mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
move all models into subdirectories of ./models
- this required an update to the invoke-ai fork of gfpgan - simultaneously reverted consolidation of environment and requirements files, as their presence in a directory triggered setup.py to try to install a sub-package.
This commit is contained in:
parent
abd6407394
commit
8cd5d95b8a
@ -70,7 +70,7 @@ Some Suggestions of variables you may want to change besides the Token:
|
||||
| `HUGGINGFACE_TOKEN="hg_aewirhghlawrgkjbarug2"` | This is the only required variable, without you can't get the checkpoint |
|
||||
| `ARCH=aarch64` | if you are using a ARM based CPU |
|
||||
| `INVOKEAI_TAG=yourname/invokeai:latest` | the Container Repository / Tag which will be used |
|
||||
| `INVOKEAI_CONDA_ENV_FILE=environments/environment-linux-aarch64.yml`| since environment.yml wouldn't work with aarch |
|
||||
| `INVOKEAI_CONDA_ENV_FILE=environment-linux-aarch64.yml` | since environment.yml wouldn't work with aarch |
|
||||
| `INVOKEAI_GIT="-b branchname https://github.com/username/reponame"` | if you want to use your own fork |
|
||||
|
||||
#### Build the Image
|
||||
|
@ -48,7 +48,7 @@ title: Manual Installation, Linux
|
||||
|
||||
```bash
|
||||
(base) rm -rf src # (this is a precaution in case there is already a src directory)
|
||||
(base) ~/InvokeAI$ conda env create -f environments/environment-cuda.yml
|
||||
(base) ~/InvokeAI$ conda env create -f environment-cuda.yml
|
||||
(base) ~/InvokeAI$ conda activate invokeai
|
||||
(invokeai) ~/InvokeAI$
|
||||
```
|
||||
@ -57,7 +57,7 @@ title: Manual Installation, Linux
|
||||
|
||||
```bash
|
||||
(base) rm -rf src # (this is a precaution in case there is already a src directory)
|
||||
(base) ~/InvokeAI$ conda env create -f environments/environment-rocm.yml
|
||||
(base) ~/InvokeAI$ conda env create -f environment-AMD.yml
|
||||
(base) ~/InvokeAI$ conda activate invokeai
|
||||
(invokeai) ~/InvokeAI$
|
||||
```
|
||||
|
@ -45,7 +45,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
|
||||
|
||||
```bash
|
||||
rmdir src # (this is a precaution in case there is already a src directory)
|
||||
conda env create -f environments/environment-cuda.yml
|
||||
conda env create -f environment-cuda.yml
|
||||
conda activate invokeai
|
||||
(invokeai)>
|
||||
```
|
||||
@ -54,7 +54,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
|
||||
|
||||
```bash
|
||||
rmdir src # (this is a precaution in case there is already a src directory)
|
||||
conda env create -f environments/environment-rocm.yml
|
||||
conda env create -f environment-AMD.yml
|
||||
conda activate invokeai
|
||||
(invokeai)>
|
||||
```
|
||||
|
@ -500,13 +500,13 @@ class Args(object):
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_model_path',
|
||||
type=str,
|
||||
default='experiments/pretrained_models/GFPGANv1.4.pth',
|
||||
default='./GFPGANv1.4.pth',
|
||||
help='Indicates the path to the GFPGAN model, relative to --gfpgan_dir.',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_dir',
|
||||
type=str,
|
||||
default='./src/gfpgan',
|
||||
default='./models/gfpgan',
|
||||
help='Indicates the directory containing the GFPGAN code.',
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
|
@ -47,7 +47,6 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
|
||||
parsed_prompt = pp.parse_conjunction(prompt_string_cleaned).prompts[0]
|
||||
|
||||
parsed_negative_prompt: FlattenedPrompt = pp.parse_conjunction(unconditioned_words).prompts[0]
|
||||
print(f">> Parsed prompt to {parsed_prompt}")
|
||||
|
||||
conditioning = None
|
||||
cac_args:CrossAttentionControl.Arguments = None
|
||||
|
@ -10,8 +10,9 @@ from PIL import Image
|
||||
class GFPGAN():
|
||||
def __init__(
|
||||
self,
|
||||
gfpgan_dir='src/gfpgan',
|
||||
gfpgan_model_path='experiments/pretrained_models/GFPGANv1.4.pth') -> None:
|
||||
gfpgan_dir='models/gfpgan',
|
||||
gfpgan_model_path='GFPGANv1.4.pth'
|
||||
) -> None:
|
||||
|
||||
self.model_path = os.path.join(gfpgan_dir, gfpgan_model_path)
|
||||
self.gfpgan_model_exists = os.path.isfile(self.model_path)
|
||||
@ -74,6 +75,7 @@ class GFPGAN():
|
||||
image = image.resize(res.size)
|
||||
res = Image.blend(image, res, strength)
|
||||
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
self.gfpgan = None
|
||||
|
@ -29,14 +29,14 @@ work fine.
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from clipseg_models.clipseg import CLIPDensePredT
|
||||
from clipseg.clipseg import CLIPDensePredT
|
||||
from einops import rearrange, repeat
|
||||
from PIL import Image, ImageOps
|
||||
from torchvision import transforms
|
||||
|
||||
CLIP_VERSION = 'ViT-B/16'
|
||||
CLIPSEG_WEIGHTS = 'src/clipseg/weights/rd64-uni.pth'
|
||||
CLIPSEG_WEIGHTS_REFINED = 'src/clipseg/weights/rd64-uni-refined.pth'
|
||||
CLIPSEG_WEIGHTS = 'models/clipseg/clipseg_weights/rd64-uni.pth'
|
||||
CLIPSEG_WEIGHTS_REFINED = 'models/clipseg/clipseg_weights/rd64-uni-refined.pth'
|
||||
CLIPSEG_SIZE = 352
|
||||
|
||||
class SegmentedGrayscale(object):
|
||||
|
@ -415,7 +415,7 @@ def download_kornia():
|
||||
|
||||
#---------------------------------------------
|
||||
def download_clip():
|
||||
print('Loading CLIP model...',end='')
|
||||
print('Loading CLIP model (ignore deprecation errors)...',end='')
|
||||
sys.stdout.flush()
|
||||
version = 'openai/clip-vit-large-patch14'
|
||||
tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
@ -424,7 +424,7 @@ def download_clip():
|
||||
|
||||
#---------------------------------------------
|
||||
def download_gfpgan():
|
||||
print('Installing models from RealESRGAN and facexlib...',end='')
|
||||
print('Installing models from RealESRGAN and facexlib (ignore deprecation errors)...',end='')
|
||||
try:
|
||||
from realesrgan import RealESRGANer
|
||||
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
||||
@ -442,19 +442,19 @@ def download_gfpgan():
|
||||
print('Error loading ESRGAN:')
|
||||
print(traceback.format_exc())
|
||||
|
||||
print('Loading models from GFPGAN')
|
||||
print('Loading models from GFPGAN...',end='')
|
||||
for model in (
|
||||
[
|
||||
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
|
||||
'src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth'
|
||||
'models/gfpgan/GFPGANv1.4.pth'
|
||||
],
|
||||
[
|
||||
'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
||||
'./gfpgan/weights/detection_Resnet50_Final.pth'
|
||||
'models/gfpgan/weights/detection_Resnet50_Final.pth'
|
||||
],
|
||||
[
|
||||
'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth',
|
||||
'./gfpgan/weights/parsing_parsenet.pth'
|
||||
'models/gfpgan/weights/parsing_parsenet.pth'
|
||||
],
|
||||
):
|
||||
model_url,model_dest = model
|
||||
@ -489,22 +489,23 @@ def download_clipseg():
|
||||
import zipfile
|
||||
try:
|
||||
model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download'
|
||||
model_dest = 'src/clipseg/clipseg_weights.zip'
|
||||
weights_dir = 'src/clipseg/weights'
|
||||
if not os.path.exists(weights_dir):
|
||||
model_dest = 'models/clipseg/clipseg_weights'
|
||||
weights_zip = 'models/clipseg/weights.zip'
|
||||
|
||||
if not os.path.exists(model_dest):
|
||||
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
||||
if not os.path.exists('src/clipseg/weights/rd64-uni-refined.pth'):
|
||||
request.urlretrieve(model_url,model_dest)
|
||||
with zipfile.ZipFile(model_dest,'r') as zip:
|
||||
zip.extractall('src/clipseg')
|
||||
os.rename('src/clipseg/clipseg_weights','src/clipseg/weights')
|
||||
os.remove(model_dest)
|
||||
from clipseg_models.clipseg import CLIPDensePredT
|
||||
if not os.path.exists(f'{model_dest}/rd64-uni-refined.pth'):
|
||||
request.urlretrieve(model_url,weights_zip)
|
||||
with zipfile.ZipFile(weights_zip,'r') as zip:
|
||||
zip.extractall('models/clipseg')
|
||||
os.remove(weights_zip)
|
||||
|
||||
from clipseg.clipseg import CLIPDensePredT
|
||||
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, )
|
||||
model.eval()
|
||||
model.load_state_dict(
|
||||
torch.load(
|
||||
'src/clipseg/weights/rd64-uni-refined.pth',
|
||||
'models/clipseg/clipseg_weights/rd64-uni-refined.pth',
|
||||
map_location=torch.device('cpu')
|
||||
),
|
||||
strict=False,
|
||||
|
Loading…
Reference in New Issue
Block a user