mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fix loading diffusers ti (#3661)
This commit is contained in:
commit
dd946790ec
@ -9,6 +9,7 @@ from compel.prompt_parser import (Blend, Conjunction,
|
||||
FlattenedPrompt, Fragment)
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ...backend.model_management.models import ModelNotFoundException
|
||||
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
||||
@ -86,10 +87,10 @@ class CompelInvocation(BaseInvocation):
|
||||
model_type=ModelType.TextualInversion,
|
||||
).context.model
|
||||
)
|
||||
except Exception:
|
||||
except ModelNotFoundException:
|
||||
# print(e)
|
||||
#import traceback
|
||||
# print(traceback.format_exc())
|
||||
#print(traceback.format_exc())
|
||||
print(f"Warn: trigger: \"{trigger}\" not found")
|
||||
|
||||
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
||||
|
@ -655,6 +655,9 @@ class TextualInversionModel:
|
||||
else:
|
||||
result.embedding = next(iter(state_dict.values()))
|
||||
|
||||
if len(result.embedding.shape) == 1:
|
||||
result.embedding = result.embedding.unsqueeze(0)
|
||||
|
||||
if not isinstance(result.embedding, torch.Tensor):
|
||||
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
||||
|
||||
|
@ -249,7 +249,7 @@ from .model_cache import ModelCache, ModelLocker
|
||||
from .models import (
|
||||
BaseModelType, ModelType, SubModelType,
|
||||
ModelError, SchedulerPredictionType, MODEL_CLASSES,
|
||||
ModelConfigBase,
|
||||
ModelConfigBase, ModelNotFoundException,
|
||||
)
|
||||
|
||||
# We are only starting to number the config file with release 3.
|
||||
@ -409,7 +409,7 @@ class ModelManager(object):
|
||||
if model_key not in self.models:
|
||||
self.scan_models_directory(base_model=base_model, model_type=model_type)
|
||||
if model_key not in self.models:
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||
|
||||
model_config = self.models[model_key]
|
||||
model_path = self.app_config.root_path / model_config.path
|
||||
@ -421,7 +421,7 @@ class ModelManager(object):
|
||||
|
||||
else:
|
||||
self.models.pop(model_key, None)
|
||||
raise Exception(f"Model not found - {model_key}")
|
||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||
|
||||
# vae/movq override
|
||||
# TODO:
|
||||
|
@ -2,7 +2,7 @@ import inspect
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel
|
||||
from typing import Literal, get_origin
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||
from .vae import VaeModel
|
||||
from .lora import LoRAModel
|
||||
|
@ -15,6 +15,9 @@ from contextlib import suppress
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
|
||||
|
||||
class ModelNotFoundException(Exception):
|
||||
pass
|
||||
|
||||
class BaseModelType(str, Enum):
|
||||
StableDiffusion1 = "sd-1"
|
||||
StableDiffusion2 = "sd-2"
|
||||
|
@ -8,6 +8,7 @@ from .base import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
classproperty,
|
||||
ModelNotFoundException,
|
||||
)
|
||||
# TODO: naming
|
||||
from ..lora import TextualInversionModel as TextualInversionModelRaw
|
||||
@ -37,8 +38,15 @@ class TextualInversionModel(ModelBase):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in textual inversion")
|
||||
|
||||
checkpoint_path = self.model_path
|
||||
if os.path.isdir(checkpoint_path):
|
||||
checkpoint_path = os.path.join(checkpoint_path, "learned_embeds.bin")
|
||||
|
||||
if not os.path.exists(checkpoint_path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
model = TextualInversionModelRaw.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
file_path=checkpoint_path,
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user