mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into patch-1
This commit is contained in:
commit
91acae30bf
57
.github/workflows/test-invoke-pip.yml
vendored
57
.github/workflows/test-invoke-pip.yml
vendored
@ -8,10 +8,11 @@ on:
|
||||
- 'ready_for_review'
|
||||
- 'opened'
|
||||
- 'synchronize'
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
matrix:
|
||||
@ -62,28 +63,13 @@ jobs:
|
||||
# github-env: $env:GITHUB_ENV
|
||||
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
PIP_USE_PEP517: '1'
|
||||
steps:
|
||||
- name: Checkout sources
|
||||
id: checkout-sources
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: setup python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Set Cache-Directory Windows
|
||||
if: runner.os == 'Windows'
|
||||
id: set-cache-dir-windows
|
||||
run: |
|
||||
echo "CACHE_DIR=$HOME\invokeai\models" >> ${{ matrix.github-env }}
|
||||
echo "PIP_NO_CACHE_DIR=1" >> ${{ matrix.github-env }}
|
||||
|
||||
- name: Set Cache-Directory others
|
||||
if: runner.os != 'Windows'
|
||||
id: set-cache-dir-others
|
||||
run: echo "CACHE_DIR=$HOME/invokeai/models" >> ${{ matrix.github-env }}
|
||||
|
||||
- name: set test prompt to main branch validation
|
||||
if: ${{ github.ref == 'refs/heads/main' }}
|
||||
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
|
||||
@ -92,26 +78,29 @@ jobs:
|
||||
if: ${{ github.ref != 'refs/heads/main' }}
|
||||
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
|
||||
|
||||
- name: setup python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: pip
|
||||
cache-dependency-path: pyproject.toml
|
||||
|
||||
- name: install invokeai
|
||||
env:
|
||||
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
|
||||
run: >
|
||||
pip3 install
|
||||
--use-pep517
|
||||
--editable=".[test]"
|
||||
|
||||
- name: run pytest
|
||||
id: run-pytest
|
||||
run: pytest
|
||||
|
||||
- name: Use Cached models
|
||||
id: cache-sd-model
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
cache-name: huggingface-models
|
||||
with:
|
||||
path: ${{ env.CACHE_DIR }}
|
||||
key: ${{ env.cache-name }}
|
||||
enableCrossOsArchive: true
|
||||
- name: set INVOKEAI_OUTDIR
|
||||
run: >
|
||||
python -c
|
||||
"import os;from ldm.invoke.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
|
||||
>> ${{ matrix.github-env }}
|
||||
|
||||
- name: run invokeai-configure
|
||||
id: run-preload-models
|
||||
@ -124,9 +113,8 @@ jobs:
|
||||
--full-precision
|
||||
# can't use fp16 weights without a GPU
|
||||
|
||||
- name: Run the tests
|
||||
if: runner.os != 'Windows'
|
||||
id: run-tests
|
||||
- name: run invokeai
|
||||
id: run-invokeai
|
||||
env:
|
||||
# Set offline mode to make sure configure preloaded successfully.
|
||||
HF_HUB_OFFLINE: 1
|
||||
@ -137,10 +125,11 @@ jobs:
|
||||
--no-patchmatch
|
||||
--no-nsfw_checker
|
||||
--from_file ${{ env.TEST_PROMPTS }}
|
||||
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
|
||||
|
||||
- name: Archive results
|
||||
id: archive-results
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: results_${{ matrix.pytorch }}_${{ matrix.python-version }}
|
||||
path: ${{ env.INVOKEAI_ROOT }}/outputs
|
||||
name: results
|
||||
path: ${{ env.INVOKEAI_OUTDIR }}
|
||||
|
@ -122,6 +122,10 @@ class Generator:
|
||||
|
||||
seed = self.new_seed()
|
||||
|
||||
# Free up memory from the last generation.
|
||||
if self.model.device.type == 'cuda':
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return results
|
||||
|
||||
def sample_to_image(self,samples)->Image.Image:
|
||||
@ -240,7 +244,12 @@ class Generator:
|
||||
|
||||
def get_perlin_noise(self,width,height):
|
||||
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
|
||||
noise = torch.stack([rand_perlin_2d((height, width), (8, 8), device = self.model.device).to(fixdevice) for _ in range(self.latent_channels)], dim=0).to(self.model.device)
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
noise = torch.stack([
|
||||
rand_perlin_2d((height, width),
|
||||
(8, 8),
|
||||
device = self.model.device).to(fixdevice) for _ in range(input_channels)], dim=0).to(self.model.device)
|
||||
return noise
|
||||
|
||||
def new_seed(self):
|
||||
@ -341,3 +350,27 @@ class Generator:
|
||||
|
||||
def torch_dtype(self)->torch.dtype:
|
||||
return torch.float16 if self.precision == 'float16' else torch.float32
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
perlin_noise = self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
x = (1-self.perlin)*x + self.perlin*perlin_noise
|
||||
return x
|
||||
|
@ -63,22 +63,3 @@ class Img2Img(Generator):
|
||||
shape = like.shape
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
||||
return x
|
||||
|
||||
def get_noise(self,width,height):
|
||||
# copy of the Txt2Img.get_noise
|
||||
device = self.model.device
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
return x
|
||||
|
@ -51,26 +51,4 @@ class Txt2Img(Generator):
|
||||
return make_image
|
||||
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
return x
|
||||
|
||||
|
@ -753,7 +753,7 @@ class ModelManager(object):
|
||||
return search_folder, found_models
|
||||
|
||||
def _choose_diffusers_vae(self, model_name:str, vae:str=None)->Union[dict,str]:
|
||||
|
||||
|
||||
# In the event that the original entry is using a custom ckpt VAE, we try to
|
||||
# map that VAE onto a diffuser VAE using a hard-coded dictionary.
|
||||
# I would prefer to do this differently: We load the ckpt model into memory, swap the
|
||||
@ -954,7 +954,7 @@ class ModelManager(object):
|
||||
def _has_cuda(self) -> bool:
|
||||
return self.device.type == 'cuda'
|
||||
|
||||
def _diffuser_sha256(self,name_or_path:Union[str, Path])->Union[str,bytes]:
|
||||
def _diffuser_sha256(self,name_or_path:Union[str, Path],chunksize=4096)->Union[str,bytes]:
|
||||
path = None
|
||||
if isinstance(name_or_path,Path):
|
||||
path = name_or_path
|
||||
@ -976,7 +976,8 @@ class ModelManager(object):
|
||||
for name in files:
|
||||
count += 1
|
||||
with open(os.path.join(root,name),'rb') as f:
|
||||
sha.update(f.read())
|
||||
while chunk := f.read(chunksize):
|
||||
sha.update(chunk)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f' | sha256 = {hash} ({count} files hashed in','%4.2fs)' % (toc - tic))
|
||||
|
Loading…
Reference in New Issue
Block a user