mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into lstein-improve-ti-frontend
This commit is contained in:
commit
9e3c947cd3
@ -45,6 +45,7 @@ def main():
|
||||
Globals.try_patchmatch = args.patchmatch
|
||||
Globals.always_use_cpu = args.always_use_cpu
|
||||
Globals.internet_available = args.internet_available and check_internet()
|
||||
Globals.disable_xformers = not args.xformers
|
||||
print(f'>> Internet connectivity is {Globals.internet_available}')
|
||||
|
||||
if not args.conf:
|
||||
@ -124,7 +125,7 @@ def main():
|
||||
# preload the model
|
||||
try:
|
||||
gen.load_model()
|
||||
except KeyError as e:
|
||||
except KeyError:
|
||||
pass
|
||||
except Exception as e:
|
||||
report_model_error(opt, e)
|
||||
@ -731,11 +732,6 @@ def del_config(model_name:str, gen, opt, completer):
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
|
||||
def edit_model(model_name:str, gen, opt, completer):
|
||||
current_model = gen.model_name
|
||||
# if model_name == current_model:
|
||||
# print("** Can't edit the active model. !switch to another model first. **")
|
||||
# return
|
||||
|
||||
manager = gen.model_manager
|
||||
if not (info := manager.model_info(model_name)):
|
||||
print(f'** Unknown model {model_name}')
|
||||
@ -887,7 +883,7 @@ def prepare_image_metadata(
|
||||
try:
|
||||
filename = opt.fnformat.format(**wildcards)
|
||||
except KeyError as e:
|
||||
print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use \'{{prefix}}.{{seed}}.png\' instead')
|
||||
print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use {{prefix}}.{{seed}}.png\' instead')
|
||||
filename = f'{prefix}.{seed}.png'
|
||||
except IndexError:
|
||||
print(f'** The filename format is broken or complete. Will use \'{{prefix}}.{{seed}}.png\' instead')
|
||||
|
@ -482,6 +482,12 @@ class Args(object):
|
||||
action='store_true',
|
||||
help='Force free gpu memory before final decoding',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--xformers',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
default=True,
|
||||
help='Enable/disable xformers support (default enabled if installed)',
|
||||
)
|
||||
model_group.add_argument(
|
||||
"--always_use_cpu",
|
||||
dest="always_use_cpu",
|
||||
|
@ -39,6 +39,7 @@ from diffusers.utils.outputs import BaseOutput
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from ldm.invoke.globals import Globals
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent, ThresholdSettings
|
||||
from ldm.modules.textual_inversion_manager import TextualInversionManager
|
||||
|
||||
@ -306,7 +307,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
textual_inversion_manager=self.textual_inversion_manager
|
||||
)
|
||||
|
||||
if is_xformers_available():
|
||||
if is_xformers_available() and not Globals.disable_xformers:
|
||||
self.enable_xformers_memory_efficient_attention()
|
||||
|
||||
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
||||
|
@ -3,6 +3,7 @@ ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
||||
'''
|
||||
|
||||
import math
|
||||
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
@ -66,6 +67,8 @@ class Txt2Img2Img(Generator):
|
||||
|
||||
second_pass_noise = self.get_noise_like(resized_latents)
|
||||
|
||||
verbosity = get_verbosity()
|
||||
set_verbosity_error()
|
||||
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
|
||||
resized_latents,
|
||||
num_inference_steps=steps,
|
||||
@ -73,6 +76,7 @@ class Txt2Img2Img(Generator):
|
||||
strength=strength,
|
||||
noise=second_pass_noise,
|
||||
callback=step_callback)
|
||||
set_verbosity(verbosity)
|
||||
|
||||
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
||||
|
||||
|
@ -43,6 +43,9 @@ Globals.always_use_cpu = False
|
||||
# The CLI will test connectivity at startup time.
|
||||
Globals.internet_available = True
|
||||
|
||||
# Whether to disable xformers
|
||||
Globals.disable_xformers = False
|
||||
|
||||
# whether we are forcing full precision
|
||||
Globals.full_precision = False
|
||||
|
||||
|
@ -25,6 +25,7 @@ import torch
|
||||
import safetensors
|
||||
import transformers
|
||||
from diffusers import AutoencoderKL, logging as dlogging
|
||||
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
from picklescan.scanner import scan_file_path
|
||||
@ -827,11 +828,11 @@ class ModelManager(object):
|
||||
return model
|
||||
|
||||
# diffusers really really doesn't like us moving a float16 model onto CPU
|
||||
import logging
|
||||
logging.getLogger('diffusers.pipeline_utils').setLevel(logging.CRITICAL)
|
||||
verbosity = get_verbosity()
|
||||
set_verbosity_error()
|
||||
model.cond_stage_model.device = 'cpu'
|
||||
model.to('cpu')
|
||||
logging.getLogger('pipeline_utils').setLevel(logging.INFO)
|
||||
set_verbosity(verbosity)
|
||||
|
||||
for submodel in ('first_stage_model','cond_stage_model','model'):
|
||||
try:
|
||||
|
@ -291,7 +291,7 @@ for more information.
|
||||
|
||||
Visit https://huggingface.co/settings/tokens to generate a token. (Sign up for an account if needed).
|
||||
|
||||
Paste the token below using Ctrl-V on macOS/Linux, or Ctrl-Shift-V or right-click on Windows.
|
||||
Paste the token below using Ctrl-V on macOS/Linux, or Ctrl-Shift-V or right-click on Windows.
|
||||
Alternatively press 'Enter' to skip this step and continue.
|
||||
You may re-run the configuration script again in the future if you do not wish to set the token right now.
|
||||
''')
|
||||
@ -676,7 +676,8 @@ def download_weights(opt:dict) -> Union[str, None]:
|
||||
return
|
||||
|
||||
access_token = authenticate()
|
||||
HfFolder.save_token(access_token)
|
||||
if access_token is not None:
|
||||
HfFolder.save_token(access_token)
|
||||
|
||||
print('\n** DOWNLOADING WEIGHTS **')
|
||||
successfully_downloaded = download_weight_datasets(models, access_token, precision=precision)
|
||||
|
@ -121,6 +121,14 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
value=self.precisions.index(saved_args.get('mixed_precision','fp16')),
|
||||
max_height=4,
|
||||
)
|
||||
self.num_train_epochs = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name='Number of training epochs:',
|
||||
out_of=1000,
|
||||
step=50,
|
||||
lowest=1,
|
||||
value=saved_args.get('num_train_epochs',100)
|
||||
)
|
||||
self.max_train_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name='Max Training Steps:',
|
||||
@ -137,6 +145,22 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
lowest=1,
|
||||
value=saved_args.get('train_batch_size',8),
|
||||
)
|
||||
self.gradient_accumulation_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name='Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):',
|
||||
out_of=10,
|
||||
step=1,
|
||||
lowest=1,
|
||||
value=saved_args.get('gradient_accumulation_steps',4)
|
||||
)
|
||||
self.lr_warmup_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name='Warmup Steps:',
|
||||
out_of=100,
|
||||
step=1,
|
||||
lowest=0,
|
||||
value=saved_args.get('lr_warmup_steps',0),
|
||||
)
|
||||
self.learning_rate = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Learning Rate:",
|
||||
@ -160,22 +184,6 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
scroll_exit = True,
|
||||
value=self.lr_schedulers.index(saved_args.get('lr_scheduler','constant')),
|
||||
)
|
||||
self.gradient_accumulation_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name='Gradient Accumulation Steps:',
|
||||
out_of=10,
|
||||
step=1,
|
||||
lowest=1,
|
||||
value=saved_args.get('gradient_accumulation_steps',4)
|
||||
)
|
||||
self.lr_warmup_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name='Warmup Steps:',
|
||||
out_of=100,
|
||||
step=1,
|
||||
lowest=0,
|
||||
value=saved_args.get('lr_warmup_steps',0),
|
||||
)
|
||||
|
||||
def initializer_changed(self):
|
||||
placeholder = self.placeholder_token.value
|
||||
@ -242,7 +250,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
|
||||
# all the integers
|
||||
for attr in ('train_batch_size','gradient_accumulation_steps',
|
||||
'max_train_steps','lr_warmup_steps'):
|
||||
'num_train_epochs','max_train_steps','lr_warmup_steps'):
|
||||
args[attr] = int(getattr(self,attr).value)
|
||||
|
||||
# the floats (just one)
|
||||
@ -332,6 +340,7 @@ if __name__ == '__main__':
|
||||
save_args(args)
|
||||
|
||||
try:
|
||||
print(f'DEBUG: args = {args}')
|
||||
do_textual_inversion_training(**args)
|
||||
copy_to_embeddings_folder(args)
|
||||
except Exception as e:
|
||||
|
Loading…
Reference in New Issue
Block a user