mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
further changes for ruff
This commit is contained in:
parent
8f4f4d48d5
commit
8ef596eac7
@ -88,7 +88,9 @@ class ApiDependencies:
|
||||
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
|
||||
model_manager = ModelManagerService(config, logger)
|
||||
model_record_service = ModelRecordServiceSQL(db=db)
|
||||
model_install_service = ModelInstallService(app_config=config, record_store=model_record_service, event_bus=events)
|
||||
model_install_service = ModelInstallService(
|
||||
app_config=config, record_store=model_record_service, event_bus=events
|
||||
)
|
||||
names = SimpleNameService()
|
||||
performance_statistics = InvocationStatsService()
|
||||
processor = DefaultInvocationProcessor()
|
||||
|
@ -51,7 +51,9 @@ async def list_model_records(
|
||||
found_models: list[AnyModelConfig] = []
|
||||
if base_models:
|
||||
for base_model in base_models:
|
||||
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type, model_name=model_name))
|
||||
found_models.extend(
|
||||
record_store.search_by_attr(base_model=base_model, model_type=model_type, model_name=model_name)
|
||||
)
|
||||
else:
|
||||
found_models.extend(record_store.search_by_attr(model_type=model_type, model_name=model_name))
|
||||
return ModelsList(models=found_models)
|
||||
@ -184,25 +186,25 @@ async def add_model_record(
|
||||
status_code=201,
|
||||
)
|
||||
async def import_model(
|
||||
source: ModelSource = Body(
|
||||
description="A model path, repo_id or URL to import. NOTE: only model path is implemented currently!"
|
||||
),
|
||||
config: Optional[Dict[str, Any]] = Body(
|
||||
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
||||
default=None,
|
||||
),
|
||||
variant: Optional[str] = Body(
|
||||
description="When fetching a repo_id, force variant type to fetch such as 'fp16'",
|
||||
default=None,
|
||||
),
|
||||
subfolder: Optional[str] = Body(
|
||||
description="When fetching a repo_id, specify subfolder to fetch model from",
|
||||
default=None,
|
||||
),
|
||||
access_token: Optional[str] = Body(
|
||||
description="When fetching a repo_id or URL, access token for web access",
|
||||
default=None,
|
||||
),
|
||||
source: ModelSource = Body(
|
||||
description="A model path, repo_id or URL to import. NOTE: only model path is implemented currently!"
|
||||
),
|
||||
config: Optional[Dict[str, Any]] = Body(
|
||||
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
||||
default=None,
|
||||
),
|
||||
variant: Optional[str] = Body(
|
||||
description="When fetching a repo_id, force variant type to fetch such as 'fp16'",
|
||||
default=None,
|
||||
),
|
||||
subfolder: Optional[str] = Body(
|
||||
description="When fetching a repo_id, specify subfolder to fetch model from",
|
||||
default=None,
|
||||
),
|
||||
access_token: Optional[str] = Body(
|
||||
description="When fetching a repo_id or URL, access token for web access",
|
||||
default=None,
|
||||
),
|
||||
) -> ModelInstallJob:
|
||||
"""Add a model using its local path, repo_id, or remote URL.
|
||||
|
||||
@ -250,14 +252,16 @@ async def import_model(
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
return result
|
||||
|
||||
|
||||
@model_records_router.get(
|
||||
"/import",
|
||||
operation_id="list_model_install_jobs",
|
||||
)
|
||||
async def list_model_install_jobs(
|
||||
source: Optional[str] = Query(description="Filter list by install source, partial string match.",
|
||||
default=None,
|
||||
)
|
||||
source: Optional[str] = Query(
|
||||
description="Filter list by install source, partial string match.",
|
||||
default=None,
|
||||
),
|
||||
) -> List[ModelInstallJob]:
|
||||
"""
|
||||
Return list of model install jobs.
|
||||
@ -268,6 +272,7 @@ async def list_model_install_jobs(
|
||||
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs(source)
|
||||
return jobs
|
||||
|
||||
|
||||
@model_records_router.patch(
|
||||
"/import",
|
||||
operation_id="prune_model_install_jobs",
|
||||
@ -276,14 +281,14 @@ async def list_model_install_jobs(
|
||||
400: {"description": "Bad request"},
|
||||
},
|
||||
)
|
||||
async def prune_model_install_jobs(
|
||||
) -> Response:
|
||||
async def prune_model_install_jobs() -> Response:
|
||||
"""
|
||||
Prune all completed and errored jobs from the install job list.
|
||||
"""
|
||||
ApiDependencies.invoker.services.model_install.prune_jobs()
|
||||
return Response(status_code=204)
|
||||
|
||||
|
||||
@model_records_router.patch(
|
||||
"/sync",
|
||||
operation_id="sync_models_to_config",
|
||||
@ -292,8 +297,7 @@ async def prune_model_install_jobs(
|
||||
400: {"description": "Bad request"},
|
||||
},
|
||||
)
|
||||
async def sync_models_to_config(
|
||||
) -> Response:
|
||||
async def sync_models_to_config() -> Response:
|
||||
"""
|
||||
Traverse the models and autoimport directories. Model files without a corresponding
|
||||
record in the database are added. Orphan records without a models file are deleted.
|
||||
|
@ -37,9 +37,5 @@ class SocketIO:
|
||||
if "queue_id" in data:
|
||||
await self.__sio.leave_room(sid, data["queue_id"])
|
||||
|
||||
|
||||
async def _handle_model_event(self, event: Event) -> None:
|
||||
await self.__sio.emit(
|
||||
event=event[1]["event"],
|
||||
data=event[1]["data"]
|
||||
)
|
||||
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])
|
||||
|
@ -2,4 +2,4 @@
|
||||
|
||||
from .config_default import InvokeAIAppConfig, get_invokeai_config
|
||||
|
||||
__all__ = ['InvokeAIAppConfig', 'get_invokeai_config']
|
||||
__all__ = ["InvokeAIAppConfig", "get_invokeai_config"]
|
||||
|
@ -331,9 +331,7 @@ class EventServiceBase:
|
||||
"""
|
||||
self.__emit_model_event(
|
||||
event_name="model_install_started",
|
||||
payload={
|
||||
"source": source
|
||||
},
|
||||
payload={"source": source},
|
||||
)
|
||||
|
||||
def emit_model_install_completed(self, source: str, key: str) -> None:
|
||||
@ -351,11 +349,12 @@ class EventServiceBase:
|
||||
},
|
||||
)
|
||||
|
||||
def emit_model_install_progress(self,
|
||||
source: str,
|
||||
current_bytes: int,
|
||||
total_bytes: int,
|
||||
) -> None:
|
||||
def emit_model_install_progress(
|
||||
self,
|
||||
source: str,
|
||||
current_bytes: int,
|
||||
total_bytes: int,
|
||||
) -> None:
|
||||
"""
|
||||
Emitted while the install job is in progress.
|
||||
(Downloaded models only)
|
||||
@ -373,12 +372,12 @@ class EventServiceBase:
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def emit_model_install_error(self,
|
||||
source: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
def emit_model_install_error(
|
||||
self,
|
||||
source: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
"""
|
||||
Emitted when an install job encounters an exception.
|
||||
|
||||
|
@ -9,10 +9,11 @@ from .model_install_base import (
|
||||
)
|
||||
from .model_install_default import ModelInstallService
|
||||
|
||||
__all__ = ['ModelInstallServiceBase',
|
||||
'ModelInstallService',
|
||||
'InstallStatus',
|
||||
'ModelInstallJob',
|
||||
'UnknownInstallJobException',
|
||||
'ModelSource',
|
||||
]
|
||||
__all__ = [
|
||||
"ModelInstallServiceBase",
|
||||
"ModelInstallService",
|
||||
"InstallStatus",
|
||||
"ModelInstallJob",
|
||||
"UnknownInstallJobException",
|
||||
"ModelSource",
|
||||
]
|
||||
|
@ -17,10 +17,10 @@ from invokeai.backend.model_manager import AnyModelConfig
|
||||
class InstallStatus(str, Enum):
|
||||
"""State of an install job running in the background."""
|
||||
|
||||
WAITING = "waiting" # waiting to be dequeued
|
||||
RUNNING = "running" # being processed
|
||||
WAITING = "waiting" # waiting to be dequeued
|
||||
RUNNING = "running" # being processed
|
||||
COMPLETED = "completed" # finished running
|
||||
ERROR = "error" # terminated with an error message
|
||||
ERROR = "error" # terminated with an error message
|
||||
|
||||
|
||||
class UnknownInstallJobException(Exception):
|
||||
@ -32,10 +32,17 @@ ModelSource = Union[str, Path, AnyHttpUrl]
|
||||
|
||||
class ModelInstallJob(BaseModel):
|
||||
"""Object that tracks the current status of an install request."""
|
||||
|
||||
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
|
||||
config_in: Dict[str, Any] = Field(default_factory=dict, description="Configuration information (e.g. 'description') to apply to model.")
|
||||
config_out: Optional[AnyModelConfig] = Field(default=None, description="After successful installation, this will hold the configuration object.")
|
||||
inplace: bool = Field(default=False, description="Leave model in its current location; otherwise install under models directory")
|
||||
config_in: Dict[str, Any] = Field(
|
||||
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
|
||||
)
|
||||
config_out: Optional[AnyModelConfig] = Field(
|
||||
default=None, description="After successful installation, this will hold the configuration object."
|
||||
)
|
||||
inplace: bool = Field(
|
||||
default=False, description="Leave model in its current location; otherwise install under models directory"
|
||||
)
|
||||
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
|
||||
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
|
||||
error_type: Optional[str] = Field(default=None, description="Class name of the exception that led to status==ERROR")
|
||||
@ -53,10 +60,10 @@ class ModelInstallServiceBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
record_store: ModelRecordServiceBase,
|
||||
event_bus: Optional["EventServiceBase"] = None,
|
||||
self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
record_store: ModelRecordServiceBase,
|
||||
event_bus: Optional["EventServiceBase"] = None,
|
||||
):
|
||||
"""
|
||||
Create ModelInstallService object.
|
||||
@ -86,9 +93,9 @@ class ModelInstallServiceBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def register_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Probe and register the model at model_path.
|
||||
@ -114,9 +121,9 @@ class ModelInstallServiceBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def install_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Probe, register and install the model in the models directory.
|
||||
@ -131,13 +138,13 @@ class ModelInstallServiceBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def import_model(
|
||||
self,
|
||||
source: Union[str, Path, AnyHttpUrl],
|
||||
inplace: bool = False,
|
||||
variant: Optional[str] = None,
|
||||
subfolder: Optional[str] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
access_token: Optional[str] = None,
|
||||
self,
|
||||
source: Union[str, Path, AnyHttpUrl],
|
||||
inplace: bool = False,
|
||||
variant: Optional[str] = None,
|
||||
subfolder: Optional[str] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
access_token: Optional[str] = None,
|
||||
) -> ModelInstallJob:
|
||||
"""Install the indicated model.
|
||||
|
||||
@ -189,7 +196,7 @@ class ModelInstallServiceBase(ABC):
|
||||
"""Return the ModelInstallJob corresponding to the provided source."""
|
||||
|
||||
@abstractmethod
|
||||
def list_jobs(self, source: Optional[ModelSource]=None) -> List[ModelInstallJob]: # noqa D102
|
||||
def list_jobs(self, source: Optional[ModelSource] = None) -> List[ModelInstallJob]: # noqa D102
|
||||
"""
|
||||
List active and complete install jobs.
|
||||
|
||||
|
@ -46,11 +46,12 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
_cached_model_paths: Set[Path]
|
||||
_models_installed: Set[str]
|
||||
|
||||
def __init__(self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
record_store: ModelRecordServiceBase,
|
||||
event_bus: Optional[EventServiceBase] = None
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
record_store: ModelRecordServiceBase,
|
||||
event_bus: Optional[EventServiceBase] = None,
|
||||
):
|
||||
"""
|
||||
Initialize the installer object.
|
||||
|
||||
@ -73,11 +74,11 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
return self._app_config
|
||||
|
||||
@property
|
||||
def record_store(self) -> ModelRecordServiceBase: # noqa D102
|
||||
def record_store(self) -> ModelRecordServiceBase: # noqa D102
|
||||
return self._record_store
|
||||
|
||||
@property
|
||||
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
|
||||
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
|
||||
return self._event_bus
|
||||
|
||||
def _start_installer_thread(self) -> None:
|
||||
@ -129,25 +130,25 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._event_bus.emit_model_install_error(str(job.source), error_type, error)
|
||||
|
||||
def register_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str: # noqa D102
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str: # noqa D102
|
||||
model_path = Path(model_path)
|
||||
config = config or {}
|
||||
if config.get('source') is None:
|
||||
config['source'] = model_path.resolve().as_posix()
|
||||
if config.get("source") is None:
|
||||
config["source"] = model_path.resolve().as_posix()
|
||||
return self._register(model_path, config)
|
||||
|
||||
def install_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str: # noqa D102
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str: # noqa D102
|
||||
model_path = Path(model_path)
|
||||
config = config or {}
|
||||
if config.get('source') is None:
|
||||
config['source'] = model_path.resolve().as_posix()
|
||||
if config.get("source") is None:
|
||||
config["source"] = model_path.resolve().as_posix()
|
||||
|
||||
info: AnyModelConfig = self._probe_model(Path(model_path), config)
|
||||
|
||||
@ -164,14 +165,14 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
)
|
||||
|
||||
def import_model(
|
||||
self,
|
||||
source: ModelSource,
|
||||
inplace: bool = False,
|
||||
variant: Optional[str] = None,
|
||||
subfolder: Optional[str] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
access_token: Optional[str] = None,
|
||||
) -> ModelInstallJob: # noqa D102
|
||||
self,
|
||||
source: ModelSource,
|
||||
inplace: bool = False,
|
||||
variant: Optional[str] = None,
|
||||
subfolder: Optional[str] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
access_token: Optional[str] = None,
|
||||
) -> ModelInstallJob: # noqa D102
|
||||
# Clean up a common source of error. Doesn't work with Paths.
|
||||
if isinstance(source, str):
|
||||
source = source.strip()
|
||||
@ -181,11 +182,12 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
|
||||
# Installing a local path
|
||||
if isinstance(source, (str, Path)) and Path(source).exists(): # a path that is already on disk
|
||||
job = ModelInstallJob(config_in=config,
|
||||
source=source,
|
||||
inplace=inplace,
|
||||
local_path=Path(source),
|
||||
)
|
||||
job = ModelInstallJob(
|
||||
config_in=config,
|
||||
source=source,
|
||||
inplace=inplace,
|
||||
local_path=Path(source),
|
||||
)
|
||||
self._install_jobs[source] = job
|
||||
self._install_queue.put(job)
|
||||
return job
|
||||
@ -193,7 +195,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
else: # here is where we'd download a URL or repo_id. Implementation pending download queue.
|
||||
raise UnknownModelException("File or directory not found")
|
||||
|
||||
def list_jobs(self, source: Optional[ModelSource]=None) -> List[ModelInstallJob]: # noqa D102
|
||||
def list_jobs(self, source: Optional[ModelSource] = None) -> List[ModelInstallJob]: # noqa D102
|
||||
jobs = self._install_jobs
|
||||
if not source:
|
||||
return list(jobs.values())
|
||||
@ -205,17 +207,19 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
try:
|
||||
return self._install_jobs[source]
|
||||
except KeyError:
|
||||
raise UnknownInstallJobException(f'{source}: unknown install job')
|
||||
raise UnknownInstallJobException(f"{source}: unknown install job")
|
||||
|
||||
def wait_for_installs(self) -> Dict[ModelSource, ModelInstallJob]: # noqa D102
|
||||
def wait_for_installs(self) -> Dict[ModelSource, ModelInstallJob]: # noqa D102
|
||||
self._install_queue.join()
|
||||
return self._install_jobs
|
||||
|
||||
def prune_jobs(self) -> None:
|
||||
"""Prune all completed and errored jobs."""
|
||||
finished_jobs = [source for source in self._install_jobs
|
||||
if self._install_jobs[source].status in [InstallStatus.COMPLETED, InstallStatus.ERROR]
|
||||
]
|
||||
finished_jobs = [
|
||||
source
|
||||
for source in self._install_jobs
|
||||
if self._install_jobs[source].status in [InstallStatus.COMPLETED, InstallStatus.ERROR]
|
||||
]
|
||||
for source in finished_jobs:
|
||||
del self._install_jobs[source]
|
||||
|
||||
@ -228,7 +232,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._logger.info(f"{len(installed)} new models registered")
|
||||
self._logger.info("Model installer (re)initialized")
|
||||
|
||||
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
|
||||
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
|
||||
self._cached_model_paths = {Path(x.path) for x in self.record_store.all_models()}
|
||||
callback = self._scan_install if install else self._scan_register
|
||||
search = ModelSearch(on_model_found=callback)
|
||||
@ -295,7 +299,6 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self.record_store.update_model(key, model)
|
||||
return model
|
||||
|
||||
|
||||
def _scan_register(self, model: Path) -> bool:
|
||||
if model in self._cached_model_paths:
|
||||
return True
|
||||
@ -308,7 +311,6 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
pass
|
||||
return True
|
||||
|
||||
|
||||
def _scan_install(self, model: Path) -> bool:
|
||||
if model in self._cached_model_paths:
|
||||
return True
|
||||
@ -320,7 +322,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
pass
|
||||
return True
|
||||
|
||||
def unregister(self, key: str) -> None: # noqa D102
|
||||
def unregister(self, key: str) -> None: # noqa D102
|
||||
self.record_store.del_model(key)
|
||||
|
||||
def delete(self, key: str) -> None: # noqa D102
|
||||
@ -333,7 +335,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
else:
|
||||
self.unregister(key)
|
||||
|
||||
def unconditionally_delete(self, key: str) -> None: # noqa D102
|
||||
def unconditionally_delete(self, key: str) -> None: # noqa D102
|
||||
model = self.record_store.get_model(key)
|
||||
path = self.app_config.models_path / model.path
|
||||
if path.is_dir():
|
||||
@ -378,11 +380,9 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def _create_key(self) -> str:
|
||||
return sha256(randbytes(100)).hexdigest()[0:32]
|
||||
|
||||
def _register(self,
|
||||
model_path: Path,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
info: Optional[AnyModelConfig] = None) -> str:
|
||||
|
||||
def _register(
|
||||
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
|
||||
) -> str:
|
||||
info = info or ModelProbe.probe(model_path, config)
|
||||
key = self._create_key()
|
||||
|
||||
@ -393,7 +393,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
info.path = model_path.as_posix()
|
||||
|
||||
# add 'main' specific fields
|
||||
if hasattr(info, 'config'):
|
||||
if hasattr(info, "config"):
|
||||
# make config relative to our root
|
||||
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
|
||||
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
|
||||
|
@ -8,9 +8,9 @@ from .model_records_base import ( # noqa F401
|
||||
from .model_records_sql import ModelRecordServiceSQL # noqa F401
|
||||
|
||||
__all__ = [
|
||||
'ModelRecordServiceBase',
|
||||
'ModelRecordServiceSQL',
|
||||
'DuplicateModelException',
|
||||
'InvalidModelException',
|
||||
'UnknownModelException',
|
||||
"ModelRecordServiceBase",
|
||||
"ModelRecordServiceSQL",
|
||||
"DuplicateModelException",
|
||||
"InvalidModelException",
|
||||
"UnknownModelException",
|
||||
]
|
||||
|
@ -123,8 +123,8 @@ class ModelProbe(object):
|
||||
base_type=base_type,
|
||||
variant_type=variant_type,
|
||||
prediction_type=prediction_type,
|
||||
name = name,
|
||||
description = description,
|
||||
name=name,
|
||||
description=description,
|
||||
upcast_attention=(
|
||||
base_type == BaseModelType.StableDiffusion2
|
||||
and prediction_type == SchedulerPredictionType.VPrediction
|
||||
@ -150,7 +150,7 @@ class ModelProbe(object):
|
||||
|
||||
@classmethod
|
||||
def get_model_name(cls, model_path: Path) -> str:
|
||||
if model_path.suffix in {'.safetensors', '.bin', '.pt', '.ckpt'}:
|
||||
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
|
||||
return model_path.stem
|
||||
else:
|
||||
return model_path.name
|
||||
|
@ -14,15 +14,16 @@ from .config import (
|
||||
from .probe import ModelProbe
|
||||
from .search import ModelSearch
|
||||
|
||||
__all__ = ['ModelProbe', 'ModelSearch',
|
||||
'InvalidModelConfigException',
|
||||
'ModelConfigFactory',
|
||||
'BaseModelType',
|
||||
'ModelType',
|
||||
'SubModelType',
|
||||
'ModelVariantType',
|
||||
'ModelFormat',
|
||||
'SchedulerPredictionType',
|
||||
'AnyModelConfig',
|
||||
]
|
||||
|
||||
__all__ = [
|
||||
"ModelProbe",
|
||||
"ModelSearch",
|
||||
"InvalidModelConfigException",
|
||||
"ModelConfigFactory",
|
||||
"BaseModelType",
|
||||
"ModelType",
|
||||
"SubModelType",
|
||||
"ModelVariantType",
|
||||
"ModelFormat",
|
||||
"SchedulerPredictionType",
|
||||
"AnyModelConfig",
|
||||
]
|
||||
|
@ -49,6 +49,7 @@ LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[Sched
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class ProbeBase(object):
|
||||
"""Base class for probes."""
|
||||
|
||||
@ -71,6 +72,7 @@ class ProbeBase(object):
|
||||
"""Get model scheduler prediction type."""
|
||||
return None
|
||||
|
||||
|
||||
class ModelProbe(object):
|
||||
PROBES: Dict[str, Dict[ModelType, type[ProbeBase]]] = {
|
||||
"diffusers": {},
|
||||
@ -100,9 +102,9 @@ class ModelProbe(object):
|
||||
|
||||
@classmethod
|
||||
def heuristic_probe(
|
||||
cls,
|
||||
model_path: Path,
|
||||
fields: Optional[Dict[str, Any]] = None,
|
||||
cls,
|
||||
model_path: Path,
|
||||
fields: Optional[Dict[str, Any]] = None,
|
||||
) -> AnyModelConfig:
|
||||
return cls.probe(model_path, fields)
|
||||
|
||||
@ -138,29 +140,38 @@ class ModelProbe(object):
|
||||
hash = FastModelHash.hash(model_path)
|
||||
probe = probe_class(model_path)
|
||||
|
||||
fields['path'] = model_path.as_posix()
|
||||
fields['type'] = fields.get('type') or model_type
|
||||
fields['base'] = fields.get('base') or probe.get_base_type()
|
||||
fields['variant'] = fields.get('variant') or probe.get_variant_type()
|
||||
fields['prediction_type'] = fields.get('prediction_type') or probe.get_scheduler_prediction_type()
|
||||
fields['name'] = fields.get('name') or cls.get_model_name(model_path)
|
||||
fields['description'] = fields.get('description') or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
|
||||
fields['format'] = fields.get('format') or probe.get_format()
|
||||
fields['original_hash'] = fields.get('original_hash') or hash
|
||||
fields['current_hash'] = fields.get('current_hash') or hash
|
||||
fields["path"] = model_path.as_posix()
|
||||
fields["type"] = fields.get("type") or model_type
|
||||
fields["base"] = fields.get("base") or probe.get_base_type()
|
||||
fields["variant"] = fields.get("variant") or probe.get_variant_type()
|
||||
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
|
||||
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
|
||||
fields["description"] = (
|
||||
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
|
||||
)
|
||||
fields["format"] = fields.get("format") or probe.get_format()
|
||||
fields["original_hash"] = fields.get("original_hash") or hash
|
||||
fields["current_hash"] = fields.get("current_hash") or hash
|
||||
|
||||
# additional fields needed for main and controlnet models
|
||||
if fields['type'] in [ModelType.Main, ModelType.ControlNet] and fields['format'] == ModelFormat.Checkpoint:
|
||||
fields['config'] = cls._get_checkpoint_config_path(model_path,
|
||||
model_type=fields['type'],
|
||||
base_type=fields['base'],
|
||||
variant_type=fields['variant'],
|
||||
prediction_type=fields['prediction_type']).as_posix()
|
||||
if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint:
|
||||
fields["config"] = cls._get_checkpoint_config_path(
|
||||
model_path,
|
||||
model_type=fields["type"],
|
||||
base_type=fields["base"],
|
||||
variant_type=fields["variant"],
|
||||
prediction_type=fields["prediction_type"],
|
||||
).as_posix()
|
||||
|
||||
# additional fields needed for main non-checkpoint models
|
||||
elif fields['type'] == ModelType.Main and fields['format'] in [ModelFormat.Onnx, ModelFormat.Olive, ModelFormat.Diffusers]:
|
||||
fields['upcast_attention'] = fields.get('upcast_attention') or (
|
||||
fields['base'] == BaseModelType.StableDiffusion2 and fields['prediction_type'] == SchedulerPredictionType.VPrediction
|
||||
elif fields["type"] == ModelType.Main and fields["format"] in [
|
||||
ModelFormat.Onnx,
|
||||
ModelFormat.Olive,
|
||||
ModelFormat.Diffusers,
|
||||
]:
|
||||
fields["upcast_attention"] = fields.get("upcast_attention") or (
|
||||
fields["base"] == BaseModelType.StableDiffusion2
|
||||
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
|
||||
)
|
||||
|
||||
model_info = ModelConfigFactory.make_config(fields)
|
||||
@ -168,7 +179,7 @@ class ModelProbe(object):
|
||||
|
||||
@classmethod
|
||||
def get_model_name(cls, model_path: Path) -> str:
|
||||
if model_path.suffix in {'.safetensors', '.bin', '.pt', '.ckpt'}:
|
||||
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
|
||||
return model_path.stem
|
||||
else:
|
||||
return model_path.name
|
||||
@ -247,13 +258,14 @@ class ModelProbe(object):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _get_checkpoint_config_path(cls,
|
||||
model_path: Path,
|
||||
model_type: ModelType,
|
||||
base_type: BaseModelType,
|
||||
variant_type: ModelVariantType,
|
||||
prediction_type: SchedulerPredictionType) -> Path:
|
||||
|
||||
def _get_checkpoint_config_path(
|
||||
cls,
|
||||
model_path: Path,
|
||||
model_type: ModelType,
|
||||
base_type: BaseModelType,
|
||||
variant_type: ModelVariantType,
|
||||
prediction_type: SchedulerPredictionType,
|
||||
) -> Path:
|
||||
# look for a YAML file adjacent to the model file first
|
||||
possible_conf = model_path.with_suffix(".yaml")
|
||||
if possible_conf.exists():
|
||||
@ -264,9 +276,13 @@ class ModelProbe(object):
|
||||
if isinstance(config_file, dict): # need another tier for sd-2.x models
|
||||
config_file = config_file[prediction_type]
|
||||
elif model_type == ModelType.ControlNet:
|
||||
config_file = "../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
|
||||
config_file = (
|
||||
"../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
|
||||
)
|
||||
else:
|
||||
raise InvalidModelConfigException(f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}")
|
||||
raise InvalidModelConfigException(
|
||||
f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}"
|
||||
)
|
||||
assert isinstance(config_file, str)
|
||||
return Path(config_file)
|
||||
|
||||
@ -297,6 +313,7 @@ class ModelProbe(object):
|
||||
# Checkpoint probing
|
||||
# ##################################################3
|
||||
|
||||
|
||||
class CheckpointProbeBase(ProbeBase):
|
||||
def __init__(self, model_path: Path):
|
||||
super().__init__(model_path)
|
||||
@ -446,7 +463,6 @@ class T2IAdapterCheckpointProbe(CheckpointProbeBase):
|
||||
# classes for probing folders
|
||||
#######################################################
|
||||
class FolderProbeBase(ProbeBase):
|
||||
|
||||
def get_variant_type(self) -> ModelVariantType:
|
||||
return ModelVariantType.Normal
|
||||
|
||||
@ -537,7 +553,9 @@ class TextualInversionFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
path = self.model_path / "learned_embeds.bin"
|
||||
if not path.exists():
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file")
|
||||
raise InvalidModelConfigException(
|
||||
f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file"
|
||||
)
|
||||
return TextualInversionCheckpointProbe(path).get_base_type()
|
||||
|
||||
|
||||
@ -608,7 +626,9 @@ class IPAdapterFolderProbe(FolderProbeBase):
|
||||
elif cross_attention_dim == 2048:
|
||||
return BaseModelType.StableDiffusionXL
|
||||
else:
|
||||
raise InvalidModelConfigException(f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}.")
|
||||
raise InvalidModelConfigException(
|
||||
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
|
||||
)
|
||||
|
||||
|
||||
class CLIPVisionFolderProbe(FolderProbeBase):
|
||||
|
@ -165,14 +165,14 @@ class ModelSearch(ModelSearchBase):
|
||||
self.scanned_dirs.add(path)
|
||||
continue
|
||||
if any(
|
||||
(path / x).exists()
|
||||
for x in [
|
||||
"config.json",
|
||||
"model_index.json",
|
||||
"learned_embeds.bin",
|
||||
"pytorch_lora_weights.bin",
|
||||
"image_encoder.txt",
|
||||
]
|
||||
(path / x).exists()
|
||||
for x in [
|
||||
"config.json",
|
||||
"model_index.json",
|
||||
"learned_embeds.bin",
|
||||
"pytorch_lora_weights.bin",
|
||||
"image_encoder.txt",
|
||||
]
|
||||
):
|
||||
self.scanned_dirs.add(path)
|
||||
try:
|
||||
|
@ -14,4 +14,4 @@ from .devices import ( # noqa: F401
|
||||
from .logging import InvokeAILogger
|
||||
from .util import Chdir, ask_user, download_with_resume, instantiate_from_config, url_attachment_name # noqa: F401
|
||||
|
||||
__all__ = ['Chdir', 'InvokeAILogger', 'choose_precision', 'choose_torch_device']
|
||||
__all__ = ["Chdir", "InvokeAILogger", "choose_precision", "choose_torch_device"]
|
||||
|
@ -44,12 +44,12 @@ def store(app_config: InvokeAIAppConfig) -> ModelRecordServiceBase:
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def installer(app_config: InvokeAIAppConfig,
|
||||
store: ModelRecordServiceBase) -> ModelInstallServiceBase:
|
||||
return ModelInstallService(app_config=app_config,
|
||||
record_store=store,
|
||||
event_bus=DummyEventService(),
|
||||
)
|
||||
def installer(app_config: InvokeAIAppConfig, store: ModelRecordServiceBase) -> ModelInstallServiceBase:
|
||||
return ModelInstallService(
|
||||
app_config=app_config,
|
||||
record_store=store,
|
||||
event_bus=DummyEventService(),
|
||||
)
|
||||
|
||||
|
||||
class DummyEvent(BaseModel):
|
||||
@ -70,10 +70,8 @@ class DummyEventService(EventServiceBase):
|
||||
|
||||
def dispatch(self, event_name: str, payload: Any) -> None:
|
||||
"""Dispatch an event by appending it to self.events."""
|
||||
self.events.append(
|
||||
DummyEvent(event_name=payload['event'],
|
||||
payload=payload['data'])
|
||||
)
|
||||
self.events.append(DummyEvent(event_name=payload["event"], payload=payload["data"]))
|
||||
|
||||
|
||||
def test_registration(installer: ModelInstallServiceBase, test_file: Path) -> None:
|
||||
store = installer.record_store
|
||||
@ -83,6 +81,7 @@ def test_registration(installer: ModelInstallServiceBase, test_file: Path) -> No
|
||||
assert key is not None
|
||||
assert len(key) == 32
|
||||
|
||||
|
||||
def test_registration_meta(installer: ModelInstallServiceBase, test_file: Path) -> None:
|
||||
store = installer.record_store
|
||||
key = installer.register_path(test_file)
|
||||
@ -91,31 +90,30 @@ def test_registration_meta(installer: ModelInstallServiceBase, test_file: Path)
|
||||
assert model_record.name == "test_embedding"
|
||||
assert model_record.type == ModelType.TextualInversion
|
||||
assert Path(model_record.path) == test_file
|
||||
assert model_record.base == BaseModelType('sd-1')
|
||||
assert model_record.base == BaseModelType("sd-1")
|
||||
assert model_record.description is not None
|
||||
assert model_record.source is not None
|
||||
assert Path(model_record.source) == test_file
|
||||
|
||||
|
||||
def test_registration_meta_override_fail(installer: ModelInstallServiceBase, test_file: Path) -> None:
|
||||
key = None
|
||||
with pytest.raises(ValidationError):
|
||||
key = installer.register_path(test_file, {"name": "banana_sushi", "type": ModelType("lora")})
|
||||
assert key is None
|
||||
|
||||
|
||||
def test_registration_meta_override_succeed(installer: ModelInstallServiceBase, test_file: Path) -> None:
|
||||
store = installer.record_store
|
||||
key = installer.register_path(test_file,
|
||||
{
|
||||
"name": "banana_sushi",
|
||||
"source": "fake/repo_id",
|
||||
"current_hash": "New Hash"
|
||||
}
|
||||
)
|
||||
key = installer.register_path(
|
||||
test_file, {"name": "banana_sushi", "source": "fake/repo_id", "current_hash": "New Hash"}
|
||||
)
|
||||
model_record = store.get_model(key)
|
||||
assert model_record.name == "banana_sushi"
|
||||
assert model_record.source == "fake/repo_id"
|
||||
assert model_record.current_hash == "New Hash"
|
||||
|
||||
|
||||
def test_install(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig) -> None:
|
||||
store = installer.record_store
|
||||
key = installer.install_path(test_file)
|
||||
@ -123,6 +121,7 @@ def test_install(installer: ModelInstallServiceBase, test_file: Path, app_config
|
||||
assert model_record.path == "sd-1/embedding/test_embedding.safetensors"
|
||||
assert model_record.source == test_file.as_posix()
|
||||
|
||||
|
||||
def test_background_install(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig) -> None:
|
||||
"""Note: may want to break this down into several smaller unit tests."""
|
||||
source = test_file
|
||||
@ -142,7 +141,7 @@ def test_background_install(installer: ModelInstallServiceBase, test_file: Path,
|
||||
|
||||
# test that the expected events were issued
|
||||
bus = installer.event_bus
|
||||
assert bus is not None # sigh - ruff is a stickler for type checking
|
||||
assert bus is not None # sigh - ruff is a stickler for type checking
|
||||
assert isinstance(bus, DummyEventService)
|
||||
assert len(bus.events) == 2
|
||||
event_names = [x.event_name for x in bus.events]
|
||||
@ -167,6 +166,7 @@ def test_background_install(installer: ModelInstallServiceBase, test_file: Path,
|
||||
with pytest.raises(UnknownInstallJobException):
|
||||
assert installer.get_job(source)
|
||||
|
||||
|
||||
def test_delete_install(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig):
|
||||
store = installer.record_store
|
||||
key = installer.install_path(test_file)
|
||||
@ -174,11 +174,14 @@ def test_delete_install(installer: ModelInstallServiceBase, test_file: Path, app
|
||||
assert Path(app_config.models_dir / model_record.path).exists()
|
||||
assert test_file.exists() # original should still be there after installation
|
||||
installer.delete(key)
|
||||
assert not Path(app_config.models_dir / model_record.path).exists() # after deletion, installed copy should not exist
|
||||
assert not Path(
|
||||
app_config.models_dir / model_record.path
|
||||
).exists() # after deletion, installed copy should not exist
|
||||
assert test_file.exists() # but original should still be there
|
||||
with pytest.raises(UnknownModelException):
|
||||
store.get_model(key)
|
||||
|
||||
|
||||
def test_delete_register(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig):
|
||||
store = installer.record_store
|
||||
key = installer.register_path(test_file)
|
||||
|
Loading…
Reference in New Issue
Block a user