fix(nodes): fix nsfw checker model download

This commit is contained in:
psychedelicious 2024-04-23 22:38:02 +10:00
parent eef6fcf286
commit 9c819f0fd8
2 changed files with 36 additions and 17 deletions

View File

@ -13,7 +13,6 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.util.logging import logging from invokeai.backend.util.logging import logging
from invokeai.version import __version__ from invokeai.version import __version__
@ -109,9 +108,7 @@ async def get_config() -> AppConfig:
upscaling_models.append(str(Path(model).stem)) upscaling_models.append(str(Path(model).stem))
upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models) upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models)
nsfw_methods = [] nsfw_methods = ["nsfw_checker"]
if SafetyChecker.safety_checker_available():
nsfw_methods.append("nsfw_checker")
watermarking_methods = ["invisible_watermark"] watermarking_methods = ["invisible_watermark"]

View File

@ -8,7 +8,7 @@ from pathlib import Path
import numpy as np import numpy as np
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from PIL import Image from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor from transformers import AutoFeatureExtractor
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
@ -16,6 +16,7 @@ from invokeai.app.services.config.config_default import get_config
from invokeai.backend.util.devices import TorchDevice from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.silence_warnings import SilenceWarnings from invokeai.backend.util.silence_warnings import SilenceWarnings
repo_id = "CompVis/stable-diffusion-safety-checker"
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker" CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
@ -24,30 +25,30 @@ class SafetyChecker:
Wrapper around SafetyChecker model. Wrapper around SafetyChecker model.
""" """
safety_checker = None
feature_extractor = None feature_extractor = None
tried_load: bool = False safety_checker = None
@classmethod @classmethod
def _load_safety_checker(cls): def _load_safety_checker(cls):
if cls.tried_load: if cls.safety_checker is not None and cls.feature_extractor is not None:
return return
try: try:
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(get_config().models_path / CHECKER_PATH) model_path = get_config().models_path / CHECKER_PATH
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(get_config().models_path / CHECKER_PATH) if model_path.exists():
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_path)
else:
model_path.mkdir(parents=True, exist_ok=True)
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
cls.feature_extractor.save_pretrained(model_path, safe_serialization=True)
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(repo_id)
cls.safety_checker.save_pretrained(model_path, safe_serialization=True)
except Exception as e: except Exception as e:
logger.warning(f"Could not load NSFW checker: {str(e)}") logger.warning(f"Could not load NSFW checker: {str(e)}")
cls.tried_load = True
@classmethod
def safety_checker_available(cls) -> bool:
return Path(get_config().models_path, CHECKER_PATH).exists()
@classmethod @classmethod
def has_nsfw_concept(cls, image: Image.Image) -> bool: def has_nsfw_concept(cls, image: Image.Image) -> bool:
if not cls.safety_checker_available() and cls.tried_load:
return False
cls._load_safety_checker() cls._load_safety_checker()
if cls.safety_checker is None or cls.feature_extractor is None: if cls.safety_checker is None or cls.feature_extractor is None:
return False return False
@ -60,3 +61,24 @@ class SafetyChecker:
with SilenceWarnings(): with SilenceWarnings():
checked_image, has_nsfw_concept = cls.safety_checker(images=x_image, clip_input=features.pixel_values) checked_image, has_nsfw_concept = cls.safety_checker(images=x_image, clip_input=features.pixel_values)
return has_nsfw_concept[0] return has_nsfw_concept[0]
@classmethod
def blur_if_nsfw(cls, image: Image.Image) -> Image.Image:
if cls.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = cls._get_caution_img()
# Center the caution image on the blurred image
x = (blurry_image.width - caution.width) // 2
y = (blurry_image.height - caution.height) // 2
blurry_image.paste(caution, (x, y), caution)
image = blurry_image
return image
@classmethod
def _get_caution_img(cls) -> Image.Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))