Handle inpaint models

This commit is contained in:
Sergey Borisov 2024-07-21 20:45:55 +03:00
parent f9c61f1b6c
commit 9e7b470189
2 changed files with 73 additions and 0 deletions

View File

@ -58,6 +58,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0 from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
@ -790,6 +791,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
ext_manager.add_extension(PreviewExt(step_callback)) ext_manager.add_extension(PreviewExt(step_callback))
### inpaint
# TODO: add inpainting on normal model
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
if unet_config.variant == "inpaint": # ModelVariantType.Inpaint:
ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask))
# ext: t2i/ip adapter # ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx) ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)

View File

@ -0,0 +1,66 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintModelExt(ExtensionBase):
def __init__(
self,
mask: Optional[torch.Tensor],
masked_latents: Optional[torch.Tensor],
is_gradient_mask: bool,
):
super().__init__()
self.mask = mask
self.masked_latents = masked_latents
self.is_gradient_mask = is_gradient_mask
@staticmethod
def _is_inpaint_model(unet: UNet2DConditionModel):
return unet.conv_in.in_channels == 9
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_inpaint_model(ctx.unet):
raise Exception("InpaintModelExt should be used only on inpaint model!")
if self.mask is None:
self.mask = torch.ones_like(ctx.latents[:1, :1])
self.mask = self.mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
if self.masked_latents is None:
self.masked_latents = torch.zeros_like(ctx.latents[:1])
self.masked_latents = self.masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# TODO: any ideas about order value?
# do last so that other extensions works with normal latents
@callback(ExtensionCallbackType.PRE_UNET, order=1000)
def append_inpaint_layers(self, ctx: DenoiseContext):
batch_size = ctx.unet_kwargs.sample.shape[0]
b_mask = torch.cat([self.mask] * batch_size)
b_masked_latents = torch.cat([self.masked_latents] * batch_size)
ctx.unet_kwargs.sample = torch.cat(
[ctx.unet_kwargs.sample, b_mask, b_masked_latents],
dim=1,
)
# TODO: should here be used order?
# restore unmasked part as inpaint model can change unmasked part slightly
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self.mask is None:
return
if self.is_gradient_mask:
ctx.latents = torch.where(self.mask > 0, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self.mask)