|
||||
config.name='new name'
|
||||
store.update_model('key1', config)
|
||||
|
||||
# checking for existence
|
||||
if store.exists('key1'):
|
||||
print("yes")
|
||||
|
||||
# fetching config
|
||||
new_config = store.get_model('key1')
|
||||
print(new_config.name, new_config.base)
|
||||
assert new_config.key == 'key1'
|
||||
|
||||
# deleting
|
||||
store.del_model('key1')
|
||||
|
||||
# searching
|
||||
configs = store.search_by_path(path='/tmp/pokemon.bin')
|
||||
configs = store.search_by_hash('750a499f35e43b7e1b4d15c207aa2f01')
|
||||
configs = store.search_by_attr(base_model='sd-2', model_type='main')
|
||||
"""
|
||||
|
||||
|
||||
import json
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelConfigBase,
|
||||
ModelConfigFactory,
|
||||
ModelType,
|
||||
)
|
||||
|
||||
from ..shared.sqlite import SqliteDatabase
|
||||
from .model_records_base import (
|
||||
CONFIG_FILE_VERSION,
|
||||
DuplicateModelException,
|
||||
ModelRecordServiceBase,
|
||||
UnknownModelException,
|
||||
)
|
||||
|
||||
|
||||
class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
"""Implementation of the ModelConfigStore ABC using a SQL database."""
|
||||
|
||||
_db: SqliteDatabase
|
||||
_cursor: sqlite3.Cursor
|
||||
|
||||
def __init__(self, db: SqliteDatabase):
|
||||
"""
|
||||
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
|
||||
|
||||
:param conn: sqlite3 connection object
|
||||
:param lock: threading Lock object
|
||||
"""
|
||||
super().__init__()
|
||||
self._db = db
|
||||
self._cursor = self._db.conn.cursor()
|
||||
|
||||
with self._db.lock:
|
||||
# Enable foreign keys
|
||||
self._db.conn.execute("PRAGMA foreign_keys = ON;")
|
||||
self._create_tables()
|
||||
self._db.conn.commit()
|
||||
assert (
|
||||
str(self.version) == CONFIG_FILE_VERSION
|
||||
), f"Model config version {self.version} does not match expected version {CONFIG_FILE_VERSION}"
|
||||
|
||||
def _create_tables(self) -> None:
|
||||
"""Create sqlite3 tables."""
|
||||
# model_config table breaks out the fields that are common to all config objects
|
||||
# and puts class-specific ones in a serialized json object
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
CREATE TABLE IF NOT EXISTS model_config (
|
||||
id TEXT NOT NULL PRIMARY KEY,
|
||||
-- The next 3 fields are enums in python, unrestricted string here
|
||||
base TEXT NOT NULL,
|
||||
type TEXT NOT NULL,
|
||||
name TEXT NOT NULL,
|
||||
path TEXT NOT NULL,
|
||||
original_hash TEXT, -- could be null
|
||||
-- Serialized JSON representation of the whole config object,
|
||||
-- which will contain additional fields from subclasses
|
||||
config TEXT NOT NULL,
|
||||
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
-- Updated via trigger
|
||||
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
-- unique constraint on combo of name, base and type
|
||||
UNIQUE(name, base, type)
|
||||
);
|
||||
"""
|
||||
)
|
||||
|
||||
# metadata table
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
CREATE TABLE IF NOT EXISTS model_manager_metadata (
|
||||
metadata_key TEXT NOT NULL PRIMARY KEY,
|
||||
metadata_value TEXT NOT NULL
|
||||
);
|
||||
"""
|
||||
)
|
||||
|
||||
# Add trigger for `updated_at`.
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
CREATE TRIGGER IF NOT EXISTS model_config_updated_at
|
||||
AFTER UPDATE
|
||||
ON model_config FOR EACH ROW
|
||||
BEGIN
|
||||
UPDATE model_config SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
|
||||
WHERE id = old.id;
|
||||
END;
|
||||
"""
|
||||
)
|
||||
|
||||
# Add indexes for searchable fields
|
||||
for stmt in [
|
||||
"CREATE INDEX IF NOT EXISTS base_index ON model_config(base);",
|
||||
"CREATE INDEX IF NOT EXISTS type_index ON model_config(type);",
|
||||
"CREATE INDEX IF NOT EXISTS name_index ON model_config(name);",
|
||||
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON model_config(path);",
|
||||
]:
|
||||
self._cursor.execute(stmt)
|
||||
|
||||
# Add our version to the metadata table
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
INSERT OR IGNORE into model_manager_metadata (
|
||||
metadata_key,
|
||||
metadata_value
|
||||
)
|
||||
VALUES (?,?);
|
||||
""",
|
||||
("version", CONFIG_FILE_VERSION),
|
||||
)
|
||||
|
||||
def add_model(self, key: str, config: Union[dict, ModelConfigBase]) -> AnyModelConfig:
|
||||
"""
|
||||
Add a model to the database.
|
||||
|
||||
:param key: Unique key for the model
|
||||
:param config: Model configuration record, either a dict with the
|
||||
required fields or a ModelConfigBase instance.
|
||||
|
||||
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
|
||||
"""
|
||||
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
|
||||
json_serialized = record.model_dump_json() # and turn it into a json string.
|
||||
with self._db.lock:
|
||||
try:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
INSERT INTO model_config (
|
||||
id,
|
||||
base,
|
||||
type,
|
||||
name,
|
||||
path,
|
||||
original_hash,
|
||||
config
|
||||
)
|
||||
VALUES (?,?,?,?,?,?,?);
|
||||
""",
|
||||
(
|
||||
key,
|
||||
record.base,
|
||||
record.type,
|
||||
record.name,
|
||||
record.path,
|
||||
record.original_hash,
|
||||
json_serialized,
|
||||
),
|
||||
)
|
||||
self._db.conn.commit()
|
||||
|
||||
except sqlite3.IntegrityError as e:
|
||||
self._db.conn.rollback()
|
||||
if "UNIQUE constraint failed" in str(e):
|
||||
if "model_config.path" in str(e):
|
||||
msg = f"A model with path '{record.path}' is already installed"
|
||||
elif "model_config.name" in str(e):
|
||||
msg = f"A model with name='{record.name}', type='{record.type}', base='{record.base}' is already installed"
|
||||
else:
|
||||
msg = f"A model with key '{key}' is already installed"
|
||||
raise DuplicateModelException(msg) from e
|
||||
else:
|
||||
raise e
|
||||
except sqlite3.Error as e:
|
||||
self._db.conn.rollback()
|
||||
raise e
|
||||
|
||||
return self.get_model(key)
|
||||
|
||||
@property
|
||||
def version(self) -> str:
|
||||
"""Return the version of the database schema."""
|
||||
with self._db.lock:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT metadata_value FROM model_manager_metadata
|
||||
WHERE metadata_key=?;
|
||||
""",
|
||||
("version",),
|
||||
)
|
||||
rows = self._cursor.fetchone()
|
||||
if not rows:
|
||||
raise KeyError("Models database does not have metadata key 'version'")
|
||||
return rows[0]
|
||||
|
||||
def del_model(self, key: str) -> None:
|
||||
"""
|
||||
Delete a model.
|
||||
|
||||
:param key: Unique key for the model to be deleted
|
||||
|
||||
Can raise an UnknownModelException
|
||||
"""
|
||||
with self._db.lock:
|
||||
try:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
DELETE FROM model_config
|
||||
WHERE id=?;
|
||||
""",
|
||||
(key,),
|
||||
)
|
||||
if self._cursor.rowcount == 0:
|
||||
raise UnknownModelException("model not found")
|
||||
self._db.conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._db.conn.rollback()
|
||||
raise e
|
||||
|
||||
def update_model(self, key: str, config: ModelConfigBase) -> AnyModelConfig:
|
||||
"""
|
||||
Update the model, returning the updated version.
|
||||
|
||||
:param key: Unique key for the model to be updated
|
||||
:param config: Model configuration record. Either a dict with the
|
||||
required fields, or a ModelConfigBase instance.
|
||||
"""
|
||||
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
|
||||
json_serialized = record.model_dump_json() # and turn it into a json string.
|
||||
with self._db.lock:
|
||||
try:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
UPDATE model_config
|
||||
SET base=?,
|
||||
type=?,
|
||||
name=?,
|
||||
path=?,
|
||||
config=?
|
||||
WHERE id=?;
|
||||
""",
|
||||
(record.base, record.type, record.name, record.path, json_serialized, key),
|
||||
)
|
||||
if self._cursor.rowcount == 0:
|
||||
raise UnknownModelException("model not found")
|
||||
self._db.conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._db.conn.rollback()
|
||||
raise e
|
||||
|
||||
return self.get_model(key)
|
||||
|
||||
def get_model(self, key: str) -> AnyModelConfig:
|
||||
"""
|
||||
Retrieve the ModelConfigBase instance for the indicated model.
|
||||
|
||||
:param key: Key of model config to be fetched.
|
||||
|
||||
Exceptions: UnknownModelException
|
||||
"""
|
||||
with self._db.lock:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT config FROM model_config
|
||||
WHERE id=?;
|
||||
""",
|
||||
(key,),
|
||||
)
|
||||
rows = self._cursor.fetchone()
|
||||
if not rows:
|
||||
raise UnknownModelException("model not found")
|
||||
model = ModelConfigFactory.make_config(json.loads(rows[0]))
|
||||
return model
|
||||
|
||||
def exists(self, key: str) -> bool:
|
||||
"""
|
||||
Return True if a model with the indicated key exists in the databse.
|
||||
|
||||
:param key: Unique key for the model to be deleted
|
||||
"""
|
||||
count = 0
|
||||
with self._db.lock:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
select count(*) FROM model_config
|
||||
WHERE id=?;
|
||||
""",
|
||||
(key,),
|
||||
)
|
||||
count = self._cursor.fetchone()[0]
|
||||
return count > 0
|
||||
|
||||
def search_by_attr(
|
||||
self,
|
||||
model_name: Optional[str] = None,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
model_type: Optional[ModelType] = None,
|
||||
) -> List[AnyModelConfig]:
|
||||
"""
|
||||
Return models matching name, base and/or type.
|
||||
|
||||
:param model_name: Filter by name of model (optional)
|
||||
:param base_model: Filter by base model (optional)
|
||||
:param model_type: Filter by type of model (optional)
|
||||
|
||||
If none of the optional filters are passed, will return all
|
||||
models in the database.
|
||||
"""
|
||||
results = []
|
||||
where_clause = []
|
||||
bindings = []
|
||||
if model_name:
|
||||
where_clause.append("name=?")
|
||||
bindings.append(model_name)
|
||||
if base_model:
|
||||
where_clause.append("base=?")
|
||||
bindings.append(base_model)
|
||||
if model_type:
|
||||
where_clause.append("type=?")
|
||||
bindings.append(model_type)
|
||||
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
|
||||
with self._db.lock:
|
||||
self._cursor.execute(
|
||||
f"""--sql
|
||||
select config FROM model_config
|
||||
{where};
|
||||
""",
|
||||
tuple(bindings),
|
||||
)
|
||||
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self._cursor.fetchall()]
|
||||
return results
|
||||
|
||||
def search_by_path(self, path: Union[str, Path]) -> List[ModelConfigBase]:
|
||||
"""Return models with the indicated path."""
|
||||
results = []
|
||||
with self._db.lock:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT config FROM model_config
|
||||
WHERE model_path=?;
|
||||
""",
|
||||
(str(path),),
|
||||
)
|
||||
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self._cursor.fetchall()]
|
||||
return results
|
||||
|
||||
def search_by_hash(self, hash: str) -> List[ModelConfigBase]:
|
||||
"""Return models with the indicated original_hash."""
|
||||
results = []
|
||||
with self._db.lock:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT config FROM model_config
|
||||
WHERE original_hash=?;
|
||||
""",
|
||||
(hash,),
|
||||
)
|
||||
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self._cursor.fetchall()]
|
||||
return results
|
323
invokeai/backend/model_manager/config.py
Normal file
323
invokeai/backend/model_manager/config.py
Normal file
@ -0,0 +1,323 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""
|
||||
Configuration definitions for image generation models.
|
||||
|
||||
Typical usage:
|
||||
|
||||
from invokeai.backend.model_manager import ModelConfigFactory
|
||||
raw = dict(path='models/sd-1/main/foo.ckpt',
|
||||
name='foo',
|
||||
base='sd-1',
|
||||
type='main',
|
||||
config='configs/stable-diffusion/v1-inference.yaml',
|
||||
variant='normal',
|
||||
format='checkpoint'
|
||||
)
|
||||
config = ModelConfigFactory.make_config(raw)
|
||||
print(config.name)
|
||||
|
||||
Validation errors will raise an InvalidModelConfigException error.
|
||||
|
||||
"""
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Type, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
||||
class InvalidModelConfigException(Exception):
|
||||
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
||||
|
||||
|
||||
class BaseModelType(str, Enum):
|
||||
"""Base model type."""
|
||||
|
||||
Any = "any"
|
||||
StableDiffusion1 = "sd-1"
|
||||
StableDiffusion2 = "sd-2"
|
||||
StableDiffusionXL = "sdxl"
|
||||
StableDiffusionXLRefiner = "sdxl-refiner"
|
||||
# Kandinsky2_1 = "kandinsky-2.1"
|
||||
|
||||
|
||||
class ModelType(str, Enum):
|
||||
"""Model type."""
|
||||
|
||||
ONNX = "onnx"
|
||||
Main = "main"
|
||||
Vae = "vae"
|
||||
Lora = "lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ip_adapter"
|
||||
CLIPVision = "clip_vision"
|
||||
T2IAdapter = "t2i_adapter"
|
||||
|
||||
|
||||
class SubModelType(str, Enum):
|
||||
"""Submodel type."""
|
||||
|
||||
UNet = "unet"
|
||||
TextEncoder = "text_encoder"
|
||||
TextEncoder2 = "text_encoder_2"
|
||||
Tokenizer = "tokenizer"
|
||||
Tokenizer2 = "tokenizer_2"
|
||||
Vae = "vae"
|
||||
VaeDecoder = "vae_decoder"
|
||||
VaeEncoder = "vae_encoder"
|
||||
Scheduler = "scheduler"
|
||||
SafetyChecker = "safety_checker"
|
||||
|
||||
|
||||
class ModelVariantType(str, Enum):
|
||||
"""Variant type."""
|
||||
|
||||
Normal = "normal"
|
||||
Inpaint = "inpaint"
|
||||
Depth = "depth"
|
||||
|
||||
|
||||
class ModelFormat(str, Enum):
|
||||
"""Storage format of model."""
|
||||
|
||||
Diffusers = "diffusers"
|
||||
Checkpoint = "checkpoint"
|
||||
Lycoris = "lycoris"
|
||||
Onnx = "onnx"
|
||||
Olive = "olive"
|
||||
EmbeddingFile = "embedding_file"
|
||||
EmbeddingFolder = "embedding_folder"
|
||||
InvokeAI = "invokeai"
|
||||
|
||||
|
||||
class SchedulerPredictionType(str, Enum):
|
||||
"""Scheduler prediction type."""
|
||||
|
||||
Epsilon = "epsilon"
|
||||
VPrediction = "v_prediction"
|
||||
Sample = "sample"
|
||||
|
||||
|
||||
class ModelConfigBase(BaseModel):
|
||||
"""Base class for model configuration information."""
|
||||
|
||||
path: str
|
||||
name: str
|
||||
base: BaseModelType
|
||||
type: ModelType
|
||||
format: ModelFormat
|
||||
key: str = Field(description="unique key for model", default="<NOKEY>")
|
||||
original_hash: Optional[str] = Field(
|
||||
description="original fasthash of model contents", default=None
|
||||
) # this is assigned at install time and will not change
|
||||
current_hash: Optional[str] = Field(
|
||||
description="current fasthash of model contents", default=None
|
||||
) # if model is converted or otherwise modified, this will hold updated hash
|
||||
description: Optional[str] = Field(default=None)
|
||||
source: Optional[str] = Field(description="Model download source (URL or repo_id)", default=None)
|
||||
|
||||
model_config = ConfigDict(
|
||||
use_enum_values=False,
|
||||
validate_assignment=True,
|
||||
)
|
||||
|
||||
def update(self, attributes: dict):
|
||||
"""Update the object with fields in dict."""
|
||||
for key, value in attributes.items():
|
||||
setattr(self, key, value) # may raise a validation error
|
||||
|
||||
|
||||
class _CheckpointConfig(ModelConfigBase):
|
||||
"""Model config for checkpoint-style models."""
|
||||
|
||||
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
||||
config: str = Field(description="path to the checkpoint model config file")
|
||||
|
||||
|
||||
class _DiffusersConfig(ModelConfigBase):
|
||||
"""Model config for diffusers-style models."""
|
||||
|
||||
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
||||
|
||||
|
||||
class LoRAConfig(ModelConfigBase):
|
||||
"""Model config for LoRA/Lycoris models."""
|
||||
|
||||
type: Literal[ModelType.Lora] = ModelType.Lora
|
||||
format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
|
||||
|
||||
|
||||
class VaeCheckpointConfig(ModelConfigBase):
|
||||
"""Model config for standalone VAE models."""
|
||||
|
||||
type: Literal[ModelType.Vae] = ModelType.Vae
|
||||
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
||||
|
||||
|
||||
class VaeDiffusersConfig(ModelConfigBase):
|
||||
"""Model config for standalone VAE models (diffusers version)."""
|
||||
|
||||
type: Literal[ModelType.Vae] = ModelType.Vae
|
||||
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
||||
|
||||
|
||||
class ControlNetDiffusersConfig(_DiffusersConfig):
|
||||
"""Model config for ControlNet models (diffusers version)."""
|
||||
|
||||
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
|
||||
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
||||
|
||||
|
||||
class ControlNetCheckpointConfig(_CheckpointConfig):
|
||||
"""Model config for ControlNet models (diffusers version)."""
|
||||
|
||||
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
|
||||
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
||||
|
||||
|
||||
class TextualInversionConfig(ModelConfigBase):
|
||||
"""Model config for textual inversion embeddings."""
|
||||
|
||||
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
|
||||
format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
|
||||
|
||||
|
||||
class _MainConfig(ModelConfigBase):
|
||||
"""Model config for main models."""
|
||||
|
||||
vae: Optional[str] = Field(default=None)
|
||||
variant: ModelVariantType = ModelVariantType.Normal
|
||||
ztsnr_training: bool = False
|
||||
|
||||
|
||||
class MainCheckpointConfig(_CheckpointConfig, _MainConfig):
|
||||
"""Model config for main checkpoint models."""
|
||||
|
||||
type: Literal[ModelType.Main] = ModelType.Main
|
||||
# Note that we do not need prediction_type or upcast_attention here
|
||||
# because they are provided in the checkpoint's own config file.
|
||||
|
||||
|
||||
class MainDiffusersConfig(_DiffusersConfig, _MainConfig):
|
||||
"""Model config for main diffusers models."""
|
||||
|
||||
type: Literal[ModelType.Main] = ModelType.Main
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
||||
upcast_attention: bool = False
|
||||
|
||||
|
||||
class ONNXSD1Config(_MainConfig):
|
||||
"""Model config for ONNX format models based on sd-1."""
|
||||
|
||||
type: Literal[ModelType.ONNX] = ModelType.ONNX
|
||||
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
|
||||
base: Literal[BaseModelType.StableDiffusion1] = BaseModelType.StableDiffusion1
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
||||
upcast_attention: bool = False
|
||||
|
||||
|
||||
class ONNXSD2Config(_MainConfig):
|
||||
"""Model config for ONNX format models based on sd-2."""
|
||||
|
||||
type: Literal[ModelType.ONNX] = ModelType.ONNX
|
||||
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
|
||||
# No yaml config file for ONNX, so these are part of config
|
||||
base: Literal[BaseModelType.StableDiffusion2] = BaseModelType.StableDiffusion2
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.VPrediction
|
||||
upcast_attention: bool = True
|
||||
|
||||
|
||||
class IPAdapterConfig(ModelConfigBase):
|
||||
"""Model config for IP Adaptor format models."""
|
||||
|
||||
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
|
||||
format: Literal[ModelFormat.InvokeAI]
|
||||
|
||||
|
||||
class CLIPVisionDiffusersConfig(ModelConfigBase):
|
||||
"""Model config for ClipVision."""
|
||||
|
||||
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
|
||||
format: Literal[ModelFormat.Diffusers]
|
||||
|
||||
|
||||
class T2IConfig(ModelConfigBase):
|
||||
"""Model config for T2I."""
|
||||
|
||||
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
|
||||
format: Literal[ModelFormat.Diffusers]
|
||||
|
||||
|
||||
_ONNXConfig = Annotated[Union[ONNXSD1Config, ONNXSD2Config], Field(discriminator="base")]
|
||||
_ControlNetConfig = Annotated[
|
||||
Union[ControlNetDiffusersConfig, ControlNetCheckpointConfig],
|
||||
Field(discriminator="format"),
|
||||
]
|
||||
_VaeConfig = Annotated[Union[VaeDiffusersConfig, VaeCheckpointConfig], Field(discriminator="format")]
|
||||
_MainModelConfig = Annotated[Union[MainDiffusersConfig, MainCheckpointConfig], Field(discriminator="format")]
|
||||
|
||||
AnyModelConfig = Union[
|
||||
_MainModelConfig,
|
||||
_ONNXConfig,
|
||||
_VaeConfig,
|
||||
_ControlNetConfig,
|
||||
LoRAConfig,
|
||||
TextualInversionConfig,
|
||||
IPAdapterConfig,
|
||||
CLIPVisionDiffusersConfig,
|
||||
T2IConfig,
|
||||
]
|
||||
|
||||
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
|
||||
|
||||
# IMPLEMENTATION NOTE:
|
||||
# The preferred alternative to the above is a discriminated Union as shown
|
||||
# below. However, it breaks FastAPI when used as the input Body parameter in a route.
|
||||
# This is a known issue. Please see:
|
||||
# https://github.com/tiangolo/fastapi/discussions/9761 and
|
||||
# https://github.com/tiangolo/fastapi/discussions/9287
|
||||
# AnyModelConfig = Annotated[
|
||||
# Union[
|
||||
# _MainModelConfig,
|
||||
# _ONNXConfig,
|
||||
# _VaeConfig,
|
||||
# _ControlNetConfig,
|
||||
# LoRAConfig,
|
||||
# TextualInversionConfig,
|
||||
# IPAdapterConfig,
|
||||
# CLIPVisionDiffusersConfig,
|
||||
# T2IConfig,
|
||||
# ],
|
||||
# Field(discriminator="type"),
|
||||
# ]
|
||||
|
||||
|
||||
class ModelConfigFactory(object):
|
||||
"""Class for parsing config dicts into StableDiffusion Config obects."""
|
||||
|
||||
@classmethod
|
||||
def make_config(
|
||||
cls,
|
||||
model_data: Union[dict, AnyModelConfig],
|
||||
key: Optional[str] = None,
|
||||
dest_class: Optional[Type] = None,
|
||||
) -> AnyModelConfig:
|
||||
"""
|
||||
Return the appropriate config object from raw dict values.
|
||||
|
||||
:param model_data: A raw dict corresponding the obect fields to be
|
||||
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
|
||||
object, which will be passed through unchanged.
|
||||
:param dest_class: The config class to be returned. If not provided, will
|
||||
be selected automatically.
|
||||
"""
|
||||
if isinstance(model_data, ModelConfigBase):
|
||||
model = model_data
|
||||
elif dest_class:
|
||||
model = dest_class.validate_python(model_data)
|
||||
else:
|
||||
model = AnyModelConfigValidator.validate_python(model_data)
|
||||
if key:
|
||||
model.key = key
|
||||
return model
|
66
invokeai/backend/model_manager/hash.py
Normal file
66
invokeai/backend/model_manager/hash.py
Normal file
@ -0,0 +1,66 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""
|
||||
Fast hashing of diffusers and checkpoint-style models.
|
||||
|
||||
Usage:
|
||||
from invokeai.backend.model_managre.model_hash import FastModelHash
|
||||
>>> FastModelHash.hash('/home/models/stable-diffusion-v1.5')
|
||||
'a8e693a126ea5b831c96064dc569956f'
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, Union
|
||||
|
||||
from imohash import hashfile
|
||||
|
||||
|
||||
class FastModelHash(object):
|
||||
"""FastModelHash obect provides one public class method, hash()."""
|
||||
|
||||
@classmethod
|
||||
def hash(cls, model_location: Union[str, Path]) -> str:
|
||||
"""
|
||||
Return hexdigest string for model located at model_location.
|
||||
|
||||
:param model_location: Path to the model
|
||||
"""
|
||||
model_location = Path(model_location)
|
||||
if model_location.is_file():
|
||||
return cls._hash_file(model_location)
|
||||
elif model_location.is_dir():
|
||||
return cls._hash_dir(model_location)
|
||||
else:
|
||||
raise OSError(f"Not a valid file or directory: {model_location}")
|
||||
|
||||
@classmethod
|
||||
def _hash_file(cls, model_location: Union[str, Path]) -> str:
|
||||
"""
|
||||
Fasthash a single file and return its hexdigest.
|
||||
|
||||
:param model_location: Path to the model file
|
||||
"""
|
||||
# we return md5 hash of the filehash to make it shorter
|
||||
# cryptographic security not needed here
|
||||
return hashlib.md5(hashfile(model_location)).hexdigest()
|
||||
|
||||
@classmethod
|
||||
def _hash_dir(cls, model_location: Union[str, Path]) -> str:
|
||||
components: Dict[str, str] = {}
|
||||
|
||||
for root, _dirs, files in os.walk(model_location):
|
||||
for file in files:
|
||||
# only tally tensor files because diffusers config files change slightly
|
||||
# depending on how the model was downloaded/converted.
|
||||
if not file.endswith((".ckpt", ".safetensors", ".bin", ".pt", ".pth")):
|
||||
continue
|
||||
path = (Path(root) / file).as_posix()
|
||||
fast_hash = cls._hash_file(path)
|
||||
components.update({path: fast_hash})
|
||||
|
||||
# hash all the model hashes together, using alphabetic file order
|
||||
md5 = hashlib.md5()
|
||||
for _path, fast_hash in sorted(components.items()):
|
||||
md5.update(fast_hash.encode("utf-8"))
|
||||
return md5.hexdigest()
|
93
invokeai/backend/model_manager/migrate_to_db.py
Normal file
93
invokeai/backend/model_manager/migrate_to_db.py
Normal file
@ -0,0 +1,93 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein
|
||||
"""Migrate from the InvokeAI v2 models.yaml format to the v3 sqlite format."""
|
||||
|
||||
from hashlib import sha1
|
||||
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
ModelRecordServiceSQL,
|
||||
)
|
||||
from invokeai.app.services.shared.sqlite import SqliteDatabase
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.hash import FastModelHash
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
ModelsValidator = TypeAdapter(AnyModelConfig)
|
||||
|
||||
|
||||
class MigrateModelYamlToDb:
|
||||
"""
|
||||
Migrate the InvokeAI models.yaml format (VERSION 3.0.0) to SQL3 database format (VERSION 3.2.0)
|
||||
|
||||
The class has one externally useful method, migrate(), which scans the
|
||||
currently models.yaml file and imports all its entries into invokeai.db.
|
||||
|
||||
Use this way:
|
||||
|
||||
from invokeai.backend.model_manager/migrate_to_db import MigrateModelYamlToDb
|
||||
MigrateModelYamlToDb().migrate()
|
||||
|
||||
"""
|
||||
|
||||
config: InvokeAIAppConfig
|
||||
logger: InvokeAILogger
|
||||
|
||||
def __init__(self):
|
||||
self.config = InvokeAIAppConfig.get_config()
|
||||
self.config.parse_args()
|
||||
self.logger = InvokeAILogger.get_logger()
|
||||
|
||||
def get_db(self) -> ModelRecordServiceSQL:
|
||||
"""Fetch the sqlite3 database for this installation."""
|
||||
db = SqliteDatabase(self.config, self.logger)
|
||||
return ModelRecordServiceSQL(db)
|
||||
|
||||
def get_yaml(self) -> DictConfig:
|
||||
"""Fetch the models.yaml DictConfig for this installation."""
|
||||
yaml_path = self.config.model_conf_path
|
||||
return OmegaConf.load(yaml_path)
|
||||
|
||||
def migrate(self):
|
||||
"""Do the migration from models.yaml to invokeai.db."""
|
||||
db = self.get_db()
|
||||
yaml = self.get_yaml()
|
||||
|
||||
for model_key, stanza in yaml.items():
|
||||
if model_key == "__metadata__":
|
||||
assert (
|
||||
stanza["version"] == "3.0.0"
|
||||
), f"This script works on version 3.0.0 yaml files, but your configuration points to a {stanza['version']} version"
|
||||
continue
|
||||
|
||||
base_type, model_type, model_name = str(model_key).split("/")
|
||||
hash = FastModelHash.hash(self.config.models_path / stanza.path)
|
||||
new_key = sha1(model_key.encode("utf-8")).hexdigest()
|
||||
|
||||
stanza["base"] = BaseModelType(base_type)
|
||||
stanza["type"] = ModelType(model_type)
|
||||
stanza["name"] = model_name
|
||||
stanza["original_hash"] = hash
|
||||
stanza["current_hash"] = hash
|
||||
|
||||
new_config = ModelsValidator.validate_python(stanza)
|
||||
self.logger.info(f"Adding model {model_name} with key {model_key}")
|
||||
try:
|
||||
db.add_model(new_key, new_config)
|
||||
except DuplicateModelException:
|
||||
self.logger.warning(f"Model {model_name} is already in the database")
|
||||
|
||||
|
||||
def main():
|
||||
MigrateModelYamlToDb().migrate()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -5,6 +5,7 @@ import math
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import re
|
||||
import warnings
|
||||
from collections import abc
|
||||
from inspect import isfunction
|
||||
from pathlib import Path
|
||||
@ -14,8 +15,10 @@ from threading import Thread
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
from diffusers import logging as diffusers_logging
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from tqdm import tqdm
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
@ -379,3 +382,21 @@ class Chdir(object):
|
||||
|
||||
def __exit__(self, *args):
|
||||
os.chdir(self.original)
|
||||
|
||||
|
||||
class SilenceWarnings(object):
|
||||
"""Context manager to temporarily lower verbosity of diffusers & transformers warning messages."""
|
||||
|
||||
def __enter__(self):
|
||||
"""Set verbosity to error."""
|
||||
self.transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
transformers_logging.set_verbosity_error()
|
||||
diffusers_logging.set_verbosity_error()
|
||||
warnings.simplefilter("ignore")
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
"""Restore logger verbosity to state before context was entered."""
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
warnings.simplefilter("default")
|
||||
|
171
invokeai/frontend/web/dist/assets/App-d620b60d.js
vendored
Normal file
171
invokeai/frontend/web/dist/assets/App-d620b60d.js
vendored
Normal file
File diff suppressed because one or more lines are too long
1
invokeai/frontend/web/dist/assets/MantineProvider-17a58e64.js
vendored
Normal file
1
invokeai/frontend/web/dist/assets/MantineProvider-17a58e64.js
vendored
Normal file
File diff suppressed because one or more lines are too long
280
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-58d6b3b6.js
vendored
Normal file
280
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-58d6b3b6.js
vendored
Normal file
@ -0,0 +1,280 @@
|
||||
import{w as s,ia as T,v as l,a2 as I,ib as R,ae as V,ic as z,id as j,ie as D,ig as F,ih as G,ii as W,ij as K,aG as H,ik as U,il as Y}from"./index-54a1ea80.js";import{M as Z}from"./MantineProvider-17a58e64.js";var P=String.raw,E=P`
|
||||
:root,
|
||||
:host {
|
||||
--chakra-vh: 100vh;
|
||||
}
|
||||
|
||||
@supports (height: -webkit-fill-available) {
|
||||
:root,
|
||||
:host {
|
||||
--chakra-vh: -webkit-fill-available;
|
||||
}
|
||||
}
|
||||
|
||||
@supports (height: -moz-fill-available) {
|
||||
:root,
|
||||
:host {
|
||||
--chakra-vh: -moz-fill-available;
|
||||
}
|
||||
}
|
||||
|
||||
@supports (height: 100dvh) {
|
||||
:root,
|
||||
:host {
|
||||
--chakra-vh: 100dvh;
|
||||
}
|
||||
}
|
||||
`,B=()=>s.jsx(T,{styles:E}),J=({scope:e=""})=>s.jsx(T,{styles:P`
|
||||
html {
|
||||
line-height: 1.5;
|
||||
-webkit-text-size-adjust: 100%;
|
||||
font-family: system-ui, sans-serif;
|
||||
-webkit-font-smoothing: antialiased;
|
||||
text-rendering: optimizeLegibility;
|
||||
-moz-osx-font-smoothing: grayscale;
|
||||
touch-action: manipulation;
|
||||
}
|
||||
|
||||
body {
|
||||
position: relative;
|
||||
min-height: 100%;
|
||||
margin: 0;
|
||||
font-feature-settings: "kern";
|
||||
}
|
||||
|
||||
${e} :where(*, *::before, *::after) {
|
||||
border-width: 0;
|
||||
border-style: solid;
|
||||
box-sizing: border-box;
|
||||
word-wrap: break-word;
|
||||
}
|
||||
|
||||
main {
|
||||
display: block;
|
||||
}
|
||||
|
||||
${e} hr {
|
||||
border-top-width: 1px;
|
||||
box-sizing: content-box;
|
||||
height: 0;
|
||||
overflow: visible;
|
||||
}
|
||||
|
||||
${e} :where(pre, code, kbd,samp) {
|
||||
font-family: SFMono-Regular, Menlo, Monaco, Consolas, monospace;
|
||||
font-size: 1em;
|
||||
}
|
||||
|
||||
${e} a {
|
||||
background-color: transparent;
|
||||
color: inherit;
|
||||
text-decoration: inherit;
|
||||
}
|
||||
|
||||
${e} abbr[title] {
|
||||
border-bottom: none;
|
||||
text-decoration: underline;
|
||||
-webkit-text-decoration: underline dotted;
|
||||
text-decoration: underline dotted;
|
||||
}
|
||||
|
||||
${e} :where(b, strong) {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
${e} small {
|
||||
font-size: 80%;
|
||||
}
|
||||
|
||||
${e} :where(sub,sup) {
|
||||
font-size: 75%;
|
||||
line-height: 0;
|
||||
position: relative;
|
||||
vertical-align: baseline;
|
||||
}
|
||||
|
||||
${e} sub {
|
||||
bottom: -0.25em;
|
||||
}
|
||||
|
||||
${e} sup {
|
||||
top: -0.5em;
|
||||
}
|
||||
|
||||
${e} img {
|
||||
border-style: none;
|
||||
}
|
||||
|
||||
${e} :where(button, input, optgroup, select, textarea) {
|
||||
font-family: inherit;
|
||||
font-size: 100%;
|
||||
line-height: 1.15;
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
${e} :where(button, input) {
|
||||
overflow: visible;
|
||||
}
|
||||
|
||||
${e} :where(button, select) {
|
||||
text-transform: none;
|
||||
}
|
||||
|
||||
${e} :where(
|
||||
button::-moz-focus-inner,
|
||||
[type="button"]::-moz-focus-inner,
|
||||
[type="reset"]::-moz-focus-inner,
|
||||
[type="submit"]::-moz-focus-inner
|
||||
) {
|
||||
border-style: none;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
${e} fieldset {
|
||||
padding: 0.35em 0.75em 0.625em;
|
||||
}
|
||||
|
||||
${e} legend {
|
||||
box-sizing: border-box;
|
||||
color: inherit;
|
||||
display: table;
|
||||
max-width: 100%;
|
||||
padding: 0;
|
||||
white-space: normal;
|
||||
}
|
||||
|
||||
${e} progress {
|
||||
vertical-align: baseline;
|
||||
}
|
||||
|
||||
${e} textarea {
|
||||
overflow: auto;
|
||||
}
|
||||
|
||||
${e} :where([type="checkbox"], [type="radio"]) {
|
||||
box-sizing: border-box;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
${e} input[type="number"]::-webkit-inner-spin-button,
|
||||
${e} input[type="number"]::-webkit-outer-spin-button {
|
||||
-webkit-appearance: none !important;
|
||||
}
|
||||
|
||||
${e} input[type="number"] {
|
||||
-moz-appearance: textfield;
|
||||
}
|
||||
|
||||
${e} input[type="search"] {
|
||||
-webkit-appearance: textfield;
|
||||
outline-offset: -2px;
|
||||
}
|
||||
|
||||
${e} input[type="search"]::-webkit-search-decoration {
|
||||
-webkit-appearance: none !important;
|
||||
}
|
||||
|
||||
${e} ::-webkit-file-upload-button {
|
||||
-webkit-appearance: button;
|
||||
font: inherit;
|
||||
}
|
||||
|
||||
${e} details {
|
||||
display: block;
|
||||
}
|
||||
|
||||
${e} summary {
|
||||
display: list-item;
|
||||
}
|
||||
|
||||
template {
|
||||
display: none;
|
||||
}
|
||||
|
||||
[hidden] {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
${e} :where(
|
||||
blockquote,
|
||||
dl,
|
||||
dd,
|
||||
h1,
|
||||
h2,
|
||||
h3,
|
||||
h4,
|
||||
h5,
|
||||
h6,
|
||||
hr,
|
||||
figure,
|
||||
p,
|
||||
pre
|
||||
) {
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
${e} button {
|
||||
background: transparent;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
${e} fieldset {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
${e} :where(ol, ul) {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
${e} textarea {
|
||||
resize: vertical;
|
||||
}
|
||||
|
||||
${e} :where(button, [role="button"]) {
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
${e} button::-moz-focus-inner {
|
||||
border: 0 !important;
|
||||
}
|
||||
|
||||
${e} table {
|
||||
border-collapse: collapse;
|
||||
}
|
||||
|
||||
${e} :where(h1, h2, h3, h4, h5, h6) {
|
||||
font-size: inherit;
|
||||
font-weight: inherit;
|
||||
}
|
||||
|
||||
${e} :where(button, input, optgroup, select, textarea) {
|
||||
padding: 0;
|
||||
line-height: inherit;
|
||||
color: inherit;
|
||||
}
|
||||
|
||||
${e} :where(img, svg, video, canvas, audio, iframe, embed, object) {
|
||||
display: block;
|
||||
}
|
||||
|
||||
${e} :where(img, video) {
|
||||
max-width: 100%;
|
||||
height: auto;
|
||||
}
|
||||
|
||||
[data-js-focus-visible]
|
||||
:focus:not([data-focus-visible-added]):not(
|
||||
[data-focus-visible-disabled]
|
||||
) {
|
||||
outline: none;
|
||||
box-shadow: none;
|
||||
}
|
||||
|
||||
${e} select::-ms-expand {
|
||||
display: none;
|
||||
}
|
||||
|
||||
${E}
|
||||
`}),g={light:"chakra-ui-light",dark:"chakra-ui-dark"};function Q(e={}){const{preventTransition:o=!0}=e,n={setDataset:r=>{const t=o?n.preventTransition():void 0;document.documentElement.dataset.theme=r,document.documentElement.style.colorScheme=r,t==null||t()},setClassName(r){document.body.classList.add(r?g.dark:g.light),document.body.classList.remove(r?g.light:g.dark)},query(){return window.matchMedia("(prefers-color-scheme: dark)")},getSystemTheme(r){var t;return((t=n.query().matches)!=null?t:r==="dark")?"dark":"light"},addListener(r){const t=n.query(),i=a=>{r(a.matches?"dark":"light")};return typeof t.addListener=="function"?t.addListener(i):t.addEventListener("change",i),()=>{typeof t.removeListener=="function"?t.removeListener(i):t.removeEventListener("change",i)}},preventTransition(){const r=document.createElement("style");return r.appendChild(document.createTextNode("*{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}")),document.head.appendChild(r),()=>{window.getComputedStyle(document.body),requestAnimationFrame(()=>{requestAnimationFrame(()=>{document.head.removeChild(r)})})}}};return n}var X="chakra-ui-color-mode";function L(e){return{ssr:!1,type:"localStorage",get(o){if(!(globalThis!=null&&globalThis.document))return o;let n;try{n=localStorage.getItem(e)||o}catch{}return n||o},set(o){try{localStorage.setItem(e,o)}catch{}}}}var ee=L(X),M=()=>{};function S(e,o){return e.type==="cookie"&&e.ssr?e.get(o):o}function O(e){const{value:o,children:n,options:{useSystemColorMode:r,initialColorMode:t,disableTransitionOnChange:i}={},colorModeManager:a=ee}=e,d=t==="dark"?"dark":"light",[u,p]=l.useState(()=>S(a,d)),[y,b]=l.useState(()=>S(a)),{getSystemTheme:w,setClassName:k,setDataset:x,addListener:$}=l.useMemo(()=>Q({preventTransition:i}),[i]),v=t==="system"&&!u?y:u,c=l.useCallback(h=>{const f=h==="system"?w():h;p(f),k(f==="dark"),x(f),a.set(f)},[a,w,k,x]);I(()=>{t==="system"&&b(w())},[]),l.useEffect(()=>{const h=a.get();if(h){c(h);return}if(t==="system"){c("system");return}c(d)},[a,d,t,c]);const C=l.useCallback(()=>{c(v==="dark"?"light":"dark")},[v,c]);l.useEffect(()=>{if(r)return $(c)},[r,$,c]);const A=l.useMemo(()=>({colorMode:o??v,toggleColorMode:o?M:C,setColorMode:o?M:c,forced:o!==void 0}),[v,C,c,o]);return s.jsx(R.Provider,{value:A,children:n})}O.displayName="ColorModeProvider";var te=["borders","breakpoints","colors","components","config","direction","fonts","fontSizes","fontWeights","letterSpacings","lineHeights","radii","shadows","sizes","space","styles","transition","zIndices"];function re(e){return V(e)?te.every(o=>Object.prototype.hasOwnProperty.call(e,o)):!1}function m(e){return typeof e=="function"}function oe(...e){return o=>e.reduce((n,r)=>r(n),o)}var ne=e=>function(...n){let r=[...n],t=n[n.length-1];return re(t)&&r.length>1?r=r.slice(0,r.length-1):t=e,oe(...r.map(i=>a=>m(i)?i(a):ae(a,i)))(t)},ie=ne(j);function ae(...e){return z({},...e,_)}function _(e,o,n,r){if((m(e)||m(o))&&Object.prototype.hasOwnProperty.call(r,n))return(...t)=>{const i=m(e)?e(...t):e,a=m(o)?o(...t):o;return z({},i,a,_)}}var q=l.createContext({getDocument(){return document},getWindow(){return window}});q.displayName="EnvironmentContext";function N(e){const{children:o,environment:n,disabled:r}=e,t=l.useRef(null),i=l.useMemo(()=>n||{getDocument:()=>{var d,u;return(u=(d=t.current)==null?void 0:d.ownerDocument)!=null?u:document},getWindow:()=>{var d,u;return(u=(d=t.current)==null?void 0:d.ownerDocument.defaultView)!=null?u:window}},[n]),a=!r||!n;return s.jsxs(q.Provider,{value:i,children:[o,a&&s.jsx("span",{id:"__chakra_env",hidden:!0,ref:t})]})}N.displayName="EnvironmentProvider";var se=e=>{const{children:o,colorModeManager:n,portalZIndex:r,resetScope:t,resetCSS:i=!0,theme:a={},environment:d,cssVarsRoot:u,disableEnvironment:p,disableGlobalStyle:y}=e,b=s.jsx(N,{environment:d,disabled:p,children:o});return s.jsx(D,{theme:a,cssVarsRoot:u,children:s.jsxs(O,{colorModeManager:n,options:a.config,children:[i?s.jsx(J,{scope:t}):s.jsx(B,{}),!y&&s.jsx(F,{}),r?s.jsx(G,{zIndex:r,children:b}):b]})})},le=e=>function({children:n,theme:r=e,toastOptions:t,...i}){return s.jsxs(se,{theme:r,...i,children:[s.jsx(W,{value:t==null?void 0:t.defaultOptions,children:n}),s.jsx(K,{...t})]})},de=le(j);const ue=()=>l.useMemo(()=>({colorScheme:"dark",fontFamily:"'Inter Variable', sans-serif",components:{ScrollArea:{defaultProps:{scrollbarSize:10},styles:{scrollbar:{"&:hover":{backgroundColor:"var(--invokeai-colors-baseAlpha-300)"}},thumb:{backgroundColor:"var(--invokeai-colors-baseAlpha-300)"}}}}}),[]),ce=L("@@invokeai-color-mode");function he({children:e}){const{i18n:o}=H(),n=o.dir(),r=l.useMemo(()=>ie({...U,direction:n}),[n]);l.useEffect(()=>{document.body.dir=n},[n]);const t=ue();return s.jsx(Z,{theme:t,children:s.jsx(de,{theme:r,colorModeManager:ce,toastOptions:Y,children:e})})}const ve=l.memo(he);export{ve as default};
|
156
invokeai/frontend/web/dist/assets/index-54a1ea80.js
vendored
Normal file
156
invokeai/frontend/web/dist/assets/index-54a1ea80.js
vendored
Normal file
File diff suppressed because one or more lines are too long
@ -49,6 +49,7 @@ dependencies = [
|
||||
"fastapi~=0.103.2",
|
||||
"fastapi-events~=0.9.1",
|
||||
"huggingface-hub~=0.16.4",
|
||||
"imohash",
|
||||
"invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids
|
||||
"matplotlib", # needed for plotting of Penner easing functions
|
||||
"mediapipe", # needed for "mediapipeface" controlnet model
|
||||
@ -136,6 +137,7 @@ dependencies = [
|
||||
"invokeai-node-web" = "invokeai.app.api_app:invoke_api"
|
||||
"invokeai-import-images" = "invokeai.frontend.install.import_images:main"
|
||||
"invokeai-db-maintenance" = "invokeai.backend.util.db_maintenance:main"
|
||||
"invokeai-migrate-models-to-db" = "invokeai.backend.model_manager.migrate_to_db:main"
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://invoke-ai.github.io/InvokeAI/"
|
||||
|
267
tests/app/services/model_records/test_model_records_sql.py
Normal file
267
tests/app/services/model_records/test_model_records_sql.py
Normal file
@ -0,0 +1,267 @@
|
||||
"""
|
||||
Test the refactored model config classes.
|
||||
"""
|
||||
|
||||
from hashlib import sha256
|
||||
|
||||
import pytest
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
ModelRecordServiceBase,
|
||||
ModelRecordServiceSQL,
|
||||
UnknownModelException,
|
||||
)
|
||||
from invokeai.app.services.shared.sqlite import SqliteDatabase
|
||||
from invokeai.backend.model_manager.config import (
|
||||
BaseModelType,
|
||||
MainCheckpointConfig,
|
||||
MainDiffusersConfig,
|
||||
ModelType,
|
||||
TextualInversionConfig,
|
||||
VaeDiffusersConfig,
|
||||
)
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def store(datadir) -> ModelRecordServiceBase:
|
||||
config = InvokeAIAppConfig(root=datadir)
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
db = SqliteDatabase(config, logger)
|
||||
return ModelRecordServiceSQL(db)
|
||||
|
||||
|
||||
def example_config() -> TextualInversionConfig:
|
||||
return TextualInversionConfig(
|
||||
path="/tmp/pokemon.bin",
|
||||
name="old name",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("embedding"),
|
||||
format="embedding_file",
|
||||
original_hash="ABC123",
|
||||
)
|
||||
|
||||
|
||||
def test_type(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", config)
|
||||
config1 = store.get_model("key1")
|
||||
assert type(config1) == TextualInversionConfig
|
||||
|
||||
|
||||
def test_add(store: ModelRecordServiceBase):
|
||||
raw = {
|
||||
"path": "/tmp/foo.ckpt",
|
||||
"name": "model1",
|
||||
"base": BaseModelType("sd-1"),
|
||||
"type": "main",
|
||||
"config": "/tmp/foo.yaml",
|
||||
"variant": "normal",
|
||||
"format": "checkpoint",
|
||||
"original_hash": "111222333444",
|
||||
}
|
||||
store.add_model("key1", raw)
|
||||
config1 = store.get_model("key1")
|
||||
assert config1 is not None
|
||||
assert type(config1) == MainCheckpointConfig
|
||||
assert config1.base == BaseModelType("sd-1")
|
||||
assert config1.name == "model1"
|
||||
assert config1.original_hash == "111222333444"
|
||||
assert config1.current_hash is None
|
||||
|
||||
|
||||
def test_dup(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", example_config())
|
||||
with pytest.raises(DuplicateModelException):
|
||||
store.add_model("key1", config)
|
||||
with pytest.raises(DuplicateModelException):
|
||||
store.add_model("key2", config)
|
||||
|
||||
|
||||
def test_update(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", config)
|
||||
config = store.get_model("key1")
|
||||
assert config.name == "old name"
|
||||
|
||||
config.name = "new name"
|
||||
store.update_model("key1", config)
|
||||
new_config = store.get_model("key1")
|
||||
assert new_config.name == "new name"
|
||||
|
||||
|
||||
def test_rename(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", config)
|
||||
config = store.get_model("key1")
|
||||
assert config.name == "old name"
|
||||
|
||||
store.rename_model("key1", "new name")
|
||||
new_config = store.get_model("key1")
|
||||
assert new_config.name == "new name"
|
||||
|
||||
|
||||
def test_unknown_key(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", config)
|
||||
with pytest.raises(UnknownModelException):
|
||||
store.update_model("unknown_key", config)
|
||||
|
||||
|
||||
def test_delete(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", config)
|
||||
config = store.get_model("key1")
|
||||
store.del_model("key1")
|
||||
with pytest.raises(UnknownModelException):
|
||||
config = store.get_model("key1")
|
||||
|
||||
|
||||
def test_exists(store: ModelRecordServiceBase):
|
||||
config = example_config()
|
||||
store.add_model("key1", config)
|
||||
assert store.exists("key1")
|
||||
assert not store.exists("key2")
|
||||
|
||||
|
||||
def test_filter(store: ModelRecordServiceBase):
|
||||
config1 = MainDiffusersConfig(
|
||||
path="/tmp/config1",
|
||||
name="config1",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("main"),
|
||||
original_hash="CONFIG1HASH",
|
||||
)
|
||||
config2 = MainDiffusersConfig(
|
||||
path="/tmp/config2",
|
||||
name="config2",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("main"),
|
||||
original_hash="CONFIG2HASH",
|
||||
)
|
||||
config3 = VaeDiffusersConfig(
|
||||
path="/tmp/config3",
|
||||
name="config3",
|
||||
base=BaseModelType("sd-2"),
|
||||
type=ModelType("vae"),
|
||||
original_hash="CONFIG3HASH",
|
||||
)
|
||||
for c in config1, config2, config3:
|
||||
store.add_model(sha256(c.name.encode("utf-8")).hexdigest(), c)
|
||||
matches = store.search_by_attr(model_type=ModelType("main"))
|
||||
assert len(matches) == 2
|
||||
assert matches[0].name in {"config1", "config2"}
|
||||
|
||||
matches = store.search_by_attr(model_type=ModelType("vae"))
|
||||
assert len(matches) == 1
|
||||
assert matches[0].name == "config3"
|
||||
assert matches[0].key == sha256("config3".encode("utf-8")).hexdigest()
|
||||
assert isinstance(matches[0].type, ModelType) # This tests that we get proper enums back
|
||||
|
||||
matches = store.search_by_hash("CONFIG1HASH")
|
||||
assert len(matches) == 1
|
||||
assert matches[0].original_hash == "CONFIG1HASH"
|
||||
|
||||
matches = store.all_models()
|
||||
assert len(matches) == 3
|
||||
|
||||
|
||||
def test_unique(store: ModelRecordServiceBase):
|
||||
config1 = MainDiffusersConfig(
|
||||
path="/tmp/config1",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("main"),
|
||||
name="nonuniquename",
|
||||
original_hash="CONFIG1HASH",
|
||||
)
|
||||
config2 = MainDiffusersConfig(
|
||||
path="/tmp/config2",
|
||||
base=BaseModelType("sd-2"),
|
||||
type=ModelType("main"),
|
||||
name="nonuniquename",
|
||||
original_hash="CONFIG1HASH",
|
||||
)
|
||||
config3 = VaeDiffusersConfig(
|
||||
path="/tmp/config3",
|
||||
base=BaseModelType("sd-2"),
|
||||
type=ModelType("vae"),
|
||||
name="nonuniquename",
|
||||
original_hash="CONFIG1HASH",
|
||||
)
|
||||
config4 = MainDiffusersConfig(
|
||||
path="/tmp/config4",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("main"),
|
||||
name="nonuniquename",
|
||||
original_hash="CONFIG1HASH",
|
||||
)
|
||||
# config1, config2 and config3 are compatible because they have unique combos
|
||||
# of name, type and base
|
||||
for c in config1, config2, config3:
|
||||
store.add_model(sha256(c.path.encode("utf-8")).hexdigest(), c)
|
||||
|
||||
# config4 clashes with config1 and should raise an integrity error
|
||||
with pytest.raises(DuplicateModelException):
|
||||
store.add_model(sha256(c.path.encode("utf-8")).hexdigest(), config4)
|
||||
|
||||
|
||||
def test_filter_2(store: ModelRecordServiceBase):
|
||||
config1 = MainDiffusersConfig(
|
||||
path="/tmp/config1",
|
||||
name="config1",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("main"),
|
||||
original_hash="CONFIG1HASH",
|
||||
)
|
||||
config2 = MainDiffusersConfig(
|
||||
path="/tmp/config2",
|
||||
name="config2",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("main"),
|
||||
original_hash="CONFIG2HASH",
|
||||
)
|
||||
config3 = MainDiffusersConfig(
|
||||
path="/tmp/config3",
|
||||
name="dup_name1",
|
||||
base=BaseModelType("sd-2"),
|
||||
type=ModelType("main"),
|
||||
original_hash="CONFIG3HASH",
|
||||
)
|
||||
config4 = MainDiffusersConfig(
|
||||
path="/tmp/config4",
|
||||
name="dup_name1",
|
||||
base=BaseModelType("sdxl"),
|
||||
type=ModelType("main"),
|
||||
original_hash="CONFIG3HASH",
|
||||
)
|
||||
config5 = VaeDiffusersConfig(
|
||||
path="/tmp/config5",
|
||||
name="dup_name1",
|
||||
base=BaseModelType("sd-1"),
|
||||
type=ModelType("vae"),
|
||||
original_hash="CONFIG3HASH",
|
||||
)
|
||||
for c in config1, config2, config3, config4, config5:
|
||||
store.add_model(sha256(c.path.encode("utf-8")).hexdigest(), c)
|
||||
|
||||
matches = store.search_by_attr(
|
||||
model_type=ModelType("main"),
|
||||
model_name="dup_name1",
|
||||
)
|
||||
assert len(matches) == 2
|
||||
|
||||
matches = store.search_by_attr(
|
||||
base_model=BaseModelType("sd-1"),
|
||||
model_type=ModelType("main"),
|
||||
)
|
||||
assert len(matches) == 2
|
||||
|
||||
matches = store.search_by_attr(
|
||||
base_model=BaseModelType("sd-1"),
|
||||
model_type=ModelType("vae"),
|
||||
model_name="dup_name1",
|
||||
)
|
||||
assert len(matches) == 1
|
@ -68,6 +68,7 @@ def mock_services() -> InvocationServices:
|
||||
latents=None, # type: ignore
|
||||
logger=logging, # type: ignore
|
||||
model_manager=None, # type: ignore
|
||||
model_records=None, # type: ignore
|
||||
names=None, # type: ignore
|
||||
performance_statistics=InvocationStatsService(),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
|
@ -73,6 +73,7 @@ def mock_services() -> InvocationServices:
|
||||
latents=None, # type: ignore
|
||||
logger=logging, # type: ignore
|
||||
model_manager=None, # type: ignore
|
||||
model_records=None, # type: ignore
|
||||
names=None, # type: ignore
|
||||
performance_statistics=InvocationStatsService(),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
|
Loading…
Reference in New Issue
Block a user