mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into refactor/model-manager-2
This commit is contained in:
commit
927f8a66e6
@ -11,5 +11,5 @@ INVOKEAI_ROOT=
|
||||
# HUGGING_FACE_HUB_TOKEN=
|
||||
|
||||
## optional variables specific to the docker setup.
|
||||
# GPU_DRIVER=cuda
|
||||
# CONTAINER_UID=1000
|
||||
# GPU_DRIVER=cuda # or rocm
|
||||
# CONTAINER_UID=1000
|
||||
|
@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
ARG TORCH_VERSION=2.0.1
|
||||
ARG TORCHVISION_VERSION=0.15.2
|
||||
ARG TORCH_VERSION=2.1.0
|
||||
ARG TORCHVISION_VERSION=0.16
|
||||
ARG GPU_DRIVER=cuda
|
||||
ARG TARGETPLATFORM="linux/amd64"
|
||||
# unused but available
|
||||
@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
|
||||
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
|
||||
else \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
|
||||
fi &&\
|
||||
|
@ -15,6 +15,10 @@ services:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
# For AMD support, comment out the deploy section above and uncomment the devices section below:
|
||||
#devices:
|
||||
# - /dev/kfd:/dev/kfd
|
||||
# - /dev/dri:/dev/dri
|
||||
build:
|
||||
context: ..
|
||||
dockerfile: docker/Dockerfile
|
||||
|
@ -7,5 +7,5 @@ set -e
|
||||
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$SCRIPTDIR" || exit 1
|
||||
|
||||
docker compose up --build -d
|
||||
docker compose up -d
|
||||
docker compose logs -f
|
||||
|
@ -460,10 +460,10 @@ def get_torch_source() -> (Union[str, None], str):
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
|
||||
if device == "cuda":
|
||||
url = "https://download.pytorch.org/whl/cu118"
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
optional_modules = "[xformers,onnx-cuda]"
|
||||
if device == "cuda_and_dml":
|
||||
url = "https://download.pytorch.org/whl/cu118"
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
optional_modules = "[xformers,onnx-directml]"
|
||||
|
||||
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13
|
||||
|
@ -92,6 +92,10 @@ class FieldDescriptions:
|
||||
inclusive_low = "The inclusive low value"
|
||||
exclusive_high = "The exclusive high value"
|
||||
decimal_places = "The number of decimal places to round to"
|
||||
freeu_s1 = 'Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
|
||||
freeu_s2 = 'Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
|
||||
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
|
||||
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."
|
||||
|
||||
|
||||
class Input(str, Enum):
|
||||
|
@ -710,6 +710,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),
|
||||
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
|
||||
set_seamless(unet_info.context.model, self.unet.seamless_axes),
|
||||
unet_info as unet,
|
||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||
|
@ -182,8 +182,8 @@ class IntegerMathInvocation(BaseInvocation):
|
||||
operation: INTEGER_OPERATIONS = InputField(
|
||||
default="ADD", description="The operation to perform", ui_choice_labels=INTEGER_OPERATIONS_LABELS
|
||||
)
|
||||
a: int = InputField(default=0, description=FieldDescriptions.num_1)
|
||||
b: int = InputField(default=0, description=FieldDescriptions.num_2)
|
||||
a: int = InputField(default=1, description=FieldDescriptions.num_1)
|
||||
b: int = InputField(default=1, description=FieldDescriptions.num_2)
|
||||
|
||||
@field_validator("b")
|
||||
def no_unrepresentable_results(cls, v: int, info: ValidationInfo):
|
||||
@ -256,8 +256,8 @@ class FloatMathInvocation(BaseInvocation):
|
||||
operation: FLOAT_OPERATIONS = InputField(
|
||||
default="ADD", description="The operation to perform", ui_choice_labels=FLOAT_OPERATIONS_LABELS
|
||||
)
|
||||
a: float = InputField(default=0, description=FieldDescriptions.num_1)
|
||||
b: float = InputField(default=0, description=FieldDescriptions.num_2)
|
||||
a: float = InputField(default=1, description=FieldDescriptions.num_1)
|
||||
b: float = InputField(default=1, description=FieldDescriptions.num_2)
|
||||
|
||||
@field_validator("b")
|
||||
def no_unrepresentable_results(cls, v: float, info: ValidationInfo):
|
||||
|
@ -17,6 +17,22 @@ from .baseinvocation import (
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
# TODO: Permanent fix for this
|
||||
# from invokeai.app.invocations.shared import FreeUConfig
|
||||
|
||||
|
||||
class FreeUConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the FreeU hyperparameters.
|
||||
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
|
||||
- https://github.com/ChenyangSi/FreeU
|
||||
"""
|
||||
|
||||
s1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s1)
|
||||
s2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s2)
|
||||
b1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b1)
|
||||
b2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b2)
|
||||
|
||||
|
||||
class ModelInfo(BaseModel):
|
||||
model_name: str = Field(description="Info to load submodel")
|
||||
@ -36,6 +52,7 @@ class UNetField(BaseModel):
|
||||
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
|
||||
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
|
||||
|
||||
|
||||
class ClipField(BaseModel):
|
||||
@ -51,15 +68,34 @@ class VaeField(BaseModel):
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
|
||||
|
||||
@invocation_output("model_loader_output")
|
||||
class ModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
@invocation_output("unet_output")
|
||||
class UNetOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output a UNet field"""
|
||||
|
||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
|
||||
|
||||
@invocation_output("vae_output")
|
||||
class VAEOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output a VAE field"""
|
||||
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@invocation_output("clip_output")
|
||||
class CLIPOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output a CLIP field"""
|
||||
|
||||
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
|
||||
|
||||
@invocation_output("model_loader_output")
|
||||
class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class MainModelField(BaseModel):
|
||||
"""Main model field"""
|
||||
|
||||
@ -366,13 +402,6 @@ class VAEModelField(BaseModel):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
@invocation_output("vae_loader_output")
|
||||
class VaeLoaderOutput(BaseInvocationOutput):
|
||||
"""VAE output"""
|
||||
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
|
||||
class VaeLoaderInvocation(BaseInvocation):
|
||||
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
||||
@ -384,7 +413,7 @@ class VaeLoaderInvocation(BaseInvocation):
|
||||
title="VAE",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
|
||||
def invoke(self, context: InvocationContext) -> VAEOutput:
|
||||
base_model = self.vae_model.base_model
|
||||
model_name = self.vae_model.model_name
|
||||
model_type = ModelType.Vae
|
||||
@ -395,7 +424,7 @@ class VaeLoaderInvocation(BaseInvocation):
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unkown vae name: {model_name}!")
|
||||
return VaeLoaderOutput(
|
||||
return VAEOutput(
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
@ -457,3 +486,24 @@ class SeamlessModeInvocation(BaseInvocation):
|
||||
vae.seamless_axes = seamless_axes_list
|
||||
|
||||
return SeamlessModeOutput(unet=unet, vae=vae)
|
||||
|
||||
|
||||
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.0")
|
||||
class FreeUInvocation(BaseInvocation):
|
||||
"""
|
||||
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):
|
||||
|
||||
SD1.5: 1.2/1.4/0.9/0.2,
|
||||
SD2: 1.1/1.2/0.9/0.2,
|
||||
SDXL: 1.1/1.2/0.6/0.4,
|
||||
"""
|
||||
|
||||
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet")
|
||||
b1: float = InputField(default=1.2, ge=-1, le=3, description=FieldDescriptions.freeu_b1)
|
||||
b2: float = InputField(default=1.4, ge=-1, le=3, description=FieldDescriptions.freeu_b2)
|
||||
s1: float = InputField(default=0.9, ge=-1, le=3, description=FieldDescriptions.freeu_s1)
|
||||
s2: float = InputField(default=0.2, ge=-1, le=3, description=FieldDescriptions.freeu_s2)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> UNetOutput:
|
||||
self.unet.freeu_config = FreeUConfig(s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2)
|
||||
return UNetOutput(unet=self.unet)
|
||||
|
16
invokeai/app/invocations/shared.py
Normal file
16
invokeai/app/invocations/shared.py
Normal file
@ -0,0 +1,16 @@
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import FieldDescriptions
|
||||
|
||||
|
||||
class FreeUConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the FreeU hyperparameters.
|
||||
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
|
||||
- https://github.com/ChenyangSi/FreeU
|
||||
"""
|
||||
|
||||
s1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s1)
|
||||
s2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s2)
|
||||
b1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b1)
|
||||
b2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b2)
|
@ -12,6 +12,8 @@ from diffusers.models import UNet2DConditionModel
|
||||
from safetensors.torch import load_file
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from invokeai.app.invocations.shared import FreeUConfig
|
||||
|
||||
from .models.lora import LoRAModel
|
||||
|
||||
"""
|
||||
@ -240,6 +242,25 @@ class ModelPatcher:
|
||||
while len(skipped_layers) > 0:
|
||||
text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_freeu(
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
freeu_config: Optional[FreeUConfig] = None,
|
||||
):
|
||||
did_apply_freeu = False
|
||||
try:
|
||||
if freeu_config is not None:
|
||||
unet.enable_freeu(b1=freeu_config.b1, b2=freeu_config.b2, s1=freeu_config.s1, s2=freeu_config.s2)
|
||||
did_apply_freeu = True
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
if did_apply_freeu:
|
||||
unet.disable_freeu()
|
||||
|
||||
|
||||
class TextualInversionModel:
|
||||
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
||||
|
@ -546,11 +546,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# Handle ControlNet(s) and T2I-Adapter(s)
|
||||
down_block_additional_residuals = None
|
||||
mid_block_additional_residual = None
|
||||
if control_data is not None and t2i_adapter_data is not None:
|
||||
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
|
||||
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
|
||||
raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
|
||||
elif control_data is not None:
|
||||
down_intrablock_additional_residuals = None
|
||||
# if control_data is not None and t2i_adapter_data is not None:
|
||||
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
|
||||
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
|
||||
# raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
|
||||
# elif control_data is not None:
|
||||
if control_data is not None:
|
||||
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
|
||||
control_data=control_data,
|
||||
sample=latent_model_input,
|
||||
@ -559,7 +561,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
total_step_count=total_step_count,
|
||||
conditioning_data=conditioning_data,
|
||||
)
|
||||
elif t2i_adapter_data is not None:
|
||||
# elif t2i_adapter_data is not None:
|
||||
if t2i_adapter_data is not None:
|
||||
accum_adapter_state = None
|
||||
for single_t2i_adapter_data in t2i_adapter_data:
|
||||
# Determine the T2I-Adapter weights for the current denoising step.
|
||||
@ -584,7 +587,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
|
||||
accum_adapter_state[idx] += value * t2i_adapter_weight
|
||||
|
||||
down_block_additional_residuals = accum_adapter_state
|
||||
# down_block_additional_residuals = accum_adapter_state
|
||||
down_intrablock_additional_residuals = accum_adapter_state
|
||||
|
||||
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
|
||||
sample=latent_model_input,
|
||||
@ -593,8 +597,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
total_step_count=total_step_count,
|
||||
conditioning_data=conditioning_data,
|
||||
# extra:
|
||||
down_block_additional_residuals=down_block_additional_residuals,
|
||||
mid_block_additional_residual=mid_block_additional_residual,
|
||||
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
|
||||
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
|
||||
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
|
||||
)
|
||||
|
||||
guidance_scale = conditioning_data.guidance_scale
|
||||
|
@ -260,7 +260,6 @@ class InvokeAIDiffuserComponent:
|
||||
conditioning_data,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
(
|
||||
unconditioned_next_x,
|
||||
@ -410,6 +409,15 @@ class InvokeAIDiffuserComponent:
|
||||
uncond_down_block.append(_uncond_down)
|
||||
cond_down_block.append(_cond_down)
|
||||
|
||||
uncond_down_intrablock, cond_down_intrablock = None, None
|
||||
down_intrablock_additional_residuals = kwargs.pop("down_intrablock_additional_residuals", None)
|
||||
if down_intrablock_additional_residuals is not None:
|
||||
uncond_down_intrablock, cond_down_intrablock = [], []
|
||||
for down_intrablock in down_intrablock_additional_residuals:
|
||||
_uncond_down, _cond_down = down_intrablock.chunk(2)
|
||||
uncond_down_intrablock.append(_uncond_down)
|
||||
cond_down_intrablock.append(_cond_down)
|
||||
|
||||
uncond_mid_block, cond_mid_block = None, None
|
||||
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
|
||||
if mid_block_additional_residual is not None:
|
||||
@ -441,6 +449,7 @@ class InvokeAIDiffuserComponent:
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
down_block_additional_residuals=uncond_down_block,
|
||||
mid_block_additional_residual=uncond_mid_block,
|
||||
down_intrablock_additional_residuals=uncond_down_intrablock,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
@ -470,6 +479,7 @@ class InvokeAIDiffuserComponent:
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
down_block_additional_residuals=cond_down_block,
|
||||
mid_block_additional_residual=cond_mid_block,
|
||||
down_intrablock_additional_residuals=cond_down_intrablock,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
@ -494,6 +504,15 @@ class InvokeAIDiffuserComponent:
|
||||
uncond_down_block.append(_uncond_down)
|
||||
cond_down_block.append(_cond_down)
|
||||
|
||||
uncond_down_intrablock, cond_down_intrablock = None, None
|
||||
down_intrablock_additional_residuals = kwargs.pop("down_intrablock_additional_residuals", None)
|
||||
if down_intrablock_additional_residuals is not None:
|
||||
uncond_down_intrablock, cond_down_intrablock = [], []
|
||||
for down_intrablock in down_intrablock_additional_residuals:
|
||||
_uncond_down, _cond_down = down_intrablock.chunk(2)
|
||||
uncond_down_intrablock.append(_uncond_down)
|
||||
cond_down_intrablock.append(_cond_down)
|
||||
|
||||
uncond_mid_block, cond_mid_block = None, None
|
||||
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
|
||||
if mid_block_additional_residual is not None:
|
||||
@ -522,6 +541,7 @@ class InvokeAIDiffuserComponent:
|
||||
{"swap_cross_attn_context": cross_attn_processor_context},
|
||||
down_block_additional_residuals=uncond_down_block,
|
||||
mid_block_additional_residual=uncond_mid_block,
|
||||
down_intrablock_additional_residuals=uncond_down_intrablock,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
@ -541,6 +561,7 @@ class InvokeAIDiffuserComponent:
|
||||
{"swap_cross_attn_context": cross_attn_processor_context},
|
||||
down_block_additional_residuals=cond_down_block,
|
||||
mid_block_additional_residual=cond_mid_block,
|
||||
down_intrablock_additional_residuals=cond_down_intrablock,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
|
@ -63,8 +63,8 @@ def welcome(latest_release: str, latest_prerelease: str):
|
||||
yield "[bold yellow]Options:"
|
||||
yield f"""[1] Update to the latest [bold]official release[/bold] ([italic]{latest_release}[/italic])
|
||||
[2] Update to the latest [bold]pre-release[/bold] (may be buggy; caveat emptor!) ([italic]{latest_prerelease}[/italic])
|
||||
[2] Manually enter the [bold]tag name[/bold] for the version you wish to update to
|
||||
[3] Manually enter the [bold]branch name[/bold] for the version you wish to update to"""
|
||||
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
|
||||
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to"""
|
||||
|
||||
console.rule()
|
||||
print(
|
||||
|
@ -12,6 +12,7 @@ import { addFirstListImagesListener } from './listeners/addFirstListImagesListen
|
||||
import { addAnyEnqueuedListener } from './listeners/anyEnqueued';
|
||||
import { addAppConfigReceivedListener } from './listeners/appConfigReceived';
|
||||
import { addAppStartedListener } from './listeners/appStarted';
|
||||
import { addBatchEnqueuedListener } from './listeners/batchEnqueued';
|
||||
import { addDeleteBoardAndImagesFulfilledListener } from './listeners/boardAndImagesDeleted';
|
||||
import { addBoardIdSelectedListener } from './listeners/boardIdSelected';
|
||||
import { addCanvasCopiedToClipboardListener } from './listeners/canvasCopiedToClipboard';
|
||||
@ -71,8 +72,6 @@ import { addStagingAreaImageSavedListener } from './listeners/stagingAreaImageSa
|
||||
import { addTabChangedListener } from './listeners/tabChanged';
|
||||
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
|
||||
import { addWorkflowLoadedListener } from './listeners/workflowLoaded';
|
||||
import { addBatchEnqueuedListener } from './listeners/batchEnqueued';
|
||||
import { addControlAdapterAddedOrEnabledListener } from './listeners/controlAdapterAddedOrEnabled';
|
||||
|
||||
export const listenerMiddleware = createListenerMiddleware();
|
||||
|
||||
@ -200,7 +199,3 @@ addTabChangedListener();
|
||||
|
||||
// Dynamic prompts
|
||||
addDynamicPromptsListener();
|
||||
|
||||
// Display toast when controlnet or t2i adapter enabled
|
||||
// TODO: Remove when they can both be enabled at same time
|
||||
addControlAdapterAddedOrEnabledListener();
|
||||
|
@ -1,87 +0,0 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import {
|
||||
controlAdapterAdded,
|
||||
controlAdapterAddedFromImage,
|
||||
controlAdapterIsEnabledChanged,
|
||||
controlAdapterRecalled,
|
||||
selectControlAdapterAll,
|
||||
selectControlAdapterById,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { ControlAdapterType } from 'features/controlAdapters/store/types';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import i18n from 'i18n';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const isAnyControlAdapterAddedOrEnabled = isAnyOf(
|
||||
controlAdapterAdded,
|
||||
controlAdapterAddedFromImage,
|
||||
controlAdapterRecalled,
|
||||
controlAdapterIsEnabledChanged
|
||||
);
|
||||
|
||||
/**
|
||||
* Until we can have both controlnet and t2i adapter enabled at once, they are mutually exclusive
|
||||
* This displays a toast when one is enabled and the other is already enabled, or one is added
|
||||
* with the other enabled
|
||||
*/
|
||||
export const addControlAdapterAddedOrEnabledListener = () => {
|
||||
startAppListening({
|
||||
matcher: isAnyControlAdapterAddedOrEnabled,
|
||||
effect: async (action, { dispatch, getOriginalState }) => {
|
||||
const controlAdapters = getOriginalState().controlAdapters;
|
||||
|
||||
const hasEnabledControlNets = selectControlAdapterAll(
|
||||
controlAdapters
|
||||
).some((ca) => ca.isEnabled && ca.type === 'controlnet');
|
||||
|
||||
const hasEnabledT2IAdapters = selectControlAdapterAll(
|
||||
controlAdapters
|
||||
).some((ca) => ca.isEnabled && ca.type === 't2i_adapter');
|
||||
|
||||
let caType: ControlAdapterType | null = null;
|
||||
|
||||
if (controlAdapterAdded.match(action)) {
|
||||
caType = action.payload.type;
|
||||
}
|
||||
|
||||
if (controlAdapterAddedFromImage.match(action)) {
|
||||
caType = action.payload.type;
|
||||
}
|
||||
|
||||
if (controlAdapterRecalled.match(action)) {
|
||||
caType = action.payload.type;
|
||||
}
|
||||
|
||||
if (controlAdapterIsEnabledChanged.match(action)) {
|
||||
const _caType = selectControlAdapterById(
|
||||
controlAdapters,
|
||||
action.payload.id
|
||||
)?.type;
|
||||
if (!_caType) {
|
||||
return;
|
||||
}
|
||||
caType = _caType;
|
||||
}
|
||||
|
||||
if (
|
||||
(caType === 'controlnet' && hasEnabledT2IAdapters) ||
|
||||
(caType === 't2i_adapter' && hasEnabledControlNets)
|
||||
) {
|
||||
const title =
|
||||
caType === 'controlnet'
|
||||
? i18n.t('controlnet.controlNetEnabledT2IDisabled')
|
||||
: i18n.t('controlnet.t2iEnabledControlNetDisabled');
|
||||
|
||||
const description = i18n.t('controlnet.controlNetT2IMutexDesc');
|
||||
|
||||
dispatch(
|
||||
addToast({
|
||||
title,
|
||||
description,
|
||||
status: 'warning',
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -88,61 +88,6 @@ export const selectValidT2IAdapters = (controlAdapters: ControlAdaptersState) =>
|
||||
(ca.processorType === 'none' && Boolean(ca.controlImage)))
|
||||
);
|
||||
|
||||
// TODO: I think we can safely remove this?
|
||||
// const disableAllIPAdapters = (
|
||||
// state: ControlAdaptersState,
|
||||
// exclude?: string
|
||||
// ) => {
|
||||
// const updates: Update<ControlAdapterConfig>[] = selectAllIPAdapters(state)
|
||||
// .filter((ca) => ca.id !== exclude)
|
||||
// .map((ca) => ({
|
||||
// id: ca.id,
|
||||
// changes: { isEnabled: false },
|
||||
// }));
|
||||
// caAdapter.updateMany(state, updates);
|
||||
// };
|
||||
|
||||
const disableAllControlNets = (
|
||||
state: ControlAdaptersState,
|
||||
exclude?: string
|
||||
) => {
|
||||
const updates: Update<ControlAdapterConfig>[] = selectAllControlNets(state)
|
||||
.filter((ca) => ca.id !== exclude)
|
||||
.map((ca) => ({
|
||||
id: ca.id,
|
||||
changes: { isEnabled: false },
|
||||
}));
|
||||
caAdapter.updateMany(state, updates);
|
||||
};
|
||||
|
||||
const disableAllT2IAdapters = (
|
||||
state: ControlAdaptersState,
|
||||
exclude?: string
|
||||
) => {
|
||||
const updates: Update<ControlAdapterConfig>[] = selectAllT2IAdapters(state)
|
||||
.filter((ca) => ca.id !== exclude)
|
||||
.map((ca) => ({
|
||||
id: ca.id,
|
||||
changes: { isEnabled: false },
|
||||
}));
|
||||
caAdapter.updateMany(state, updates);
|
||||
};
|
||||
|
||||
const disableIncompatibleControlAdapters = (
|
||||
state: ControlAdaptersState,
|
||||
type: ControlAdapterType,
|
||||
exclude?: string
|
||||
) => {
|
||||
if (type === 'controlnet') {
|
||||
// we cannot do controlnet + t2i adapter, if we are enabled a controlnet, disable all t2is
|
||||
disableAllT2IAdapters(state, exclude);
|
||||
}
|
||||
if (type === 't2i_adapter') {
|
||||
// we cannot do controlnet + t2i adapter, if we are enabled a t2i, disable controlnets
|
||||
disableAllControlNets(state, exclude);
|
||||
}
|
||||
};
|
||||
|
||||
export const controlAdaptersSlice = createSlice({
|
||||
name: 'controlAdapters',
|
||||
initialState: initialControlAdapterState,
|
||||
@ -158,7 +103,6 @@ export const controlAdaptersSlice = createSlice({
|
||||
) => {
|
||||
const { id, type, overrides } = action.payload;
|
||||
caAdapter.addOne(state, buildControlAdapter(id, type, overrides));
|
||||
disableIncompatibleControlAdapters(state, type, id);
|
||||
},
|
||||
prepare: ({
|
||||
type,
|
||||
@ -175,8 +119,6 @@ export const controlAdaptersSlice = createSlice({
|
||||
action: PayloadAction<ControlAdapterConfig>
|
||||
) => {
|
||||
caAdapter.addOne(state, action.payload);
|
||||
const { type, id } = action.payload;
|
||||
disableIncompatibleControlAdapters(state, type, id);
|
||||
},
|
||||
controlAdapterDuplicated: {
|
||||
reducer: (
|
||||
@ -196,8 +138,6 @@ export const controlAdaptersSlice = createSlice({
|
||||
isEnabled: true,
|
||||
});
|
||||
caAdapter.addOne(state, newControlAdapter);
|
||||
const { type } = newControlAdapter;
|
||||
disableIncompatibleControlAdapters(state, type, newId);
|
||||
},
|
||||
prepare: (id: string) => {
|
||||
return { payload: { id, newId: uuidv4() } };
|
||||
@ -217,7 +157,6 @@ export const controlAdaptersSlice = createSlice({
|
||||
state,
|
||||
buildControlAdapter(id, type, { controlImage })
|
||||
);
|
||||
disableIncompatibleControlAdapters(state, type, id);
|
||||
},
|
||||
prepare: (payload: {
|
||||
type: ControlAdapterType;
|
||||
@ -235,12 +174,6 @@ export const controlAdaptersSlice = createSlice({
|
||||
) => {
|
||||
const { id, isEnabled } = action.payload;
|
||||
caAdapter.updateOne(state, { id, changes: { isEnabled } });
|
||||
if (isEnabled) {
|
||||
// we are enabling a control adapter. due to limitations in the current system, we may need to disable other adapters
|
||||
// TODO: disable when multiple IP adapters are supported
|
||||
const ca = selectControlAdapterById(state, id);
|
||||
ca && disableIncompatibleControlAdapters(state, ca.type, id);
|
||||
}
|
||||
},
|
||||
controlAdapterImageChanged: (
|
||||
state,
|
||||
|
@ -8808,11 +8808,11 @@ export type components = {
|
||||
ui_order: number | null;
|
||||
};
|
||||
/**
|
||||
* StableDiffusionOnnxModelFormat
|
||||
* IPAdapterModelFormat
|
||||
* @description An enumeration.
|
||||
* @enum {string}
|
||||
*/
|
||||
StableDiffusionOnnxModelFormat: "olive" | "onnx";
|
||||
IPAdapterModelFormat: "invokeai";
|
||||
/**
|
||||
* IPAdapterModelFormat
|
||||
* @description An enumeration.
|
||||
@ -8832,11 +8832,11 @@ export type components = {
|
||||
*/
|
||||
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
|
||||
/**
|
||||
* CLIPVisionModelFormat
|
||||
* StableDiffusionOnnxModelFormat
|
||||
* @description An enumeration.
|
||||
* @enum {string}
|
||||
*/
|
||||
CLIPVisionModelFormat: "diffusers";
|
||||
StableDiffusionOnnxModelFormat: "olive" | "onnx";
|
||||
/**
|
||||
* StableDiffusion1ModelFormat
|
||||
* @description An enumeration.
|
||||
|
@ -42,7 +42,7 @@ dependencies = [
|
||||
"datasets",
|
||||
# When bumping diffusers beyond 0.21, make sure to address this:
|
||||
# https://github.com/invoke-ai/InvokeAI/blob/fc09ab7e13cb7ca5389100d149b6422ace7b8ed3/invokeai/app/invocations/latent.py#L513
|
||||
"diffusers[torch]~=0.21.0",
|
||||
"diffusers[torch]~=0.22.0",
|
||||
"dnspython~=2.4.0",
|
||||
"dynamicprompts",
|
||||
"easing-functions",
|
||||
@ -81,8 +81,8 @@ dependencies = [
|
||||
"semver~=3.0.1",
|
||||
"send2trash",
|
||||
"test-tube~=0.7.5",
|
||||
"torch~=2.0.1",
|
||||
"torchvision~=0.15.2",
|
||||
"torch~=2.1.0",
|
||||
"torchvision~=0.16",
|
||||
"torchmetrics~=0.11.0",
|
||||
"torchsde~=0.2.5",
|
||||
"transformers~=4.31.0",
|
||||
@ -110,8 +110,8 @@ dependencies = [
|
||||
"pytest-datadir",
|
||||
]
|
||||
"xformers" = [
|
||||
"xformers~=0.0.19; sys_platform!='darwin'",
|
||||
"triton; sys_platform=='linux'",
|
||||
"xformers==0.0.22post7; sys_platform!='darwin'",
|
||||
"triton; sys_platform=='linux'",
|
||||
]
|
||||
"onnx" = ["onnxruntime"]
|
||||
"onnx-cuda" = ["onnxruntime-gpu"]
|
||||
|
Loading…
Reference in New Issue
Block a user