mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
This commit is contained in:
parent
c21660a6df
commit
8ce1ae550b
@ -8,26 +8,28 @@
|
||||
#
|
||||
print('Loading Python libraries...\n')
|
||||
import argparse
|
||||
import sys
|
||||
import os
|
||||
import re
|
||||
import warnings
|
||||
import shutil
|
||||
from urllib import request
|
||||
from tqdm import tqdm
|
||||
from omegaconf import OmegaConf
|
||||
from huggingface_hub import HfFolder, hf_hub_url
|
||||
import sys
|
||||
import traceback
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
from urllib import request
|
||||
|
||||
import requests
|
||||
import transformers
|
||||
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
||||
from getpass_asterisk import getpass_asterisk
|
||||
from huggingface_hub import HfFolder, hf_hub_url, whoami as hf_whoami
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
|
||||
from ldm.invoke.globals import Globals
|
||||
from ldm.invoke.readline import generic_completer
|
||||
|
||||
import traceback
|
||||
import requests
|
||||
import clip
|
||||
import transformers
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import torch
|
||||
transformers.logging.set_verbosity_error()
|
||||
@ -65,7 +67,7 @@ this program and resume later.\n'''
|
||||
def postscript():
|
||||
print(
|
||||
'''\n** Model Installation Successful **\nYou're all set! You may now launch InvokeAI using one of these two commands:
|
||||
Web version:
|
||||
Web version:
|
||||
python scripts/invoke.py --web (connect to http://localhost:9090)
|
||||
Command-line version:
|
||||
python scripts/invoke.py
|
||||
@ -127,7 +129,7 @@ def select_datasets(action:str):
|
||||
|
||||
if action == 'customized':
|
||||
print('''
|
||||
Choose the weight file(s) you wish to download. Before downloading you
|
||||
Choose the weight file(s) you wish to download. Before downloading you
|
||||
will be given the option to view and change your selections.
|
||||
'''
|
||||
)
|
||||
@ -142,7 +144,7 @@ will be given the option to view and change your selections.
|
||||
if Datasets[ds]['recommended']:
|
||||
datasets[ds]=counter
|
||||
counter += 1
|
||||
|
||||
|
||||
print('The following weight files will be downloaded:')
|
||||
for ds in datasets:
|
||||
dflt = '*' if dflt is None else ''
|
||||
@ -166,11 +168,11 @@ def recommended_datasets()->dict:
|
||||
if Datasets[ds]['recommended']:
|
||||
datasets[ds]=True
|
||||
return datasets
|
||||
|
||||
|
||||
#-------------------------------Authenticate against Hugging Face
|
||||
def authenticate():
|
||||
print('''
|
||||
To download the Stable Diffusion weight files from the official Hugging Face
|
||||
To download the Stable Diffusion weight files from the official Hugging Face
|
||||
repository, you need to read and accept the CreativeML Responsible AI license.
|
||||
|
||||
This involves a few easy steps.
|
||||
@ -203,18 +205,18 @@ This involves a few easy steps.
|
||||
access_token = HfFolder.get_token()
|
||||
if access_token is not None:
|
||||
print('found')
|
||||
|
||||
|
||||
if access_token is None:
|
||||
print('not found')
|
||||
print('''
|
||||
4. Thank you! The last step is to enter your HuggingFace access token so that
|
||||
this script is authorized to initiate the download. Go to the access tokens
|
||||
page of your Hugging Face account and create a token by clicking the
|
||||
page of your Hugging Face account and create a token by clicking the
|
||||
"New token" button:
|
||||
|
||||
https://huggingface.co/settings/tokens
|
||||
|
||||
(You can enter anything you like in the token creation field marked "Name".
|
||||
(You can enter anything you like in the token creation field marked "Name".
|
||||
"Role" should be "read").
|
||||
|
||||
Now copy the token to your clipboard and paste it here: '''
|
||||
@ -235,7 +237,7 @@ def migrate_models_ckpt():
|
||||
if rename:
|
||||
print(f'model.ckpt => {new_name}')
|
||||
os.replace(os.path.join(model_path,'model.ckpt'),os.path.join(model_path,new_name))
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
def download_weight_datasets(models:dict, access_token:str):
|
||||
migrate_models_ckpt()
|
||||
@ -262,9 +264,9 @@ def download_weight_datasets(models:dict, access_token:str):
|
||||
|
||||
HfFolder.save_token(access_token)
|
||||
keys = ', '.join(successful.keys())
|
||||
print(f'Successfully installed {keys}')
|
||||
print(f'Successfully installed {keys}')
|
||||
return successful
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_token:str=None)->bool:
|
||||
model_dest = os.path.join(model_dir, model_name)
|
||||
@ -275,7 +277,7 @@ def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_t
|
||||
header = {"Authorization": f'Bearer {access_token}'} if access_token else {}
|
||||
open_mode = 'wb'
|
||||
exist_size = 0
|
||||
|
||||
|
||||
if os.path.exists(model_dest):
|
||||
exist_size = os.path.getsize(model_dest)
|
||||
header['Range'] = f'bytes={exist_size}-'
|
||||
@ -283,7 +285,7 @@ def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_t
|
||||
|
||||
resp = requests.get(url, headers=header, stream=True)
|
||||
total = int(resp.headers.get('content-length', 0))
|
||||
|
||||
|
||||
if resp.status_code==416: # "range not satisfiable", which means nothing to return
|
||||
print(f'* {model_name}: complete file found. Skipping.')
|
||||
return True
|
||||
@ -331,12 +333,64 @@ def download_with_progress_bar(model_url:str, model_dest:str, label:str='the'):
|
||||
print(f'Error downloading {label} model')
|
||||
print(traceback.format_exc())
|
||||
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
def download_diffusers(models: Dict, full_precision: bool):
|
||||
# This is a minimal implementation until https://github.com/invoke-ai/InvokeAI/pull/1490 lands,
|
||||
# which moves a bunch of stuff.
|
||||
# We can be more complete after we know it won't be all merge conflicts.
|
||||
diffusers_repos = {
|
||||
'CompVis/stable-diffusion-v1-4-original': 'CompVis/stable-diffusion-v1-4',
|
||||
'runwayml/stable-diffusion-v1-5': 'runwayml/stable-diffusion-v1-5',
|
||||
'runwayml/stable-diffusion-inpainting': 'runwayml/stable-diffusion-inpainting',
|
||||
'hakurei/waifu-diffusion-v1-3': 'hakurei/waifu-diffusion'
|
||||
}
|
||||
vae_repos = {
|
||||
'stabilityai/sd-vae-ft-mse-original': 'stabilityai/sd-vae-ft-mse',
|
||||
}
|
||||
precision_args = {}
|
||||
if not full_precision:
|
||||
precision_args.update(revision='fp16')
|
||||
|
||||
for model_name, model in models.items():
|
||||
repo_id = model['repo_id']
|
||||
if repo_id in vae_repos:
|
||||
print(f" * Downloading diffusers VAE {model_name}...")
|
||||
# TODO: can we autodetect when a repo has no fp16 revision?
|
||||
AutoencoderKL.from_pretrained(repo_id)
|
||||
elif repo_id not in diffusers_repos:
|
||||
print(f" * Downloading diffusers {model_name}...")
|
||||
StableDiffusionPipeline.from_pretrained(repo_id, **precision_args)
|
||||
else:
|
||||
warnings.warn(f" ⚠ FIXME: add diffusers repo for {repo_id}")
|
||||
continue
|
||||
|
||||
|
||||
def download_diffusers_in_config(config_path: Path, full_precision: bool):
|
||||
# This is a minimal implementation until https://github.com/invoke-ai/InvokeAI/pull/1490 lands,
|
||||
# which moves a bunch of stuff.
|
||||
# We can be more complete after we know it won't be all merge conflicts.
|
||||
if not is_huggingface_authenticated():
|
||||
print("*⚠ No Hugging Face access token; some downloads may be blocked.")
|
||||
|
||||
precision = 'full' if full_precision else 'float16'
|
||||
cache = ModelCache(OmegaConf.load(config_path), precision=precision,
|
||||
device_type='cpu', max_loaded_models=1)
|
||||
for model_name in cache.list_models():
|
||||
# TODO: download model without loading it.
|
||||
# https://github.com/huggingface/diffusers/issues/1301
|
||||
model_config = cache.config[model_name]
|
||||
if model_config.get('format') == 'diffusers':
|
||||
print(f" * Downloading diffusers {model_name}...")
|
||||
cache.get_model(model_name)
|
||||
cache.offload_model(model_name)
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
def update_config_file(successfully_downloaded:dict,opt:dict):
|
||||
config_file = opt.config_file or Default_config_file
|
||||
config_file = os.path.normpath(os.path.join(Globals.root,config_file))
|
||||
|
||||
|
||||
yaml = new_config_file_contents(successfully_downloaded,config_file)
|
||||
|
||||
try:
|
||||
@ -355,8 +409,8 @@ def update_config_file(successfully_downloaded:dict,opt:dict):
|
||||
|
||||
print(f'Successfully created new configuration file {config_file}')
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
|
||||
#---------------------------------------------
|
||||
def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str:
|
||||
if os.path.exists(config_file):
|
||||
conf = OmegaConf.load(config_file)
|
||||
@ -366,19 +420,19 @@ def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str
|
||||
# find the VAE file, if there is one
|
||||
vaes = {}
|
||||
default_selected = False
|
||||
|
||||
|
||||
for model in successfully_downloaded:
|
||||
a = Datasets[model]['config'].split('/')
|
||||
if a[0] != 'VAE':
|
||||
continue
|
||||
vae_target = a[1] if len(a)>1 else 'default'
|
||||
vaes[vae_target] = Datasets[model]['file']
|
||||
|
||||
|
||||
for model in successfully_downloaded:
|
||||
if Datasets[model]['config'].startswith('VAE'): # skip VAE entries
|
||||
continue
|
||||
stanza = conf[model] if model in conf else { }
|
||||
|
||||
|
||||
stanza['description'] = Datasets[model]['description']
|
||||
stanza['weights'] = os.path.join(Model_dir,Weights_dir,Datasets[model]['file'])
|
||||
stanza['config'] = os.path.normpath(os.path.join(SD_Configs, Datasets[model]['config']))
|
||||
@ -397,14 +451,14 @@ def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str
|
||||
default_selected = True
|
||||
conf[model] = stanza
|
||||
return OmegaConf.to_yaml(conf)
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
# this will preload the Bert tokenizer fles
|
||||
def download_bert():
|
||||
print('Installing bert tokenizer (ignore deprecation errors)...', end='',file=sys.stderr)
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
from transformers import BertTokenizerFast, AutoFeatureExtractor
|
||||
from transformers import BertTokenizerFast
|
||||
download_from_hf(BertTokenizerFast,'bert-base-uncased')
|
||||
print('...success',file=sys.stderr)
|
||||
|
||||
@ -467,7 +521,7 @@ def download_clipseg():
|
||||
model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download'
|
||||
model_dest = os.path.join(Globals.root,'models/clipseg/clipseg_weights')
|
||||
weights_zip = 'models/clipseg/weights.zip'
|
||||
|
||||
|
||||
if not os.path.exists(model_dest):
|
||||
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
||||
if not os.path.exists(f'{model_dest}/rd64-uni-refined.pth'):
|
||||
@ -586,7 +640,7 @@ def select_outputs(root:str,yes_to_all:bool=False):
|
||||
#-------------------------------------
|
||||
def initialize_rootdir(root:str,yes_to_all:bool=False):
|
||||
assert os.path.exists('./configs'),'Run this script from within the InvokeAI source code directory, "InvokeAI" or the runtime directory "invokeai".'
|
||||
|
||||
|
||||
print(f'** INITIALIZING INVOKEAI RUNTIME DIRECTORY **')
|
||||
root_selected = False
|
||||
while not root_selected:
|
||||
@ -670,7 +724,7 @@ def initialize_rootdir(root:str,yes_to_all:bool=False):
|
||||
# -Ak_euler_a -C10.0
|
||||
#
|
||||
''')
|
||||
|
||||
|
||||
#-------------------------------------
|
||||
class ProgressBar():
|
||||
def __init__(self,model_name='file'):
|
||||
@ -727,6 +781,12 @@ def main():
|
||||
if opt.interactive:
|
||||
print('** DOWNLOADING DIFFUSION WEIGHTS **')
|
||||
download_weights(opt)
|
||||
else:
|
||||
config_path = Path(opt.config_file or Default_config_file)
|
||||
if config_path.exists():
|
||||
download_diffusers_in_config(config_path, full_precision=opt.full_precision)
|
||||
else:
|
||||
print("*⚠ No config file found; downloading no weights.")
|
||||
print('\n** DOWNLOADING SUPPORT MODELS **')
|
||||
download_bert()
|
||||
download_clip()
|
||||
@ -741,7 +801,7 @@ def main():
|
||||
except Exception as e:
|
||||
print(f'\nA problem occurred during initialization.\nThe error was: "{str(e)}"')
|
||||
print(traceback.format_exc())
|
||||
|
||||
|
||||
#-------------------------------------
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user