further changes for ruff

This commit is contained in:
Lincoln Stein 2023-11-26 17:13:31 -05:00
parent 8f4f4d48d5
commit 8ef596eac7
15 changed files with 245 additions and 212 deletions

View File

@ -88,7 +88,9 @@ class ApiDependencies:
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
model_record_service = ModelRecordServiceSQL(db=db)
model_install_service = ModelInstallService(app_config=config, record_store=model_record_service, event_bus=events)
model_install_service = ModelInstallService(
app_config=config, record_store=model_record_service, event_bus=events
)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()

View File

@ -51,7 +51,9 @@ async def list_model_records(
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type, model_name=model_name))
found_models.extend(
record_store.search_by_attr(base_model=base_model, model_type=model_type, model_name=model_name)
)
else:
found_models.extend(record_store.search_by_attr(model_type=model_type, model_name=model_name))
return ModelsList(models=found_models)
@ -184,25 +186,25 @@ async def add_model_record(
status_code=201,
)
async def import_model(
source: ModelSource = Body(
description="A model path, repo_id or URL to import. NOTE: only model path is implemented currently!"
),
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
variant: Optional[str] = Body(
description="When fetching a repo_id, force variant type to fetch such as 'fp16'",
default=None,
),
subfolder: Optional[str] = Body(
description="When fetching a repo_id, specify subfolder to fetch model from",
default=None,
),
access_token: Optional[str] = Body(
description="When fetching a repo_id or URL, access token for web access",
default=None,
),
source: ModelSource = Body(
description="A model path, repo_id or URL to import. NOTE: only model path is implemented currently!"
),
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
variant: Optional[str] = Body(
description="When fetching a repo_id, force variant type to fetch such as 'fp16'",
default=None,
),
subfolder: Optional[str] = Body(
description="When fetching a repo_id, specify subfolder to fetch model from",
default=None,
),
access_token: Optional[str] = Body(
description="When fetching a repo_id or URL, access token for web access",
default=None,
),
) -> ModelInstallJob:
"""Add a model using its local path, repo_id, or remote URL.
@ -250,14 +252,16 @@ async def import_model(
raise HTTPException(status_code=409, detail=str(e))
return result
@model_records_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs(
source: Optional[str] = Query(description="Filter list by install source, partial string match.",
default=None,
)
source: Optional[str] = Query(
description="Filter list by install source, partial string match.",
default=None,
),
) -> List[ModelInstallJob]:
"""
Return list of model install jobs.
@ -268,6 +272,7 @@ async def list_model_install_jobs(
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs(source)
return jobs
@model_records_router.patch(
"/import",
operation_id="prune_model_install_jobs",
@ -276,14 +281,14 @@ async def list_model_install_jobs(
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs(
) -> Response:
async def prune_model_install_jobs() -> Response:
"""
Prune all completed and errored jobs from the install job list.
"""
ApiDependencies.invoker.services.model_install.prune_jobs()
return Response(status_code=204)
@model_records_router.patch(
"/sync",
operation_id="sync_models_to_config",
@ -292,8 +297,7 @@ async def prune_model_install_jobs(
400: {"description": "Bad request"},
},
)
async def sync_models_to_config(
) -> Response:
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories. Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.

View File

@ -37,9 +37,5 @@ class SocketIO:
if "queue_id" in data:
await self.__sio.leave_room(sid, data["queue_id"])
async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(
event=event[1]["event"],
data=event[1]["data"]
)
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])

View File

@ -2,4 +2,4 @@
from .config_default import InvokeAIAppConfig, get_invokeai_config
__all__ = ['InvokeAIAppConfig', 'get_invokeai_config']
__all__ = ["InvokeAIAppConfig", "get_invokeai_config"]

View File

@ -331,9 +331,7 @@ class EventServiceBase:
"""
self.__emit_model_event(
event_name="model_install_started",
payload={
"source": source
},
payload={"source": source},
)
def emit_model_install_completed(self, source: str, key: str) -> None:
@ -351,11 +349,12 @@ class EventServiceBase:
},
)
def emit_model_install_progress(self,
source: str,
current_bytes: int,
total_bytes: int,
) -> None:
def emit_model_install_progress(
self,
source: str,
current_bytes: int,
total_bytes: int,
) -> None:
"""
Emitted while the install job is in progress.
(Downloaded models only)
@ -373,12 +372,12 @@ class EventServiceBase:
},
)
def emit_model_install_error(self,
source: str,
error_type: str,
error: str,
) -> None:
def emit_model_install_error(
self,
source: str,
error_type: str,
error: str,
) -> None:
"""
Emitted when an install job encounters an exception.

View File

@ -9,10 +9,11 @@ from .model_install_base import (
)
from .model_install_default import ModelInstallService
__all__ = ['ModelInstallServiceBase',
'ModelInstallService',
'InstallStatus',
'ModelInstallJob',
'UnknownInstallJobException',
'ModelSource',
]
__all__ = [
"ModelInstallServiceBase",
"ModelInstallService",
"InstallStatus",
"ModelInstallJob",
"UnknownInstallJobException",
"ModelSource",
]

View File

@ -17,10 +17,10 @@ from invokeai.backend.model_manager import AnyModelConfig
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
WAITING = "waiting" # waiting to be dequeued
RUNNING = "running" # being processed
WAITING = "waiting" # waiting to be dequeued
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
ERROR = "error" # terminated with an error message
class UnknownInstallJobException(Exception):
@ -32,10 +32,17 @@ ModelSource = Union[str, Path, AnyHttpUrl]
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
config_in: Dict[str, Any] = Field(default_factory=dict, description="Configuration information (e.g. 'description') to apply to model.")
config_out: Optional[AnyModelConfig] = Field(default=None, description="After successful installation, this will hold the configuration object.")
inplace: bool = Field(default=False, description="Leave model in its current location; otherwise install under models directory")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."
)
inplace: bool = Field(
default=False, description="Leave model in its current location; otherwise install under models directory"
)
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
error_type: Optional[str] = Field(default=None, description="Class name of the exception that led to status==ERROR")
@ -53,10 +60,10 @@ class ModelInstallServiceBase(ABC):
@abstractmethod
def __init__(
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional["EventServiceBase"] = None,
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional["EventServiceBase"] = None,
):
"""
Create ModelInstallService object.
@ -86,9 +93,9 @@ class ModelInstallServiceBase(ABC):
@abstractmethod
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str:
"""
Probe and register the model at model_path.
@ -114,9 +121,9 @@ class ModelInstallServiceBase(ABC):
@abstractmethod
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str:
"""
Probe, register and install the model in the models directory.
@ -131,13 +138,13 @@ class ModelInstallServiceBase(ABC):
@abstractmethod
def import_model(
self,
source: Union[str, Path, AnyHttpUrl],
inplace: bool = False,
variant: Optional[str] = None,
subfolder: Optional[str] = None,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
self,
source: Union[str, Path, AnyHttpUrl],
inplace: bool = False,
variant: Optional[str] = None,
subfolder: Optional[str] = None,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
) -> ModelInstallJob:
"""Install the indicated model.
@ -189,7 +196,7 @@ class ModelInstallServiceBase(ABC):
"""Return the ModelInstallJob corresponding to the provided source."""
@abstractmethod
def list_jobs(self, source: Optional[ModelSource]=None) -> List[ModelInstallJob]: # noqa D102
def list_jobs(self, source: Optional[ModelSource] = None) -> List[ModelInstallJob]: # noqa D102
"""
List active and complete install jobs.

View File

@ -46,11 +46,12 @@ class ModelInstallService(ModelInstallServiceBase):
_cached_model_paths: Set[Path]
_models_installed: Set[str]
def __init__(self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional[EventServiceBase] = None
):
def __init__(
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional[EventServiceBase] = None,
):
"""
Initialize the installer object.
@ -73,11 +74,11 @@ class ModelInstallService(ModelInstallServiceBase):
return self._app_config
@property
def record_store(self) -> ModelRecordServiceBase: # noqa D102
def record_store(self) -> ModelRecordServiceBase: # noqa D102
return self._record_store
@property
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
return self._event_bus
def _start_installer_thread(self) -> None:
@ -129,25 +130,25 @@ class ModelInstallService(ModelInstallServiceBase):
self._event_bus.emit_model_install_error(str(job.source), error_type, error)
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if config.get('source') is None:
config['source'] = model_path.resolve().as_posix()
if config.get("source") is None:
config["source"] = model_path.resolve().as_posix()
return self._register(model_path, config)
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if config.get('source') is None:
config['source'] = model_path.resolve().as_posix()
if config.get("source") is None:
config["source"] = model_path.resolve().as_posix()
info: AnyModelConfig = self._probe_model(Path(model_path), config)
@ -164,14 +165,14 @@ class ModelInstallService(ModelInstallServiceBase):
)
def import_model(
self,
source: ModelSource,
inplace: bool = False,
variant: Optional[str] = None,
subfolder: Optional[str] = None,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
) -> ModelInstallJob: # noqa D102
self,
source: ModelSource,
inplace: bool = False,
variant: Optional[str] = None,
subfolder: Optional[str] = None,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
) -> ModelInstallJob: # noqa D102
# Clean up a common source of error. Doesn't work with Paths.
if isinstance(source, str):
source = source.strip()
@ -181,11 +182,12 @@ class ModelInstallService(ModelInstallServiceBase):
# Installing a local path
if isinstance(source, (str, Path)) and Path(source).exists(): # a path that is already on disk
job = ModelInstallJob(config_in=config,
source=source,
inplace=inplace,
local_path=Path(source),
)
job = ModelInstallJob(
config_in=config,
source=source,
inplace=inplace,
local_path=Path(source),
)
self._install_jobs[source] = job
self._install_queue.put(job)
return job
@ -193,7 +195,7 @@ class ModelInstallService(ModelInstallServiceBase):
else: # here is where we'd download a URL or repo_id. Implementation pending download queue.
raise UnknownModelException("File or directory not found")
def list_jobs(self, source: Optional[ModelSource]=None) -> List[ModelInstallJob]: # noqa D102
def list_jobs(self, source: Optional[ModelSource] = None) -> List[ModelInstallJob]: # noqa D102
jobs = self._install_jobs
if not source:
return list(jobs.values())
@ -205,17 +207,19 @@ class ModelInstallService(ModelInstallServiceBase):
try:
return self._install_jobs[source]
except KeyError:
raise UnknownInstallJobException(f'{source}: unknown install job')
raise UnknownInstallJobException(f"{source}: unknown install job")
def wait_for_installs(self) -> Dict[ModelSource, ModelInstallJob]: # noqa D102
def wait_for_installs(self) -> Dict[ModelSource, ModelInstallJob]: # noqa D102
self._install_queue.join()
return self._install_jobs
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
finished_jobs = [source for source in self._install_jobs
if self._install_jobs[source].status in [InstallStatus.COMPLETED, InstallStatus.ERROR]
]
finished_jobs = [
source
for source in self._install_jobs
if self._install_jobs[source].status in [InstallStatus.COMPLETED, InstallStatus.ERROR]
]
for source in finished_jobs:
del self._install_jobs[source]
@ -228,7 +232,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"{len(installed)} new models registered")
self._logger.info("Model installer (re)initialized")
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path) for x in self.record_store.all_models()}
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback)
@ -295,7 +299,6 @@ class ModelInstallService(ModelInstallServiceBase):
self.record_store.update_model(key, model)
return model
def _scan_register(self, model: Path) -> bool:
if model in self._cached_model_paths:
return True
@ -308,7 +311,6 @@ class ModelInstallService(ModelInstallServiceBase):
pass
return True
def _scan_install(self, model: Path) -> bool:
if model in self._cached_model_paths:
return True
@ -320,7 +322,7 @@ class ModelInstallService(ModelInstallServiceBase):
pass
return True
def unregister(self, key: str) -> None: # noqa D102
def unregister(self, key: str) -> None: # noqa D102
self.record_store.del_model(key)
def delete(self, key: str) -> None: # noqa D102
@ -333,7 +335,7 @@ class ModelInstallService(ModelInstallServiceBase):
else:
self.unregister(key)
def unconditionally_delete(self, key: str) -> None: # noqa D102
def unconditionally_delete(self, key: str) -> None: # noqa D102
model = self.record_store.get_model(key)
path = self.app_config.models_path / model.path
if path.is_dir():
@ -378,11 +380,9 @@ class ModelInstallService(ModelInstallServiceBase):
def _create_key(self) -> str:
return sha256(randbytes(100)).hexdigest()[0:32]
def _register(self,
model_path: Path,
config: Optional[Dict[str, Any]] = None,
info: Optional[AnyModelConfig] = None) -> str:
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
) -> str:
info = info or ModelProbe.probe(model_path, config)
key = self._create_key()
@ -393,7 +393,7 @@ class ModelInstallService(ModelInstallServiceBase):
info.path = model_path.as_posix()
# add 'main' specific fields
if hasattr(info, 'config'):
if hasattr(info, "config"):
# make config relative to our root
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()

View File

@ -8,9 +8,9 @@ from .model_records_base import ( # noqa F401
from .model_records_sql import ModelRecordServiceSQL # noqa F401
__all__ = [
'ModelRecordServiceBase',
'ModelRecordServiceSQL',
'DuplicateModelException',
'InvalidModelException',
'UnknownModelException',
"ModelRecordServiceBase",
"ModelRecordServiceSQL",
"DuplicateModelException",
"InvalidModelException",
"UnknownModelException",
]

View File

@ -123,8 +123,8 @@ class ModelProbe(object):
base_type=base_type,
variant_type=variant_type,
prediction_type=prediction_type,
name = name,
description = description,
name=name,
description=description,
upcast_attention=(
base_type == BaseModelType.StableDiffusion2
and prediction_type == SchedulerPredictionType.VPrediction
@ -150,7 +150,7 @@ class ModelProbe(object):
@classmethod
def get_model_name(cls, model_path: Path) -> str:
if model_path.suffix in {'.safetensors', '.bin', '.pt', '.ckpt'}:
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
return model_path.stem
else:
return model_path.name

View File

@ -14,15 +14,16 @@ from .config import (
from .probe import ModelProbe
from .search import ModelSearch
__all__ = ['ModelProbe', 'ModelSearch',
'InvalidModelConfigException',
'ModelConfigFactory',
'BaseModelType',
'ModelType',
'SubModelType',
'ModelVariantType',
'ModelFormat',
'SchedulerPredictionType',
'AnyModelConfig',
]
__all__ = [
"ModelProbe",
"ModelSearch",
"InvalidModelConfigException",
"ModelConfigFactory",
"BaseModelType",
"ModelType",
"SubModelType",
"ModelVariantType",
"ModelFormat",
"SchedulerPredictionType",
"AnyModelConfig",
]

View File

@ -49,6 +49,7 @@ LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[Sched
},
}
class ProbeBase(object):
"""Base class for probes."""
@ -71,6 +72,7 @@ class ProbeBase(object):
"""Get model scheduler prediction type."""
return None
class ModelProbe(object):
PROBES: Dict[str, Dict[ModelType, type[ProbeBase]]] = {
"diffusers": {},
@ -100,9 +102,9 @@ class ModelProbe(object):
@classmethod
def heuristic_probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
return cls.probe(model_path, fields)
@ -138,29 +140,38 @@ class ModelProbe(object):
hash = FastModelHash.hash(model_path)
probe = probe_class(model_path)
fields['path'] = model_path.as_posix()
fields['type'] = fields.get('type') or model_type
fields['base'] = fields.get('base') or probe.get_base_type()
fields['variant'] = fields.get('variant') or probe.get_variant_type()
fields['prediction_type'] = fields.get('prediction_type') or probe.get_scheduler_prediction_type()
fields['name'] = fields.get('name') or cls.get_model_name(model_path)
fields['description'] = fields.get('description') or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
fields['format'] = fields.get('format') or probe.get_format()
fields['original_hash'] = fields.get('original_hash') or hash
fields['current_hash'] = fields.get('current_hash') or hash
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
fields["variant"] = fields.get("variant") or probe.get_variant_type()
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
fields["description"] = (
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["original_hash"] = fields.get("original_hash") or hash
fields["current_hash"] = fields.get("current_hash") or hash
# additional fields needed for main and controlnet models
if fields['type'] in [ModelType.Main, ModelType.ControlNet] and fields['format'] == ModelFormat.Checkpoint:
fields['config'] = cls._get_checkpoint_config_path(model_path,
model_type=fields['type'],
base_type=fields['base'],
variant_type=fields['variant'],
prediction_type=fields['prediction_type']).as_posix()
if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint:
fields["config"] = cls._get_checkpoint_config_path(
model_path,
model_type=fields["type"],
base_type=fields["base"],
variant_type=fields["variant"],
prediction_type=fields["prediction_type"],
).as_posix()
# additional fields needed for main non-checkpoint models
elif fields['type'] == ModelType.Main and fields['format'] in [ModelFormat.Onnx, ModelFormat.Olive, ModelFormat.Diffusers]:
fields['upcast_attention'] = fields.get('upcast_attention') or (
fields['base'] == BaseModelType.StableDiffusion2 and fields['prediction_type'] == SchedulerPredictionType.VPrediction
elif fields["type"] == ModelType.Main and fields["format"] in [
ModelFormat.Onnx,
ModelFormat.Olive,
ModelFormat.Diffusers,
]:
fields["upcast_attention"] = fields.get("upcast_attention") or (
fields["base"] == BaseModelType.StableDiffusion2
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
model_info = ModelConfigFactory.make_config(fields)
@ -168,7 +179,7 @@ class ModelProbe(object):
@classmethod
def get_model_name(cls, model_path: Path) -> str:
if model_path.suffix in {'.safetensors', '.bin', '.pt', '.ckpt'}:
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
return model_path.stem
else:
return model_path.name
@ -247,13 +258,14 @@ class ModelProbe(object):
)
@classmethod
def _get_checkpoint_config_path(cls,
model_path: Path,
model_type: ModelType,
base_type: BaseModelType,
variant_type: ModelVariantType,
prediction_type: SchedulerPredictionType) -> Path:
def _get_checkpoint_config_path(
cls,
model_path: Path,
model_type: ModelType,
base_type: BaseModelType,
variant_type: ModelVariantType,
prediction_type: SchedulerPredictionType,
) -> Path:
# look for a YAML file adjacent to the model file first
possible_conf = model_path.with_suffix(".yaml")
if possible_conf.exists():
@ -264,9 +276,13 @@ class ModelProbe(object):
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
elif model_type == ModelType.ControlNet:
config_file = "../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
config_file = (
"../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
)
else:
raise InvalidModelConfigException(f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}")
raise InvalidModelConfigException(
f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}"
)
assert isinstance(config_file, str)
return Path(config_file)
@ -297,6 +313,7 @@ class ModelProbe(object):
# Checkpoint probing
# ##################################################3
class CheckpointProbeBase(ProbeBase):
def __init__(self, model_path: Path):
super().__init__(model_path)
@ -446,7 +463,6 @@ class T2IAdapterCheckpointProbe(CheckpointProbeBase):
# classes for probing folders
#######################################################
class FolderProbeBase(ProbeBase):
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
@ -537,7 +553,9 @@ class TextualInversionFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
path = self.model_path / "learned_embeds.bin"
if not path.exists():
raise InvalidModelConfigException(f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file")
raise InvalidModelConfigException(
f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file"
)
return TextualInversionCheckpointProbe(path).get_base_type()
@ -608,7 +626,9 @@ class IPAdapterFolderProbe(FolderProbeBase):
elif cross_attention_dim == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}.")
raise InvalidModelConfigException(
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
)
class CLIPVisionFolderProbe(FolderProbeBase):

View File

@ -165,14 +165,14 @@ class ModelSearch(ModelSearchBase):
self.scanned_dirs.add(path)
continue
if any(
(path / x).exists()
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
(path / x).exists()
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
self.scanned_dirs.add(path)
try:

View File

@ -14,4 +14,4 @@ from .devices import ( # noqa: F401
from .logging import InvokeAILogger
from .util import Chdir, ask_user, download_with_resume, instantiate_from_config, url_attachment_name # noqa: F401
__all__ = ['Chdir', 'InvokeAILogger', 'choose_precision', 'choose_torch_device']
__all__ = ["Chdir", "InvokeAILogger", "choose_precision", "choose_torch_device"]

View File

@ -44,12 +44,12 @@ def store(app_config: InvokeAIAppConfig) -> ModelRecordServiceBase:
@pytest.fixture
def installer(app_config: InvokeAIAppConfig,
store: ModelRecordServiceBase) -> ModelInstallServiceBase:
return ModelInstallService(app_config=app_config,
record_store=store,
event_bus=DummyEventService(),
)
def installer(app_config: InvokeAIAppConfig, store: ModelRecordServiceBase) -> ModelInstallServiceBase:
return ModelInstallService(
app_config=app_config,
record_store=store,
event_bus=DummyEventService(),
)
class DummyEvent(BaseModel):
@ -70,10 +70,8 @@ class DummyEventService(EventServiceBase):
def dispatch(self, event_name: str, payload: Any) -> None:
"""Dispatch an event by appending it to self.events."""
self.events.append(
DummyEvent(event_name=payload['event'],
payload=payload['data'])
)
self.events.append(DummyEvent(event_name=payload["event"], payload=payload["data"]))
def test_registration(installer: ModelInstallServiceBase, test_file: Path) -> None:
store = installer.record_store
@ -83,6 +81,7 @@ def test_registration(installer: ModelInstallServiceBase, test_file: Path) -> No
assert key is not None
assert len(key) == 32
def test_registration_meta(installer: ModelInstallServiceBase, test_file: Path) -> None:
store = installer.record_store
key = installer.register_path(test_file)
@ -91,31 +90,30 @@ def test_registration_meta(installer: ModelInstallServiceBase, test_file: Path)
assert model_record.name == "test_embedding"
assert model_record.type == ModelType.TextualInversion
assert Path(model_record.path) == test_file
assert model_record.base == BaseModelType('sd-1')
assert model_record.base == BaseModelType("sd-1")
assert model_record.description is not None
assert model_record.source is not None
assert Path(model_record.source) == test_file
def test_registration_meta_override_fail(installer: ModelInstallServiceBase, test_file: Path) -> None:
key = None
with pytest.raises(ValidationError):
key = installer.register_path(test_file, {"name": "banana_sushi", "type": ModelType("lora")})
assert key is None
def test_registration_meta_override_succeed(installer: ModelInstallServiceBase, test_file: Path) -> None:
store = installer.record_store
key = installer.register_path(test_file,
{
"name": "banana_sushi",
"source": "fake/repo_id",
"current_hash": "New Hash"
}
)
key = installer.register_path(
test_file, {"name": "banana_sushi", "source": "fake/repo_id", "current_hash": "New Hash"}
)
model_record = store.get_model(key)
assert model_record.name == "banana_sushi"
assert model_record.source == "fake/repo_id"
assert model_record.current_hash == "New Hash"
def test_install(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig) -> None:
store = installer.record_store
key = installer.install_path(test_file)
@ -123,6 +121,7 @@ def test_install(installer: ModelInstallServiceBase, test_file: Path, app_config
assert model_record.path == "sd-1/embedding/test_embedding.safetensors"
assert model_record.source == test_file.as_posix()
def test_background_install(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig) -> None:
"""Note: may want to break this down into several smaller unit tests."""
source = test_file
@ -142,7 +141,7 @@ def test_background_install(installer: ModelInstallServiceBase, test_file: Path,
# test that the expected events were issued
bus = installer.event_bus
assert bus is not None # sigh - ruff is a stickler for type checking
assert bus is not None # sigh - ruff is a stickler for type checking
assert isinstance(bus, DummyEventService)
assert len(bus.events) == 2
event_names = [x.event_name for x in bus.events]
@ -167,6 +166,7 @@ def test_background_install(installer: ModelInstallServiceBase, test_file: Path,
with pytest.raises(UnknownInstallJobException):
assert installer.get_job(source)
def test_delete_install(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig):
store = installer.record_store
key = installer.install_path(test_file)
@ -174,11 +174,14 @@ def test_delete_install(installer: ModelInstallServiceBase, test_file: Path, app
assert Path(app_config.models_dir / model_record.path).exists()
assert test_file.exists() # original should still be there after installation
installer.delete(key)
assert not Path(app_config.models_dir / model_record.path).exists() # after deletion, installed copy should not exist
assert not Path(
app_config.models_dir / model_record.path
).exists() # after deletion, installed copy should not exist
assert test_file.exists() # but original should still be there
with pytest.raises(UnknownModelException):
store.get_model(key)
def test_delete_register(installer: ModelInstallServiceBase, test_file: Path, app_config: InvokeAIAppConfig):
store = installer.record_store
key = installer.register_path(test_file)