Merge branch 'asymmetric-tiling' of https://github.com/carson-katri/InvokeAI into carson-katri-asymmetric-tiling

This commit is contained in:
Lincoln Stein 2022-10-19 13:46:07 -04:00
commit 92d4dfaabf
5 changed files with 49 additions and 4 deletions

View File

@ -159,6 +159,7 @@ Here are the invoke> command that apply to txt2img:
| --individual | -i | True | Turn off grid mode (deprecated; leave off --grid instead) |
| --outdir <path> | -o<path> | outputs/img_samples | Temporarily change the location of these images |
| --seamless | | False | Activate seamless tiling for interesting effects |
| --seamless_axes | | x,y | Specify which axes to use circular convolution on. |
| --log_tokenization | -t | False | Display a color-coded list of the parsed tokens derived from the prompt |
| --skip_normalization| -x | False | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| --upscale <int> <float> | -U <int> <float> | -U 1 0.75| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |

View File

@ -26,6 +26,12 @@ for each `invoke>` prompt as shown here:
invoke> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
By default this will tile on both the X and Y axes. However, you can also specify specific axes to tile on with `--seamless_axes`.
Possible values are `x`, `y`, and `x,y`:
```python
invoke> "pond garden with lotus by claude monet" --seamless --seamless_axes=x -s100 -n4
```
---
## **Shortcuts: Reusing Seeds**

View File

@ -34,6 +34,7 @@ from ldm.invoke.image_util import InitImageResizer
from ldm.invoke.devices import choose_torch_device, choose_precision
from ldm.invoke.conditioning import get_uc_and_c
from ldm.invoke.model_cache import ModelCache
from ldm.invoke.seamless import configure_model_padding
from ldm.invoke.txt2mask import Txt2Mask, SegmentedGrayscale
def fix_func(orig):
@ -174,6 +175,7 @@ class Generate:
self.precision = precision
self.strength = 0.75
self.seamless = False
self.seamless_axes = {'x','y'}
self.hires_fix = False
self.embedding_path = embedding_path
self.model = None # empty for now
@ -260,6 +262,7 @@ class Generate:
height = None,
sampler_name = None,
seamless = False,
seamless_axes = {'x','y'},
log_tokenization = False,
with_variations = None,
variation_amount = 0.0,
@ -335,6 +338,7 @@ class Generate:
width = width or self.width
height = height or self.height
seamless = seamless or self.seamless
seamless_axes = seamless_axes or self.seamless_axes
hires_fix = hires_fix or self.hires_fix
cfg_scale = cfg_scale or self.cfg_scale
ddim_eta = ddim_eta or self.ddim_eta
@ -352,10 +356,8 @@ class Generate:
# to the width and height of the image training set
width = width or self.width
height = height or self.height
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m.padding_mode = 'circular' if seamless else m._orig_padding_mode
configure_model_padding(model, seamless, seamless_axes)
assert cfg_scale > 1.0, 'CFG_Scale (-C) must be >1.0'
assert threshold >= 0.0, '--threshold must be >=0.0'

View File

@ -784,6 +784,12 @@ class Args(object):
action='store_true',
help='Change the model to seamless tiling (circular) mode',
)
special_effects_group.add_argument(
'--seamless_axes',
default=['x', 'y'],
type=list[str],
help='Specify which axes to use circular convolution on.',
)
variation_group.add_argument(
'-v',
'--variation_amount',

30
ldm/invoke/seamless.py Normal file
View File

@ -0,0 +1,30 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding['x'], mode=self.asymmetric_padding_mode['x'])
working = nn.functional.pad(working, self.asymmetric_padding['y'], mode=self.asymmetric_padding_mode['y'])
return nn.functional.conv2d(working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
"""
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode['x'] = 'circular' if ('x' in seamless_axes) else 'constant'
m.asymmetric_padding['x'] = (m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0)
m.asymmetric_padding_mode['y'] = 'circular' if ('y' in seamless_axes) else 'constant'
m.asymmetric_padding['y'] = (0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3])
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, 'asymmetric_padding_mode'):
del m.asymmetric_padding_mode
if hasattr(m, 'asymmetric_padding'):
del m.asymmetric_padding