Merge branch 'main' into fix/ckpt_convert_scan

This commit is contained in:
blessedcoolant 2023-07-06 05:01:34 +12:00 committed by GitHub
commit 9e2d63ef97
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 46 additions and 10 deletions

View File

@ -9,6 +9,7 @@ from compel.prompt_parser import (Blend, Conjunction,
FlattenedPrompt, Fragment)
from pydantic import BaseModel, Field
from ...backend.model_management.models import ModelNotFoundException
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
@ -86,10 +87,10 @@ class CompelInvocation(BaseInvocation):
model_type=ModelType.TextualInversion,
).context.model
)
except Exception:
except ModelNotFoundException:
# print(e)
#import traceback
# print(traceback.format_exc())
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\

View File

@ -223,11 +223,11 @@ class MigrateTo3(object):
repo_id = 'openai/clip-vit-large-patch14'
self._migrate_pretrained(CLIPTokenizer,
repo_id= repo_id,
dest= target_dir / 'clip-vit-large-patch14' / 'tokenizer',
dest= target_dir / 'clip-vit-large-patch14',
**kwargs)
self._migrate_pretrained(CLIPTextModel,
repo_id = repo_id,
dest = target_dir / 'clip-vit-large-patch14' / 'text_encoder',
dest = target_dir / 'clip-vit-large-patch14',
**kwargs)
# sd-2

View File

@ -655,6 +655,9 @@ class TextualInversionModel:
else:
result.embedding = next(iter(state_dict.values()))
if len(result.embedding.shape) == 1:
result.embedding = result.embedding.unsqueeze(0)
if not isinstance(result.embedding, torch.Tensor):
raise ValueError(f"Invalid embeddings file: {file_path.name}")

View File

@ -249,7 +249,7 @@ from .model_cache import ModelCache, ModelLocker
from .models import (
BaseModelType, ModelType, SubModelType,
ModelError, SchedulerPredictionType, MODEL_CLASSES,
ModelConfigBase,
ModelConfigBase, ModelNotFoundException,
)
# We are only starting to number the config file with release 3.
@ -409,7 +409,7 @@ class ModelManager(object):
if model_key not in self.models:
self.scan_models_directory(base_model=base_model, model_type=model_type)
if model_key not in self.models:
raise Exception(f"Model not found - {model_key}")
raise ModelNotFoundException(f"Model not found - {model_key}")
model_config = self.models[model_key]
model_path = self.app_config.root_path / model_config.path
@ -421,7 +421,7 @@ class ModelManager(object):
else:
self.models.pop(model_key, None)
raise Exception(f"Model not found - {model_key}")
raise ModelNotFoundException(f"Model not found - {model_key}")
# vae/movq override
# TODO:

View File

@ -2,7 +2,7 @@ import inspect
from enum import Enum
from pydantic import BaseModel
from typing import Literal, get_origin
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
from .vae import VaeModel
from .lora import LoRAModel

View File

@ -15,6 +15,9 @@ from contextlib import suppress
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
class ModelNotFoundException(Exception):
pass
class BaseModelType(str, Enum):
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"

View File

@ -8,6 +8,7 @@ from .base import (
ModelType,
SubModelType,
classproperty,
ModelNotFoundException,
)
# TODO: naming
from ..lora import TextualInversionModel as TextualInversionModelRaw
@ -37,8 +38,15 @@ class TextualInversionModel(ModelBase):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
checkpoint_path = self.model_path
if os.path.isdir(checkpoint_path):
checkpoint_path = os.path.join(checkpoint_path, "learned_embeds.bin")
if not os.path.exists(checkpoint_path):
raise ModelNotFoundException()
model = TextualInversionModelRaw.from_checkpoint(
file_path=self.model_path,
file_path=checkpoint_path,
dtype=torch_dtype,
)

View File

@ -1,7 +1,28 @@
import { defineStyle, defineStyleConfig } from '@chakra-ui/react';
import { getInputOutlineStyles } from '../util/getInputOutlineStyles';
const invokeAI = defineStyle((props) => getInputOutlineStyles(props));
const invokeAI = defineStyle((props) => ({
...getInputOutlineStyles(props),
'::-webkit-scrollbar': {
display: 'initial',
},
'::-webkit-resizer': {
backgroundImage: `linear-gradient(135deg,
var(--invokeai-colors-base-50) 0%,
var(--invokeai-colors-base-50) 70%,
var(--invokeai-colors-base-200) 70%,
var(--invokeai-colors-base-200) 100%)`,
},
_dark: {
'::-webkit-resizer': {
backgroundImage: `linear-gradient(135deg,
var(--invokeai-colors-base-900) 0%,
var(--invokeai-colors-base-900) 70%,
var(--invokeai-colors-base-800) 70%,
var(--invokeai-colors-base-800) 100%)`,
},
},
}));
export const textareaTheme = defineStyleConfig({
variants: {