mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into lstein/new-model-manager
This commit is contained in:
commit
a273bdbdc1
@ -1,14 +1,12 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import os
|
||||
from argparse import Namespace
|
||||
|
||||
from invokeai.app.services.metadata import PngMetadataService, MetadataServiceBase
|
||||
import invokeai.backend.util.logging as logger
|
||||
from typing import types
|
||||
|
||||
from ..services.default_graphs import create_system_graphs
|
||||
|
||||
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
|
||||
from ...backend import Globals
|
||||
from ..services.model_manager_initializer import get_model_manager
|
||||
from ..services.restoration_services import RestorationServices
|
||||
@ -19,6 +17,7 @@ from ..services.invocation_services import InvocationServices
|
||||
from ..services.invoker import Invoker
|
||||
from ..services.processor import DefaultInvocationProcessor
|
||||
from ..services.sqlite import SqliteItemStorage
|
||||
from ..services.metadata import PngMetadataService
|
||||
from .events import FastAPIEventService
|
||||
|
||||
|
||||
@ -44,15 +43,16 @@ class ApiDependencies:
|
||||
invoker: Invoker = None
|
||||
|
||||
@staticmethod
|
||||
def initialize(config, event_handler_id: int):
|
||||
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
|
||||
Globals.try_patchmatch = config.patchmatch
|
||||
Globals.always_use_cpu = config.always_use_cpu
|
||||
Globals.internet_available = config.internet_available and check_internet()
|
||||
Globals.disable_xformers = not config.xformers
|
||||
Globals.ckpt_convert = config.ckpt_convert
|
||||
|
||||
# TODO: Use a logger
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
# TO DO: Use the config to select the logger rather than use the default
|
||||
# invokeai logging module
|
||||
logger.info(f"Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
|
||||
@ -70,8 +70,9 @@ class ApiDependencies:
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
services = InvocationServices(
|
||||
model_manager=get_model_manager(config),
|
||||
model_manager=get_model_manager(config,logger),
|
||||
events=events,
|
||||
logger=logger,
|
||||
latents=latents,
|
||||
images=images,
|
||||
metadata=metadata,
|
||||
@ -83,7 +84,7 @@ class ApiDependencies:
|
||||
filename=db_location, table_name="graph_executions"
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config),
|
||||
restoration=RestorationServices(config,logger),
|
||||
)
|
||||
|
||||
create_system_graphs(services.graph_library)
|
||||
|
@ -8,10 +8,6 @@ from fastapi.routing import APIRouter, HTTPException
|
||||
from pydantic import BaseModel, Field, parse_obj_as
|
||||
from pathlib import Path
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.backend.globals import Globals, global_converted_ckpts_dir
|
||||
from invokeai.backend.args import Args
|
||||
|
||||
|
||||
|
||||
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
||||
|
||||
@ -112,19 +108,20 @@ async def update_model(
|
||||
async def delete_model(model_name: str) -> None:
|
||||
"""Delete Model"""
|
||||
model_names = ApiDependencies.invoker.services.model_manager.model_names()
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
model_exists = model_name in model_names
|
||||
|
||||
# check if model exists
|
||||
print(f">> Checking for model {model_name}...")
|
||||
logger.info(f"Checking for model {model_name}...")
|
||||
|
||||
if model_exists:
|
||||
print(f">> Deleting Model: {model_name}")
|
||||
logger.info(f"Deleting Model: {model_name}")
|
||||
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
|
||||
print(f">> Model Deleted: {model_name}")
|
||||
logger.info(f"Model Deleted: {model_name}")
|
||||
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
|
||||
|
||||
else:
|
||||
print(f">> Model not found")
|
||||
logger.error(f"Model not found")
|
||||
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
||||
|
||||
|
||||
@ -248,4 +245,4 @@ async def delete_model(model_name: str) -> None:
|
||||
# )
|
||||
# print(f">> Models Merged: {models_to_merge}")
|
||||
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
||||
# except Exception as e:
|
||||
# except Exception as e:
|
||||
|
@ -3,6 +3,7 @@ import asyncio
|
||||
from inspect import signature
|
||||
|
||||
import uvicorn
|
||||
import invokeai.backend.util.logging as logger
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
||||
@ -16,7 +17,6 @@ from ..backend import Args
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import images, sessions, models
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations import *
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
|
||||
# Create the app
|
||||
@ -56,7 +56,7 @@ async def startup_event():
|
||||
config.parse_args()
|
||||
|
||||
ApiDependencies.initialize(
|
||||
config=config, event_handler_id=event_handler_id
|
||||
config=config, event_handler_id=event_handler_id, logger=logger
|
||||
)
|
||||
|
||||
|
||||
|
@ -2,14 +2,15 @@
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
import argparse
|
||||
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
|
||||
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
|
||||
from pydantic import BaseModel, Field
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..invocations.baseinvocation import BaseInvocation
|
||||
from ..invocations.image import ImageField
|
||||
from ..services.graph import GraphExecutionState, LibraryGraph, GraphInvocation, Edge
|
||||
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
|
||||
from ..services.invoker import Invoker
|
||||
|
||||
|
||||
@ -229,7 +230,7 @@ class HistoryCommand(BaseCommand):
|
||||
for i in range(min(self.count, len(history))):
|
||||
entry_id = history[-1 - i]
|
||||
entry = context.get_session().graph.get_node(entry_id)
|
||||
print(f"{entry_id}: {get_invocation_command(entry)}")
|
||||
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
|
||||
|
||||
|
||||
class SetDefaultCommand(BaseCommand):
|
||||
|
@ -10,6 +10,7 @@ import shlex
|
||||
from pathlib import Path
|
||||
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...backend import ModelManager, Globals
|
||||
from ..invocations.baseinvocation import BaseInvocation
|
||||
from .commands import BaseCommand
|
||||
@ -160,8 +161,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
|
||||
pass
|
||||
except OSError: # file likely corrupted
|
||||
newname = f"{histfile}.old"
|
||||
print(
|
||||
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
|
||||
logger.error(
|
||||
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
|
||||
)
|
||||
histfile.replace(Path(newname))
|
||||
atexit.register(readline.write_history_file, histfile)
|
||||
|
@ -13,21 +13,20 @@ from typing import (
|
||||
from pydantic import BaseModel
|
||||
from pydantic.fields import Field
|
||||
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.metadata import PngMetadataService
|
||||
|
||||
from .services.default_graphs import create_system_graphs
|
||||
|
||||
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
|
||||
from ..backend import Args
|
||||
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, get_graph_execution_history
|
||||
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers
|
||||
from .cli.completer import set_autocompleter
|
||||
from .invocations import *
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
from .services.events import EventServiceBase
|
||||
from .services.model_manager_initializer import get_model_manager
|
||||
from .services.restoration_services import RestorationServices
|
||||
from .services.graph import Edge, EdgeConnection, ExposedNodeInput, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
|
||||
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
|
||||
from .services.default_graphs import default_text_to_image_graph_id
|
||||
from .services.image_storage import DiskImageStorage
|
||||
from .services.invocation_queue import MemoryInvocationQueue
|
||||
@ -182,7 +181,7 @@ def invoke_all(context: CliContext):
|
||||
# Print any errors
|
||||
if context.session.has_error():
|
||||
for n in context.session.errors:
|
||||
print(
|
||||
context.invoker.services.logger.error(
|
||||
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
|
||||
)
|
||||
|
||||
@ -192,13 +191,13 @@ def invoke_all(context: CliContext):
|
||||
def invoke_cli():
|
||||
config = Args()
|
||||
config.parse_args()
|
||||
model_manager = get_model_manager(config)
|
||||
model_manager = get_model_manager(config,logger=logger)
|
||||
|
||||
# This initializes the autocompleter and returns it.
|
||||
# Currently nothing is done with the returned Completer
|
||||
# object, but the object can be used to change autocompletion
|
||||
# behavior on the fly, if desired.
|
||||
completer = set_autocompleter(model_manager)
|
||||
set_autocompleter(model_manager)
|
||||
|
||||
events = EventServiceBase()
|
||||
|
||||
@ -225,7 +224,8 @@ def invoke_cli():
|
||||
filename=db_location, table_name="graph_executions"
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config),
|
||||
restoration=RestorationServices(config,logger=logger),
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
system_graphs = create_system_graphs(services.graph_library)
|
||||
@ -365,12 +365,12 @@ def invoke_cli():
|
||||
invoke_all(context)
|
||||
|
||||
except InvalidArgs:
|
||||
print('Invalid command, use "help" to list commands')
|
||||
invoker.services.logger.warning('Invalid command, use "help" to list commands')
|
||||
continue
|
||||
|
||||
except SessionError:
|
||||
# Start a new session
|
||||
print("Session error: creating a new session")
|
||||
invoker.services.logger.warning("Session error: creating a new session")
|
||||
context.reset()
|
||||
|
||||
except ExitCli:
|
||||
|
@ -3,12 +3,11 @@ from invokeai.backend.model_management.model_manager import ModelManager
|
||||
|
||||
def choose_model(model_manager: ModelManager, model_name: str):
|
||||
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
|
||||
logger = model_manager.logger
|
||||
if model_manager.valid_model(model_name):
|
||||
model = model_manager.get_model(model_name)
|
||||
else:
|
||||
model = model_manager.get_model()
|
||||
print(
|
||||
f"* Warning: '{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead."
|
||||
)
|
||||
logger.warning(f"{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead.")
|
||||
|
||||
return model
|
||||
|
@ -1,4 +1,6 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
|
||||
from typing import types
|
||||
from invokeai.app.services.metadata import MetadataServiceBase
|
||||
from invokeai.backend import ModelManager
|
||||
|
||||
@ -29,6 +31,7 @@ class InvocationServices:
|
||||
self,
|
||||
model_manager: ModelManager,
|
||||
events: EventServiceBase,
|
||||
logger: types.ModuleType,
|
||||
latents: LatentsStorageBase,
|
||||
images: ImageStorageBase,
|
||||
metadata: MetadataServiceBase,
|
||||
@ -40,6 +43,7 @@ class InvocationServices:
|
||||
):
|
||||
self.model_manager = model_manager
|
||||
self.events = events
|
||||
self.logger = logger
|
||||
self.latents = latents
|
||||
self.images = images
|
||||
self.metadata = metadata
|
||||
|
@ -5,6 +5,7 @@ from argparse import Namespace
|
||||
from invokeai.backend import Args
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
from typing import types
|
||||
|
||||
import invokeai.version
|
||||
from ...backend import ModelManager
|
||||
@ -12,16 +13,16 @@ from ...backend.util import choose_precision, choose_torch_device
|
||||
from ...backend import Globals
|
||||
|
||||
# TODO: Replace with an abstract class base ModelManagerBase
|
||||
def get_model_manager(config: Args) -> ModelManager:
|
||||
def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
|
||||
if not config.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
if not os.path.exists(config_file):
|
||||
report_model_error(
|
||||
config, FileNotFoundError(f"The file {config_file} could not be found.")
|
||||
config, FileNotFoundError(f"The file {config_file} could not be found."), logger
|
||||
)
|
||||
|
||||
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
@ -62,11 +63,12 @@ def get_model_manager(config: Args) -> ModelManager:
|
||||
device_type=device,
|
||||
max_loaded_models=config.max_loaded_models,
|
||||
embedding_path = Path(embedding_path),
|
||||
logger = logger,
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(config, e)
|
||||
report_model_error(config, e, logger)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
logger.error(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
# try to autoconvert new models
|
||||
@ -76,18 +78,18 @@ def get_model_manager(config: Args) -> ModelManager:
|
||||
conf_path=config.conf,
|
||||
weights_directory=path,
|
||||
)
|
||||
|
||||
logger.info('Model manager initialized')
|
||||
return model_manager
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception):
|
||||
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
print(
|
||||
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
|
||||
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
logger.error(
|
||||
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
)
|
||||
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||||
if yes_to_all:
|
||||
print(
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
logger.warning(
|
||||
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
response = input(
|
||||
@ -96,13 +98,12 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
if response.startswith(("n", "N")):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
logger.info("invokeai-configure is launching....\n")
|
||||
|
||||
# Match arguments that were set on the CLI
|
||||
# only the arguments accepted by the configuration script are parsed
|
||||
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
||||
config = ["--config", opt.conf] if opt.conf is not None else []
|
||||
previous_config = sys.argv
|
||||
sys.argv = ["invokeai-configure"]
|
||||
sys.argv.extend(root_dir)
|
||||
sys.argv.extend(config.to_dict())
|
||||
|
@ -1,6 +1,7 @@
|
||||
import sys
|
||||
import traceback
|
||||
import torch
|
||||
from typing import types
|
||||
from ...backend.restoration import Restoration
|
||||
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
|
||||
|
||||
@ -10,7 +11,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
|
||||
class RestorationServices:
|
||||
'''Face restoration and upscaling'''
|
||||
|
||||
def __init__(self,args):
|
||||
def __init__(self,args,logger:types.ModuleType):
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
if args.restore or args.esrgan:
|
||||
@ -20,20 +21,22 @@ class RestorationServices:
|
||||
args.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
logger.info("Face restoration disabled")
|
||||
if args.esrgan:
|
||||
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
logger.info("Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
logger.info("Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
self.device = torch.device(choose_torch_device())
|
||||
self.gfpgan = gfpgan
|
||||
self.codeformer = codeformer
|
||||
self.esrgan = esrgan
|
||||
self.logger = logger
|
||||
self.logger.info('Face restoration initialized')
|
||||
|
||||
# note that this one method does gfpgan and codepath reconstruction, as well as
|
||||
# esrgan upscaling
|
||||
@ -58,15 +61,15 @@ class RestorationServices:
|
||||
if self.gfpgan is not None or self.codeformer is not None:
|
||||
if facetool == "gfpgan":
|
||||
if self.gfpgan is None:
|
||||
print(
|
||||
">> GFPGAN not found. Face restoration is disabled."
|
||||
self.logger.info(
|
||||
"GFPGAN not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
image = self.gfpgan.process(image, strength, seed)
|
||||
if facetool == "codeformer":
|
||||
if self.codeformer is None:
|
||||
print(
|
||||
">> CodeFormer not found. Face restoration is disabled."
|
||||
self.logger.info(
|
||||
"CodeFormer not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
cf_device = (
|
||||
@ -80,7 +83,7 @@ class RestorationServices:
|
||||
fidelity=codeformer_fidelity,
|
||||
)
|
||||
else:
|
||||
print(">> Face Restoration is disabled.")
|
||||
self.logger.info("Face Restoration is disabled.")
|
||||
if upscale is not None:
|
||||
if self.esrgan is not None:
|
||||
if len(upscale) < 2:
|
||||
@ -93,10 +96,10 @@ class RestorationServices:
|
||||
denoise_str=upscale_denoise_str,
|
||||
)
|
||||
else:
|
||||
print(">> ESRGAN is disabled. Image not upscaled.")
|
||||
self.logger.info("ESRGAN is disabled. Image not upscaled.")
|
||||
except Exception as e:
|
||||
print(
|
||||
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
self.logger.info(
|
||||
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
)
|
||||
|
||||
if image_callback is not None:
|
||||
|
@ -96,6 +96,7 @@ from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import invokeai.version
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.image_util import retrieve_metadata
|
||||
|
||||
from .globals import Globals
|
||||
@ -189,7 +190,7 @@ class Args(object):
|
||||
print(f"{APP_NAME} {APP_VERSION}")
|
||||
sys.exit(0)
|
||||
|
||||
print("* Initializing, be patient...")
|
||||
logger.info("Initializing, be patient...")
|
||||
Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root))
|
||||
Globals.try_patchmatch = switches.patchmatch
|
||||
|
||||
@ -197,14 +198,13 @@ class Args(object):
|
||||
initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile))
|
||||
legacyinit = os.path.expanduser("~/.invokeai")
|
||||
if os.path.exists(initfile):
|
||||
print(
|
||||
f">> Initialization file {initfile} found. Loading...",
|
||||
file=sys.stderr,
|
||||
logger.info(
|
||||
f"Initialization file {initfile} found. Loading...",
|
||||
)
|
||||
sysargs.insert(0, f"@{initfile}")
|
||||
elif os.path.exists(legacyinit):
|
||||
print(
|
||||
f">> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
|
||||
logger.warning(
|
||||
f"Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
|
||||
)
|
||||
sysargs.insert(0, f"@{legacyinit}")
|
||||
Globals.log_tokenization = self._arg_parser.parse_args(
|
||||
@ -214,7 +214,7 @@ class Args(object):
|
||||
self._arg_switches = self._arg_parser.parse_args(sysargs)
|
||||
return self._arg_switches
|
||||
except Exception as e:
|
||||
print(f"An exception has occurred: {e}")
|
||||
logger.error(f"An exception has occurred: {e}")
|
||||
return None
|
||||
|
||||
def parse_cmd(self, cmd_string):
|
||||
@ -1154,7 +1154,7 @@ class Args(object):
|
||||
|
||||
|
||||
def format_metadata(**kwargs):
|
||||
print("format_metadata() is deprecated. Please use metadata_dumps()")
|
||||
logger.warning("format_metadata() is deprecated. Please use metadata_dumps()")
|
||||
return metadata_dumps(kwargs)
|
||||
|
||||
|
||||
@ -1326,7 +1326,7 @@ def metadata_loads(metadata) -> list:
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
print(">> could not read metadata", file=sys.stderr)
|
||||
logger.error("Could not read metadata")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
return results
|
||||
|
||||
|
@ -27,6 +27,7 @@ from diffusers.utils.import_utils import is_xformers_available
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .args import metadata_from_png
|
||||
from .generator import infill_methods
|
||||
from .globals import Globals, global_cache_dir
|
||||
@ -195,12 +196,12 @@ class Generate:
|
||||
# device to Generate(). However the device was then ignored, so
|
||||
# it wasn't actually doing anything. This logic could be reinstated.
|
||||
self.device = torch.device(choose_torch_device())
|
||||
print(f">> Using device_type {self.device.type}")
|
||||
logger.info(f"Using device_type {self.device.type}")
|
||||
if full_precision:
|
||||
if self.precision != "auto":
|
||||
raise ValueError("Remove --full_precision / -F if using --precision")
|
||||
print("Please remove deprecated --full_precision / -F")
|
||||
print("If auto config does not work you can use --precision=float32")
|
||||
logger.warning("Please remove deprecated --full_precision / -F")
|
||||
logger.warning("If auto config does not work you can use --precision=float32")
|
||||
self.precision = "float32"
|
||||
if self.precision == "auto":
|
||||
self.precision = choose_precision(self.device)
|
||||
@ -208,13 +209,13 @@ class Generate:
|
||||
|
||||
if is_xformers_available():
|
||||
if torch.cuda.is_available() and not Globals.disable_xformers:
|
||||
print(">> xformers memory-efficient attention is available and enabled")
|
||||
logger.info("xformers memory-efficient attention is available and enabled")
|
||||
else:
|
||||
print(
|
||||
">> xformers memory-efficient attention is available but disabled"
|
||||
logger.info(
|
||||
"xformers memory-efficient attention is available but disabled"
|
||||
)
|
||||
else:
|
||||
print(">> xformers not installed")
|
||||
logger.info("xformers not installed")
|
||||
|
||||
# model caching system for fast switching
|
||||
self.model_manager = ModelManager(
|
||||
@ -229,8 +230,8 @@ class Generate:
|
||||
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
|
||||
model = model or fallback
|
||||
if not self.model_manager.valid_model(model):
|
||||
print(
|
||||
f'** "{model}" is not a known model name; falling back to {fallback}.'
|
||||
logger.warning(
|
||||
f'"{model}" is not a known model name; falling back to {fallback}.'
|
||||
)
|
||||
model = None
|
||||
self.model_name = model or fallback
|
||||
@ -246,10 +247,10 @@ class Generate:
|
||||
|
||||
# load safety checker if requested
|
||||
if safety_checker:
|
||||
print(">> Initializing NSFW checker")
|
||||
logger.info("Initializing NSFW checker")
|
||||
self.safety_checker = SafetyChecker(self.device)
|
||||
else:
|
||||
print(">> NSFW checker is disabled")
|
||||
logger.info("NSFW checker is disabled")
|
||||
|
||||
def prompt2png(self, prompt, outdir, **kwargs):
|
||||
"""
|
||||
@ -567,7 +568,7 @@ class Generate:
|
||||
self.clear_cuda_cache()
|
||||
|
||||
if catch_interrupts:
|
||||
print("**Interrupted** Partial results will be returned.")
|
||||
logger.warning("Interrupted** Partial results will be returned.")
|
||||
else:
|
||||
raise KeyboardInterrupt
|
||||
except RuntimeError:
|
||||
@ -575,11 +576,11 @@ class Generate:
|
||||
self.clear_cuda_cache()
|
||||
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> Could not generate image.")
|
||||
logger.info("Could not generate image.")
|
||||
|
||||
toc = time.time()
|
||||
print("\n>> Usage stats:")
|
||||
print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic))
|
||||
logger.info("Usage stats:")
|
||||
logger.info(f"{len(results)} image(s) generated in "+"%4.2fs" % (toc - tic))
|
||||
self.print_cuda_stats()
|
||||
return results
|
||||
|
||||
@ -609,16 +610,16 @@ class Generate:
|
||||
def print_cuda_stats(self):
|
||||
if self._has_cuda():
|
||||
self.gather_cuda_stats()
|
||||
print(
|
||||
">> Max VRAM used for this generation:",
|
||||
"%4.2fG." % (self.max_memory_allocated / 1e9),
|
||||
"Current VRAM utilization:",
|
||||
"%4.2fG" % (self.memory_allocated / 1e9),
|
||||
logger.info(
|
||||
"Max VRAM used for this generation: "+
|
||||
"%4.2fG. " % (self.max_memory_allocated / 1e9)+
|
||||
"Current VRAM utilization: "+
|
||||
"%4.2fG" % (self.memory_allocated / 1e9)
|
||||
)
|
||||
|
||||
print(
|
||||
">> Max VRAM used since script start: ",
|
||||
"%4.2fG" % (self.session_peakmem / 1e9),
|
||||
logger.info(
|
||||
"Max VRAM used since script start: " +
|
||||
"%4.2fG" % (self.session_peakmem / 1e9)
|
||||
)
|
||||
|
||||
# this needs to be generalized to all sorts of postprocessors, which should be wrapped
|
||||
@ -647,7 +648,7 @@ class Generate:
|
||||
seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
|
||||
prompt = opt.prompt or args.prompt or ""
|
||||
print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}')
|
||||
logger.info(f'using seed {seed} and prompt "{prompt}" for {image_path}')
|
||||
|
||||
# try to reuse the same filename prefix as the original file.
|
||||
# we take everything up to the first period
|
||||
@ -696,8 +697,8 @@ class Generate:
|
||||
try:
|
||||
extend_instructions[direction] = int(pixels)
|
||||
except ValueError:
|
||||
print(
|
||||
'** invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
|
||||
logger.warning(
|
||||
'invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
|
||||
)
|
||||
|
||||
opt.seed = seed
|
||||
@ -720,8 +721,8 @@ class Generate:
|
||||
# fetch the metadata from the image
|
||||
generator = self.select_generator(embiggen=True)
|
||||
opt.strength = opt.embiggen_strength or 0.40
|
||||
print(
|
||||
f">> Setting img2img strength to {opt.strength} for happy embiggening"
|
||||
logger.info(
|
||||
f"Setting img2img strength to {opt.strength} for happy embiggening"
|
||||
)
|
||||
generator.generate(
|
||||
prompt,
|
||||
@ -748,12 +749,12 @@ class Generate:
|
||||
return restorer.process(opt, args, image_callback=callback, prefix=prefix)
|
||||
|
||||
elif tool is None:
|
||||
print(
|
||||
"* please provide at least one postprocessing option, such as -G or -U"
|
||||
logger.warning(
|
||||
"please provide at least one postprocessing option, such as -G or -U"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
print(f"* postprocessing tool {tool} is not yet supported")
|
||||
logger.warning(f"postprocessing tool {tool} is not yet supported")
|
||||
return None
|
||||
|
||||
def select_generator(
|
||||
@ -797,8 +798,8 @@ class Generate:
|
||||
image = self._load_img(img)
|
||||
|
||||
if image.width < self.width and image.height < self.height:
|
||||
print(
|
||||
f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
|
||||
logger.warning(
|
||||
f"img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
|
||||
)
|
||||
|
||||
# if image has a transparent area and no mask was provided, then try to generate mask
|
||||
@ -809,8 +810,8 @@ class Generate:
|
||||
if (image.width * image.height) > (
|
||||
self.width * self.height
|
||||
) and self.size_matters:
|
||||
print(
|
||||
">> This input is larger than your defaults. If you run out of memory, please use a smaller image."
|
||||
logger.info(
|
||||
"This input is larger than your defaults. If you run out of memory, please use a smaller image."
|
||||
)
|
||||
self.size_matters = False
|
||||
|
||||
@ -891,11 +892,11 @@ class Generate:
|
||||
try:
|
||||
model_data = cache.get_model(model_name)
|
||||
except Exception as e:
|
||||
print(f"** model {model_name} could not be loaded: {str(e)}")
|
||||
logger.warning(f"model {model_name} could not be loaded: {str(e)}")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
if previous_model_name is None:
|
||||
raise e
|
||||
print("** trying to reload previous model")
|
||||
logger.warning("trying to reload previous model")
|
||||
model_data = cache.get_model(previous_model_name) # load previous
|
||||
if model_data is None:
|
||||
raise e
|
||||
@ -962,15 +963,15 @@ class Generate:
|
||||
if self.gfpgan is not None or self.codeformer is not None:
|
||||
if facetool == "gfpgan":
|
||||
if self.gfpgan is None:
|
||||
print(
|
||||
">> GFPGAN not found. Face restoration is disabled."
|
||||
logger.info(
|
||||
"GFPGAN not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
image = self.gfpgan.process(image, strength, seed)
|
||||
if facetool == "codeformer":
|
||||
if self.codeformer is None:
|
||||
print(
|
||||
">> CodeFormer not found. Face restoration is disabled."
|
||||
logger.info(
|
||||
"CodeFormer not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
cf_device = (
|
||||
@ -984,7 +985,7 @@ class Generate:
|
||||
fidelity=codeformer_fidelity,
|
||||
)
|
||||
else:
|
||||
print(">> Face Restoration is disabled.")
|
||||
logger.info("Face Restoration is disabled.")
|
||||
if upscale is not None:
|
||||
if self.esrgan is not None:
|
||||
if len(upscale) < 2:
|
||||
@ -997,10 +998,10 @@ class Generate:
|
||||
denoise_str=upscale_denoise_str,
|
||||
)
|
||||
else:
|
||||
print(">> ESRGAN is disabled. Image not upscaled.")
|
||||
logger.info("ESRGAN is disabled. Image not upscaled.")
|
||||
except Exception as e:
|
||||
print(
|
||||
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
logger.info(
|
||||
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
)
|
||||
|
||||
if image_callback is not None:
|
||||
@ -1066,17 +1067,17 @@ class Generate:
|
||||
if self.sampler_name in scheduler_map:
|
||||
sampler_class = scheduler_map[self.sampler_name]
|
||||
msg = (
|
||||
f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
|
||||
f"Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
|
||||
)
|
||||
self.sampler = sampler_class.from_config(self.model.scheduler.config)
|
||||
else:
|
||||
msg = (
|
||||
f">> Unsupported Sampler: {self.sampler_name} "
|
||||
f" Unsupported Sampler: {self.sampler_name} "+
|
||||
f"Defaulting to {default}"
|
||||
)
|
||||
self.sampler = default
|
||||
|
||||
print(msg)
|
||||
logger.info(msg)
|
||||
|
||||
if not hasattr(self.sampler, "uses_inpainting_model"):
|
||||
# FIXME: terrible kludge!
|
||||
@ -1085,17 +1086,17 @@ class Generate:
|
||||
def _load_img(self, img) -> Image:
|
||||
if isinstance(img, Image.Image):
|
||||
image = img
|
||||
print(f">> using provided input image of size {image.width}x{image.height}")
|
||||
logger.info(f"using provided input image of size {image.width}x{image.height}")
|
||||
elif isinstance(img, str):
|
||||
assert os.path.exists(img), f">> {img}: File not found"
|
||||
assert os.path.exists(img), f"{img}: File not found"
|
||||
|
||||
image = Image.open(img)
|
||||
print(
|
||||
f">> loaded input image of size {image.width}x{image.height} from {img}"
|
||||
logger.info(
|
||||
f"loaded input image of size {image.width}x{image.height} from {img}"
|
||||
)
|
||||
else:
|
||||
image = Image.open(img)
|
||||
print(f">> loaded input image of size {image.width}x{image.height}")
|
||||
logger.info(f"loaded input image of size {image.width}x{image.height}")
|
||||
image = ImageOps.exif_transpose(image)
|
||||
return image
|
||||
|
||||
@ -1183,14 +1184,14 @@ class Generate:
|
||||
|
||||
def _transparency_check_and_warning(self, image, mask, force_outpaint=False):
|
||||
if not mask:
|
||||
print(
|
||||
">> Initial image has transparent areas. Will inpaint in these regions."
|
||||
logger.info(
|
||||
"Initial image has transparent areas. Will inpaint in these regions."
|
||||
)
|
||||
if (not force_outpaint) and self._check_for_erasure(image):
|
||||
print(
|
||||
">> WARNING: Colors underneath the transparent region seem to have been erased.\n",
|
||||
">> Inpainting will be suboptimal. Please preserve the colors when making\n",
|
||||
">> a transparency mask, or provide mask explicitly using --init_mask (-M).",
|
||||
if (not force_outpaint) and self._check_for_erasure(image):
|
||||
logger.info(
|
||||
"Colors underneath the transparent region seem to have been erased.\n" +
|
||||
"Inpainting will be suboptimal. Please preserve the colors when making\n" +
|
||||
"a transparency mask, or provide mask explicitly using --init_mask (-M)."
|
||||
)
|
||||
|
||||
def _squeeze_image(self, image):
|
||||
@ -1201,11 +1202,11 @@ class Generate:
|
||||
|
||||
def _fit_image(self, image, max_dimensions):
|
||||
w, h = max_dimensions
|
||||
print(f">> image will be resized to fit inside a box {w}x{h} in size.")
|
||||
logger.info(f"image will be resized to fit inside a box {w}x{h} in size.")
|
||||
# note that InitImageResizer does the multiple of 64 truncation internally
|
||||
image = InitImageResizer(image).resize(width=w, height=h)
|
||||
print(
|
||||
f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
|
||||
logger.info(
|
||||
f"after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
|
||||
)
|
||||
return image
|
||||
|
||||
@ -1216,8 +1217,8 @@ class Generate:
|
||||
) # resize to integer multiple of 64
|
||||
if h != height or w != width:
|
||||
if log:
|
||||
print(
|
||||
f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
|
||||
logger.info(
|
||||
f"Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
|
||||
)
|
||||
height = h
|
||||
width = w
|
||||
|
@ -25,6 +25,7 @@ from typing import Callable, List, Iterator, Optional, Type
|
||||
from dataclasses import dataclass, field
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..image_util import configure_model_padding
|
||||
from ..util.util import rand_perlin_2d
|
||||
from ..safety_checker import SafetyChecker
|
||||
@ -372,7 +373,7 @@ class Generator:
|
||||
try:
|
||||
x_T = self.get_noise(width, height)
|
||||
except:
|
||||
print("** An error occurred while getting initial noise **")
|
||||
logger.error("An error occurred while getting initial noise")
|
||||
print(traceback.format_exc())
|
||||
|
||||
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
|
||||
@ -607,7 +608,7 @@ class Generator:
|
||||
image = self.sample_to_image(sample)
|
||||
dirname = os.path.dirname(filepath) or "."
|
||||
if not os.path.exists(dirname):
|
||||
print(f"** creating directory {dirname}")
|
||||
logger.info(f"creating directory {dirname}")
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
image.save(filepath, "PNG")
|
||||
|
||||
|
@ -8,10 +8,11 @@ import torch
|
||||
from PIL import Image
|
||||
from tqdm import trange
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
from .base import Generator
|
||||
from .img2img import Img2Img
|
||||
|
||||
|
||||
class Embiggen(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
@ -72,22 +73,22 @@ class Embiggen(Generator):
|
||||
embiggen = [1.0] # If not specified, assume no scaling
|
||||
elif embiggen[0] < 0:
|
||||
embiggen[0] = 1.0
|
||||
print(
|
||||
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
|
||||
logger.warning(
|
||||
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
|
||||
)
|
||||
if len(embiggen) < 2:
|
||||
embiggen.append(0.75)
|
||||
elif embiggen[1] > 1.0 or embiggen[1] < 0:
|
||||
embiggen[1] = 0.75
|
||||
print(
|
||||
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
|
||||
logger.warning(
|
||||
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
|
||||
)
|
||||
if len(embiggen) < 3:
|
||||
embiggen.append(0.25)
|
||||
elif embiggen[2] < 0:
|
||||
embiggen[2] = 0.25
|
||||
print(
|
||||
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
|
||||
logger.warning(
|
||||
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
|
||||
)
|
||||
|
||||
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
|
||||
@ -97,8 +98,8 @@ class Embiggen(Generator):
|
||||
embiggen_tiles.sort()
|
||||
|
||||
if strength >= 0.5:
|
||||
print(
|
||||
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
|
||||
logger.warning(
|
||||
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
|
||||
)
|
||||
|
||||
# Prep img2img generator, since we wrap over it
|
||||
@ -121,8 +122,8 @@ class Embiggen(Generator):
|
||||
from ..restoration.realesrgan import ESRGAN
|
||||
|
||||
esrgan = ESRGAN()
|
||||
print(
|
||||
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
|
||||
logger.info(
|
||||
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
|
||||
)
|
||||
if embiggen[0] > 2:
|
||||
initsuperimage = esrgan.process(
|
||||
@ -312,10 +313,10 @@ class Embiggen(Generator):
|
||||
def make_image():
|
||||
# Make main tiles -------------------------------------------------
|
||||
if embiggen_tiles:
|
||||
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
|
||||
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
|
||||
else:
|
||||
print(
|
||||
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
|
||||
logger.info(
|
||||
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
|
||||
)
|
||||
|
||||
emb_tile_store = []
|
||||
@ -361,11 +362,11 @@ class Embiggen(Generator):
|
||||
# newinitimage.save(newinitimagepath)
|
||||
|
||||
if embiggen_tiles:
|
||||
print(
|
||||
logger.debug(
|
||||
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
|
||||
)
|
||||
else:
|
||||
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
|
||||
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
|
||||
|
||||
# create a torch tensor from an Image
|
||||
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
|
||||
@ -547,8 +548,8 @@ class Embiggen(Generator):
|
||||
# Layer tile onto final image
|
||||
outputsuperimage.alpha_composite(intileimage, (left, top))
|
||||
else:
|
||||
print(
|
||||
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
|
||||
logger.error(
|
||||
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
|
||||
)
|
||||
|
||||
# after internal loops and patching up return Embiggen image
|
||||
|
@ -14,6 +14,8 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
|
||||
from ..stable_diffusion.diffusers_pipeline import ConditioningData
|
||||
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
class Txt2Img2Img(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
@ -77,8 +79,8 @@ class Txt2Img2Img(Generator):
|
||||
# the message below is accurate.
|
||||
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
|
||||
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
|
||||
print(
|
||||
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
||||
logger.info(
|
||||
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
||||
)
|
||||
|
||||
# resizing
|
||||
|
@ -5,10 +5,9 @@ wraps the actual patchmatch object. It respects the global
|
||||
be suppressed or deferred
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class PatchMatch:
|
||||
"""
|
||||
Thin class wrapper around the patchmatch function.
|
||||
@ -28,12 +27,12 @@ class PatchMatch:
|
||||
from patchmatch import patch_match as pm
|
||||
|
||||
if pm.patchmatch_available:
|
||||
print(">> Patchmatch initialized")
|
||||
logger.info("Patchmatch initialized")
|
||||
else:
|
||||
print(">> Patchmatch not loaded (nonfatal)")
|
||||
logger.info("Patchmatch not loaded (nonfatal)")
|
||||
self.patch_match = pm
|
||||
else:
|
||||
print(">> Patchmatch loading disabled")
|
||||
logger.info("Patchmatch loading disabled")
|
||||
self.tried_load = True
|
||||
|
||||
@classmethod
|
||||
|
@ -30,9 +30,9 @@ work fine.
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image, ImageOps
|
||||
from torchvision import transforms
|
||||
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import global_cache_dir
|
||||
|
||||
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
||||
@ -83,7 +83,7 @@ class Txt2Mask(object):
|
||||
"""
|
||||
|
||||
def __init__(self, device="cpu", refined=False):
|
||||
print(">> Initializing clipseg model for text to mask inference")
|
||||
logger.info("Initializing clipseg model for text to mask inference")
|
||||
|
||||
# BUG: we are not doing anything with the device option at this time
|
||||
self.device = device
|
||||
@ -101,18 +101,6 @@ class Txt2Mask(object):
|
||||
provided image and returns a SegmentedGrayscale object in which the brighter
|
||||
pixels indicate where the object is inferred to be.
|
||||
"""
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
),
|
||||
transforms.Resize(
|
||||
(CLIPSEG_SIZE, CLIPSEG_SIZE)
|
||||
), # must be multiple of 64...
|
||||
]
|
||||
)
|
||||
|
||||
if type(image) is str:
|
||||
image = Image.open(image).convert("RGB")
|
||||
|
||||
|
@ -25,6 +25,7 @@ from typing import Union
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import global_cache_dir, global_config_dir
|
||||
|
||||
from .model_manager import ModelManager, SDLegacyType
|
||||
@ -372,9 +373,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
|
||||
unet_key = "model.diffusion_model."
|
||||
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
||||
if sum(k.startswith("model_ema") for k in keys) > 100:
|
||||
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
|
||||
logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
||||
if extract_ema:
|
||||
print(" | Extracting EMA weights (usually better for inference)")
|
||||
logger.debug("Extracting EMA weights (usually better for inference)")
|
||||
for key in keys:
|
||||
if key.startswith("model.diffusion_model"):
|
||||
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
||||
@ -392,8 +393,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
|
||||
key
|
||||
)
|
||||
else:
|
||||
print(
|
||||
" | Extracting only the non-EMA weights (usually better for fine-tuning)"
|
||||
logger.debug(
|
||||
"Extracting only the non-EMA weights (usually better for fine-tuning)"
|
||||
)
|
||||
|
||||
for key in keys:
|
||||
@ -1115,7 +1116,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
if "global_step" in checkpoint:
|
||||
global_step = checkpoint["global_step"]
|
||||
else:
|
||||
print(" | global_step key not found in model")
|
||||
logger.debug("global_step key not found in model")
|
||||
global_step = None
|
||||
|
||||
# sometimes there is a state_dict key and sometimes not
|
||||
@ -1229,15 +1230,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
# If a replacement VAE path was specified, we'll incorporate that into
|
||||
# the checkpoint model and then convert it
|
||||
if vae_path:
|
||||
print(f" | Converting VAE {vae_path}")
|
||||
logger.debug(f"Converting VAE {vae_path}")
|
||||
replace_checkpoint_vae(checkpoint,vae_path)
|
||||
# otherwise we use the original VAE, provided that
|
||||
# an externally loaded diffusers VAE was not passed
|
||||
elif not vae:
|
||||
print(" | Using checkpoint model's original VAE")
|
||||
logger.debug("Using checkpoint model's original VAE")
|
||||
|
||||
if vae:
|
||||
print(" | Using replacement diffusers VAE")
|
||||
logger.debug("Using replacement diffusers VAE")
|
||||
else: # convert the original or replacement VAE
|
||||
vae_config = create_vae_diffusers_config(
|
||||
original_config, image_size=image_size
|
||||
|
@ -18,12 +18,13 @@ import warnings
|
||||
from enum import Enum, auto
|
||||
from pathlib import Path
|
||||
from shutil import move, rmtree
|
||||
from typing import Any, Optional, Union, Callable
|
||||
from typing import Any, Optional, Union, Callable, types
|
||||
|
||||
import safetensors
|
||||
import safetensors.torch
|
||||
import torch
|
||||
import transformers
|
||||
import invokeai.backend.util.logging as logger
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
UNet2DConditionModel,
|
||||
@ -75,6 +76,8 @@ class ModelManager(object):
|
||||
Model manager handles loading, caching, importing, deleting, converting, and editing models.
|
||||
"""
|
||||
|
||||
logger: types.ModuleType = logger
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: OmegaConf | Path,
|
||||
@ -83,6 +86,7 @@ class ModelManager(object):
|
||||
max_loaded_models=DEFAULT_MAX_MODELS,
|
||||
sequential_offload=False,
|
||||
embedding_path: Path = None,
|
||||
logger: types.ModuleType = logger,
|
||||
):
|
||||
"""
|
||||
Initialize with the path to the models.yaml config file or
|
||||
@ -104,6 +108,7 @@ class ModelManager(object):
|
||||
self.current_model = None
|
||||
self.sequential_offload = sequential_offload
|
||||
self.embedding_path = embedding_path
|
||||
self.logger = logger
|
||||
|
||||
def valid_model(self, model_name: str) -> bool:
|
||||
"""
|
||||
@ -132,8 +137,8 @@ class ModelManager(object):
|
||||
)
|
||||
|
||||
if not self.valid_model(model_name):
|
||||
print(
|
||||
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
self.logger.error(
|
||||
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
)
|
||||
return self.current_model
|
||||
|
||||
@ -144,7 +149,7 @@ class ModelManager(object):
|
||||
|
||||
if model_name in self.models:
|
||||
requested_model = self.models[model_name]["model"]
|
||||
print(f">> Retrieving model {model_name} from system RAM cache")
|
||||
self.logger.info(f"Retrieving model {model_name} from system RAM cache")
|
||||
requested_model.ready()
|
||||
width = self.models[model_name]["width"]
|
||||
height = self.models[model_name]["height"]
|
||||
@ -379,7 +384,7 @@ class ModelManager(object):
|
||||
"""
|
||||
omega = self.config
|
||||
if model_name not in omega:
|
||||
print(f"** Unknown model {model_name}")
|
||||
self.logger.error(f"Unknown model {model_name}")
|
||||
return
|
||||
# save these for use in deletion later
|
||||
conf = omega[model_name]
|
||||
@ -392,13 +397,13 @@ class ModelManager(object):
|
||||
self.stack.remove(model_name)
|
||||
if delete_files:
|
||||
if weights:
|
||||
print(f"** Deleting file {weights}")
|
||||
self.logger.info(f"Deleting file {weights}")
|
||||
Path(weights).unlink(missing_ok=True)
|
||||
elif path:
|
||||
print(f"** Deleting directory {path}")
|
||||
self.logger.info(f"Deleting directory {path}")
|
||||
rmtree(path, ignore_errors=True)
|
||||
elif repo_id:
|
||||
print(f"** Deleting the cached model directory for {repo_id}")
|
||||
self.logger.info(f"Deleting the cached model directory for {repo_id}")
|
||||
self._delete_model_from_cache(repo_id)
|
||||
|
||||
def add_model(
|
||||
@ -439,7 +444,7 @@ class ModelManager(object):
|
||||
def _load_model(self, model_name: str):
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if model_name not in self.config:
|
||||
print(
|
||||
self.logger.error(
|
||||
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
)
|
||||
return
|
||||
@ -457,7 +462,7 @@ class ModelManager(object):
|
||||
model_format = mconfig.get("format", "ckpt")
|
||||
if model_format == "ckpt":
|
||||
weights = mconfig.weights
|
||||
print(f">> Loading {model_name} from {weights}")
|
||||
self.logger.info(f"Loading {model_name} from {weights}")
|
||||
model, width, height, model_hash = self._load_ckpt_model(
|
||||
model_name, mconfig
|
||||
)
|
||||
@ -473,13 +478,15 @@ class ModelManager(object):
|
||||
|
||||
# usage statistics
|
||||
toc = time.time()
|
||||
print(">> Model loaded in", "%4.2fs" % (toc - tic))
|
||||
self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic))
|
||||
if self._has_cuda():
|
||||
print(
|
||||
">> Max VRAM used to load the model:",
|
||||
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
|
||||
"\n>> Current VRAM usage:"
|
||||
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
||||
self.logger.info(
|
||||
"Max VRAM used to load the model: "+
|
||||
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9)
|
||||
)
|
||||
self.logger.info(
|
||||
"Current VRAM usage: "+
|
||||
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
|
||||
)
|
||||
return model, width, height, model_hash
|
||||
|
||||
@ -487,11 +494,11 @@ class ModelManager(object):
|
||||
name_or_path = self.model_name_or_path(mconfig)
|
||||
using_fp16 = self.precision == "float16"
|
||||
|
||||
print(f">> Loading diffusers model from {name_or_path}")
|
||||
self.logger.info(f"Loading diffusers model from {name_or_path}")
|
||||
if using_fp16:
|
||||
print(" | Using faster float16 precision")
|
||||
self.logger.debug("Using faster float16 precision")
|
||||
else:
|
||||
print(" | Using more accurate float32 precision")
|
||||
self.logger.debug("Using more accurate float32 precision")
|
||||
|
||||
# TODO: scan weights maybe?
|
||||
pipeline_args: dict[str, Any] = dict(
|
||||
@ -523,8 +530,8 @@ class ModelManager(object):
|
||||
if str(e).startswith("fp16 is not a valid"):
|
||||
pass
|
||||
else:
|
||||
print(
|
||||
f"** An unexpected error occurred while downloading the model: {e})"
|
||||
self.logger.error(
|
||||
f"An unexpected error occurred while downloading the model: {e})"
|
||||
)
|
||||
if pipeline:
|
||||
break
|
||||
@ -542,7 +549,7 @@ class ModelManager(object):
|
||||
# square images???
|
||||
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
||||
height = width
|
||||
print(f" | Default image dimensions = {width} x {height}")
|
||||
self.logger.debug(f"Default image dimensions = {width} x {height}")
|
||||
|
||||
return pipeline, width, height, model_hash
|
||||
|
||||
@ -559,14 +566,14 @@ class ModelManager(object):
|
||||
weights = os.path.normpath(os.path.join(Globals.root, weights))
|
||||
|
||||
# Convert to diffusers and return a diffusers pipeline
|
||||
print(f">> Converting legacy checkpoint {model_name} into a diffusers model...")
|
||||
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
|
||||
|
||||
from . import load_pipeline_from_original_stable_diffusion_ckpt
|
||||
|
||||
try:
|
||||
if self.list_models()[self.current_model]["status"] == "active":
|
||||
self.offload_model(self.current_model)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
vae_path = None
|
||||
@ -624,7 +631,7 @@ class ModelManager(object):
|
||||
if model_name not in self.models:
|
||||
return
|
||||
|
||||
print(f">> Offloading {model_name} to CPU")
|
||||
self.logger.info(f"Offloading {model_name} to CPU")
|
||||
model = self.models[model_name]["model"]
|
||||
model.offload_all()
|
||||
self.current_model = None
|
||||
@ -640,30 +647,26 @@ class ModelManager(object):
|
||||
and option to exit if an infected file is identified.
|
||||
"""
|
||||
# scan model
|
||||
print(f" | Scanning Model: {model_name}")
|
||||
self.logger.debug(f"Scanning Model: {model_name}")
|
||||
scan_result = scan_file_path(checkpoint)
|
||||
if scan_result.infected_files != 0:
|
||||
if scan_result.infected_files == 1:
|
||||
print(f"\n### Issues Found In Model: {scan_result.issues_count}")
|
||||
print(
|
||||
"### WARNING: The model you are trying to load seems to be infected."
|
||||
)
|
||||
print("### For your safety, InvokeAI will not load this model.")
|
||||
print("### Please use checkpoints from trusted sources.")
|
||||
print("### Exiting InvokeAI")
|
||||
self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}")
|
||||
self.logger.critical("The model you are trying to load seems to be infected.")
|
||||
self.logger.critical("For your safety, InvokeAI will not load this model.")
|
||||
self.logger.critical("Please use checkpoints from trusted sources.")
|
||||
self.logger.critical("Exiting InvokeAI")
|
||||
sys.exit()
|
||||
else:
|
||||
print(
|
||||
"\n### WARNING: InvokeAI was unable to scan the model you are using."
|
||||
)
|
||||
self.logger.warning("InvokeAI was unable to scan the model you are using.")
|
||||
model_safe_check_fail = ask_user(
|
||||
"Do you want to to continue loading the model?", ["y", "n"]
|
||||
)
|
||||
if model_safe_check_fail.lower() != "y":
|
||||
print("### Exiting InvokeAI")
|
||||
self.logger.critical("Exiting InvokeAI")
|
||||
sys.exit()
|
||||
else:
|
||||
print(" | Model scanned ok")
|
||||
self.logger.debug("Model scanned ok")
|
||||
|
||||
def import_diffuser_model(
|
||||
self,
|
||||
@ -780,26 +783,24 @@ class ModelManager(object):
|
||||
model_path: Path = None
|
||||
thing = path_url_or_repo # to save typing
|
||||
|
||||
print(f">> Probing {thing} for import")
|
||||
self.logger.info(f"Probing {thing} for import")
|
||||
|
||||
if thing.startswith(("http:", "https:", "ftp:")):
|
||||
print(f" | {thing} appears to be a URL")
|
||||
self.logger.info(f"{thing} appears to be a URL")
|
||||
model_path = self._resolve_path(
|
||||
thing, "models/ldm/stable-diffusion-v1"
|
||||
) # _resolve_path does a download if needed
|
||||
|
||||
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
|
||||
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
|
||||
print(
|
||||
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
|
||||
)
|
||||
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
|
||||
return
|
||||
else:
|
||||
print(f" | {thing} appears to be a checkpoint file on disk")
|
||||
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
|
||||
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
|
||||
|
||||
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
|
||||
print(f" | {thing} appears to be a diffusers file on disk")
|
||||
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing,
|
||||
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
|
||||
@ -810,34 +811,30 @@ class ModelManager(object):
|
||||
|
||||
elif Path(thing).is_dir():
|
||||
if (Path(thing) / "model_index.json").exists():
|
||||
print(f" | {thing} appears to be a diffusers model.")
|
||||
self.logger.debug(f"{thing} appears to be a diffusers model.")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f" |{thing} appears to be a directory. Will scan for models to import"
|
||||
)
|
||||
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
|
||||
for m in list(Path(thing).rglob("*.ckpt")) + list(
|
||||
Path(thing).rglob("*.safetensors")
|
||||
):
|
||||
if model_name := self.heuristic_import(
|
||||
str(m), commit_to_conf=commit_to_conf
|
||||
):
|
||||
print(f" >> {model_name} successfully imported")
|
||||
self.logger.info(f"{model_name} successfully imported")
|
||||
return model_name
|
||||
|
||||
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
|
||||
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
|
||||
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
|
||||
return model_name
|
||||
else:
|
||||
print(
|
||||
f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id"
|
||||
)
|
||||
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
||||
|
||||
# Model_path is set in the event of a legacy checkpoint file.
|
||||
# If not set, we're all done
|
||||
@ -845,7 +842,7 @@ class ModelManager(object):
|
||||
return
|
||||
|
||||
if model_path.stem in self.config: # already imported
|
||||
print(" | Already imported. Skipping")
|
||||
self.logger.debug("Already imported. Skipping")
|
||||
return model_path.stem
|
||||
|
||||
# another round of heuristics to guess the correct config file.
|
||||
@ -861,39 +858,39 @@ class ModelManager(object):
|
||||
# look for a like-named .yaml file in same directory
|
||||
if model_path.with_suffix(".yaml").exists():
|
||||
model_config_file = model_path.with_suffix(".yaml")
|
||||
print(f" | Using config file {model_config_file.name}")
|
||||
self.logger.debug(f"Using config file {model_config_file.name}")
|
||||
|
||||
else:
|
||||
model_type = self.probe_model_type(checkpoint)
|
||||
if model_type == SDLegacyType.V1:
|
||||
print(" | SD-v1 model detected")
|
||||
self.logger.debug("SD-v1 model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
print(" | SD-v1 inpainting model detected")
|
||||
self.logger.debug("SD-v1 inpainting model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root,
|
||||
"configs/stable-diffusion/v1-inpainting-inference.yaml",
|
||||
)
|
||||
elif model_type == SDLegacyType.V2_v:
|
||||
print(" | SD-v2-v model detected")
|
||||
self.logger.debug("SD-v2-v model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V2_e:
|
||||
print(" | SD-v2-e model detected")
|
||||
self.logger.debug("SD-v2-e model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V2:
|
||||
print(
|
||||
f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
|
||||
self.logger.warning(
|
||||
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
|
||||
)
|
||||
return
|
||||
else:
|
||||
print(
|
||||
f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
|
||||
self.logger.warning(
|
||||
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
|
||||
)
|
||||
return
|
||||
|
||||
@ -909,7 +906,7 @@ class ModelManager(object):
|
||||
for suffix in ["pt", "ckpt", "safetensors"]:
|
||||
if (model_path.with_suffix(f".vae.{suffix}")).exists():
|
||||
vae_path = model_path.with_suffix(f".vae.{suffix}")
|
||||
print(f" | Using VAE file {vae_path.name}")
|
||||
self.logger.debug(f"Using VAE file {vae_path.name}")
|
||||
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
|
||||
|
||||
diffuser_path = Path(
|
||||
@ -955,14 +952,14 @@ class ModelManager(object):
|
||||
from . import convert_ckpt_to_diffusers
|
||||
|
||||
if diffusers_path.exists():
|
||||
print(
|
||||
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
|
||||
self.logger.error(
|
||||
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
|
||||
)
|
||||
return
|
||||
|
||||
model_name = model_name or diffusers_path.name
|
||||
model_description = model_description or f"Converted version of {model_name}"
|
||||
print(f" | Converting {model_name} to diffusers (30-60s)")
|
||||
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
|
||||
try:
|
||||
# By passing the specified VAE to the conversion function, the autoencoder
|
||||
# will be built into the model rather than tacked on afterward via the config file
|
||||
@ -979,10 +976,10 @@ class ModelManager(object):
|
||||
vae_path=vae_path,
|
||||
scan_needed=scan_needed,
|
||||
)
|
||||
print(
|
||||
f" | Success. Converted model is now located at {str(diffusers_path)}"
|
||||
self.logger.debug(
|
||||
f"Success. Converted model is now located at {str(diffusers_path)}"
|
||||
)
|
||||
print(f" | Writing new config file entry for {model_name}")
|
||||
self.logger.debug(f"Writing new config file entry for {model_name}")
|
||||
new_config = dict(
|
||||
path=str(diffusers_path),
|
||||
description=model_description,
|
||||
@ -993,17 +990,17 @@ class ModelManager(object):
|
||||
self.add_model(model_name, new_config, True)
|
||||
if commit_to_conf:
|
||||
self.commit(commit_to_conf)
|
||||
print(" | Conversion succeeded")
|
||||
self.logger.debug("Conversion succeeded")
|
||||
except Exception as e:
|
||||
print(f"** Conversion failed: {str(e)}")
|
||||
print(
|
||||
"** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
|
||||
self.logger.warning(f"Conversion failed: {str(e)}")
|
||||
self.logger.warning(
|
||||
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
|
||||
)
|
||||
|
||||
return model_name
|
||||
|
||||
def search_models(self, search_folder):
|
||||
print(f">> Finding Models In: {search_folder}")
|
||||
self.logger.info(f"Finding Models In: {search_folder}")
|
||||
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
||||
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
||||
|
||||
@ -1027,8 +1024,8 @@ class ModelManager(object):
|
||||
num_loaded_models = len(self.models)
|
||||
if num_loaded_models >= self.max_loaded_models:
|
||||
least_recent_model = self._pop_oldest_model()
|
||||
print(
|
||||
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
|
||||
self.logger.info(
|
||||
f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
|
||||
)
|
||||
if least_recent_model is not None:
|
||||
del self.models[least_recent_model]
|
||||
@ -1036,8 +1033,8 @@ class ModelManager(object):
|
||||
|
||||
def print_vram_usage(self) -> None:
|
||||
if self._has_cuda:
|
||||
print(
|
||||
">> Current VRAM usage: ",
|
||||
self.logger.info(
|
||||
"Current VRAM usage:"+
|
||||
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
||||
)
|
||||
|
||||
@ -1123,10 +1120,10 @@ class ModelManager(object):
|
||||
dest = hub / model.stem
|
||||
if dest.exists() and not source.exists():
|
||||
continue
|
||||
print(f"** {source} => {dest}")
|
||||
cls.logger.info(f"{source} => {dest}")
|
||||
if source.exists():
|
||||
if dest.is_symlink():
|
||||
print(f"** Found symlink at {dest.name}. Not migrating.")
|
||||
logger.warning(f"Found symlink at {dest.name}. Not migrating.")
|
||||
elif dest.exists():
|
||||
if source.is_dir():
|
||||
rmtree(source)
|
||||
@ -1143,7 +1140,7 @@ class ModelManager(object):
|
||||
]
|
||||
for d in empty:
|
||||
os.rmdir(d)
|
||||
print("** Migration is done. Continuing...")
|
||||
cls.logger.info("Migration is done. Continuing...")
|
||||
|
||||
def _resolve_path(
|
||||
self, source: Union[str, Path], dest_directory: str
|
||||
@ -1186,15 +1183,15 @@ class ModelManager(object):
|
||||
|
||||
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
|
||||
if self.embedding_path is not None:
|
||||
print(f">> Loading embeddings from {self.embedding_path}")
|
||||
self.logger.info(f"Loading embeddings from {self.embedding_path}")
|
||||
for root, _, files in os.walk(self.embedding_path):
|
||||
for name in files:
|
||||
ti_path = os.path.join(root, name)
|
||||
model.textual_inversion_manager.load_textual_inversion(
|
||||
ti_path, defer_injecting_tokens=True
|
||||
)
|
||||
print(
|
||||
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
|
||||
self.logger.info(
|
||||
f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
|
||||
)
|
||||
|
||||
def _has_cuda(self) -> bool:
|
||||
@ -1216,7 +1213,7 @@ class ModelManager(object):
|
||||
with open(hashpath) as f:
|
||||
hash = f.read()
|
||||
return hash
|
||||
print(" | Calculating sha256 hash of model files")
|
||||
self.logger.debug("Calculating sha256 hash of model files")
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
count = 0
|
||||
@ -1228,7 +1225,7 @@ class ModelManager(object):
|
||||
sha.update(chunk)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
||||
self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
@ -1246,13 +1243,13 @@ class ModelManager(object):
|
||||
hash = f.read()
|
||||
return hash
|
||||
|
||||
print(" | Calculating sha256 hash of weights file")
|
||||
self.logger.debug("Calculating sha256 hash of weights file")
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
sha.update(data)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
|
||||
self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic))
|
||||
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
@ -1273,12 +1270,12 @@ class ModelManager(object):
|
||||
local_files_only=not Globals.internet_available,
|
||||
)
|
||||
|
||||
print(f" | Loading diffusers VAE from {name_or_path}")
|
||||
self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
|
||||
if using_fp16:
|
||||
vae_args.update(torch_dtype=torch.float16)
|
||||
fp_args_list = [{"revision": "fp16"}, {}]
|
||||
else:
|
||||
print(" | Using more accurate float32 precision")
|
||||
self.logger.debug("Using more accurate float32 precision")
|
||||
fp_args_list = [{}]
|
||||
|
||||
vae = None
|
||||
@ -1302,12 +1299,12 @@ class ModelManager(object):
|
||||
break
|
||||
|
||||
if not vae and deferred_error:
|
||||
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
|
||||
self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}")
|
||||
|
||||
return vae
|
||||
|
||||
@staticmethod
|
||||
def _delete_model_from_cache(repo_id):
|
||||
@classmethod
|
||||
def _delete_model_from_cache(cls,repo_id):
|
||||
cache_info = scan_cache_dir(global_cache_dir("hub"))
|
||||
|
||||
# I'm sure there is a way to do this with comprehensions
|
||||
@ -1318,8 +1315,8 @@ class ModelManager(object):
|
||||
for revision in repo.revisions:
|
||||
hashes_to_delete.add(revision.commit_hash)
|
||||
strategy = cache_info.delete_revisions(*hashes_to_delete)
|
||||
print(
|
||||
f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
||||
cls.logger.warning(
|
||||
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
||||
)
|
||||
strategy.execute()
|
||||
|
||||
|
@ -18,6 +18,7 @@ from compel.prompt_parser import (
|
||||
PromptParser,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from ..stable_diffusion import InvokeAIDiffuserComponent
|
||||
@ -162,8 +163,8 @@ def log_tokenization(
|
||||
negative_prompt: Union[Blend, FlattenedPrompt],
|
||||
tokenizer,
|
||||
):
|
||||
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
|
||||
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
|
||||
logger.info(f"[TOKENLOG] Parsed Prompt: {positive_prompt}")
|
||||
logger.info(f"[TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
|
||||
|
||||
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
|
||||
log_tokenization_for_prompt_object(
|
||||
@ -237,12 +238,12 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
|
||||
usedTokens += 1
|
||||
|
||||
if usedTokens > 0:
|
||||
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||
print(f"{tokenized}\x1b[0m")
|
||||
logger.info(f'[TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||
logger.debug(f"{tokenized}\x1b[0m")
|
||||
|
||||
if discarded != "":
|
||||
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||
print(f"{discarded}\x1b[0m")
|
||||
logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||
logger.debug(f"{discarded}\x1b[0m")
|
||||
|
||||
|
||||
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
|
||||
@ -295,8 +296,8 @@ def split_weighted_subprompts(text, skip_normalize=False) -> list:
|
||||
return parsed_prompts
|
||||
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
|
||||
if weight_sum == 0:
|
||||
print(
|
||||
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
|
||||
logger.warning(
|
||||
"Subprompt weights add up to zero. Discarding and using even weights instead."
|
||||
)
|
||||
equal_weight = 1 / max(len(parsed_prompts), 1)
|
||||
return [(x[0], equal_weight) for x in parsed_prompts]
|
||||
|
@ -1,3 +1,5 @@
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
class Restoration:
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
@ -8,17 +10,17 @@ class Restoration:
|
||||
# Load GFPGAN
|
||||
gfpgan = self.load_gfpgan(gfpgan_model_path)
|
||||
if gfpgan.gfpgan_model_exists:
|
||||
print(">> GFPGAN Initialized")
|
||||
logger.info("GFPGAN Initialized")
|
||||
else:
|
||||
print(">> GFPGAN Disabled")
|
||||
logger.info("GFPGAN Disabled")
|
||||
gfpgan = None
|
||||
|
||||
# Load CodeFormer
|
||||
codeformer = self.load_codeformer()
|
||||
if codeformer.codeformer_model_exists:
|
||||
print(">> CodeFormer Initialized")
|
||||
logger.info("CodeFormer Initialized")
|
||||
else:
|
||||
print(">> CodeFormer Disabled")
|
||||
logger.info("CodeFormer Disabled")
|
||||
codeformer = None
|
||||
|
||||
return gfpgan, codeformer
|
||||
@ -39,5 +41,5 @@ class Restoration:
|
||||
from .realesrgan import ESRGAN
|
||||
|
||||
esrgan = ESRGAN(esrgan_bg_tile)
|
||||
print(">> ESRGAN Initialized")
|
||||
logger.info("ESRGAN Initialized")
|
||||
return esrgan
|
||||
|
@ -5,6 +5,7 @@ import warnings
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..globals import Globals
|
||||
|
||||
pretrained_model_url = (
|
||||
@ -23,12 +24,12 @@ class CodeFormerRestoration:
|
||||
self.codeformer_model_exists = os.path.isfile(self.model_path)
|
||||
|
||||
if not self.codeformer_model_exists:
|
||||
print("## NOT FOUND: CodeFormer model not found at " + self.model_path)
|
||||
logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
|
||||
sys.path.append(os.path.abspath(codeformer_dir))
|
||||
|
||||
def process(self, image, strength, device, seed=None, fidelity=0.75):
|
||||
if seed is not None:
|
||||
print(f">> CodeFormer - Restoring Faces for image seed:{seed}")
|
||||
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
@ -97,7 +98,7 @@ class CodeFormerRestoration:
|
||||
del output
|
||||
torch.cuda.empty_cache()
|
||||
except RuntimeError as error:
|
||||
print(f"\tFailed inference for CodeFormer: {error}.")
|
||||
logger.error(f"Failed inference for CodeFormer: {error}.")
|
||||
restored_face = cropped_face
|
||||
|
||||
restored_face = restored_face.astype("uint8")
|
||||
|
@ -6,9 +6,9 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class GFPGAN:
|
||||
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
|
||||
if not os.path.isabs(gfpgan_model_path):
|
||||
@ -19,7 +19,7 @@ class GFPGAN:
|
||||
self.gfpgan_model_exists = os.path.isfile(self.model_path)
|
||||
|
||||
if not self.gfpgan_model_exists:
|
||||
print("## NOT FOUND: GFPGAN model not found at " + self.model_path)
|
||||
logger.error("NOT FOUND: GFPGAN model not found at " + self.model_path)
|
||||
return None
|
||||
|
||||
def model_exists(self):
|
||||
@ -27,7 +27,7 @@ class GFPGAN:
|
||||
|
||||
def process(self, image, strength: float, seed: str = None):
|
||||
if seed is not None:
|
||||
print(f">> GFPGAN - Restoring Faces for image seed:{seed}")
|
||||
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
@ -47,14 +47,14 @@ class GFPGAN:
|
||||
except Exception:
|
||||
import traceback
|
||||
|
||||
print(">> Error loading GFPGAN:", file=sys.stderr)
|
||||
logger.error("Error loading GFPGAN:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
os.chdir(cwd)
|
||||
|
||||
if self.gfpgan is None:
|
||||
print(f">> WARNING: GFPGAN not initialized.")
|
||||
print(
|
||||
f">> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
|
||||
logger.warning("WARNING: GFPGAN not initialized.")
|
||||
logger.warning(
|
||||
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
|
||||
)
|
||||
|
||||
image = image.convert("RGB")
|
||||
|
@ -1,7 +1,7 @@
|
||||
import math
|
||||
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
class Outcrop(object):
|
||||
def __init__(
|
||||
@ -82,7 +82,7 @@ class Outcrop(object):
|
||||
pixels = extents[direction]
|
||||
# round pixels up to the nearest 64
|
||||
pixels = math.ceil(pixels / 64) * 64
|
||||
print(f">> extending image {direction}ward by {pixels} pixels")
|
||||
logger.info(f"extending image {direction}ward by {pixels} pixels")
|
||||
image = self._rotate(image, direction)
|
||||
image = self._extend(image, pixels)
|
||||
image = self._rotate(image, direction, reverse=True)
|
||||
|
@ -6,18 +6,13 @@ import torch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as ImageType
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class ESRGAN:
|
||||
def __init__(self, bg_tile_size=400) -> None:
|
||||
self.bg_tile_size = bg_tile_size
|
||||
|
||||
if not torch.cuda.is_available(): # CPU or MPS on M1
|
||||
use_half_precision = False
|
||||
else:
|
||||
use_half_precision = True
|
||||
|
||||
def load_esrgan_bg_upsampler(self, denoise_str):
|
||||
if not torch.cuda.is_available(): # CPU or MPS on M1
|
||||
use_half_precision = False
|
||||
@ -74,16 +69,16 @@ class ESRGAN:
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
print(">> Error loading Real-ESRGAN:", file=sys.stderr)
|
||||
logger.error("Error loading Real-ESRGAN:")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
if upsampler_scale == 0:
|
||||
print(">> Real-ESRGAN: Invalid scaling option. Image not upscaled.")
|
||||
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
|
||||
return image
|
||||
|
||||
if seed is not None:
|
||||
print(
|
||||
f">> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
|
||||
logger.info(
|
||||
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
|
||||
)
|
||||
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
|
||||
image = image.convert("RGB")
|
||||
|
@ -14,6 +14,7 @@ from PIL import Image, ImageFilter
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .globals import global_cache_dir
|
||||
from .util import CPU_DEVICE
|
||||
|
||||
@ -40,8 +41,8 @@ class SafetyChecker(object):
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
except Exception:
|
||||
print(
|
||||
"** An error was encountered while installing the safety checker:"
|
||||
logger.error(
|
||||
"An error was encountered while installing the safety checker:"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
|
||||
@ -65,8 +66,8 @@ class SafetyChecker(object):
|
||||
)
|
||||
self.safety_checker.to(CPU_DEVICE) # offload
|
||||
if has_nsfw_concept[0]:
|
||||
print(
|
||||
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
|
||||
logger.warning(
|
||||
"An image with potential non-safe content has been detected. A blurred image will be returned."
|
||||
)
|
||||
return self.blur(image)
|
||||
else:
|
||||
|
@ -17,6 +17,7 @@ from huggingface_hub import (
|
||||
hf_hub_url,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
@ -66,11 +67,11 @@ class HuggingFaceConceptsLibrary(object):
|
||||
# when init, add all in dir. when not init, add only concepts added between init and now
|
||||
self.concept_list.extend(list(local_concepts_to_add))
|
||||
except Exception as e:
|
||||
print(
|
||||
f" ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
|
||||
logger.warning(
|
||||
f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
|
||||
)
|
||||
print(
|
||||
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
|
||||
logger.warning(
|
||||
"You may load .bin and .pt file(s) manually using the --embedding_directory argument."
|
||||
)
|
||||
return self.concept_list
|
||||
else:
|
||||
@ -83,7 +84,7 @@ class HuggingFaceConceptsLibrary(object):
|
||||
be downloaded.
|
||||
"""
|
||||
if not concept_name in self.list_concepts():
|
||||
print(
|
||||
logger.warning(
|
||||
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
|
||||
)
|
||||
return None
|
||||
@ -221,7 +222,7 @@ class HuggingFaceConceptsLibrary(object):
|
||||
if chunk == 0:
|
||||
bytes += total
|
||||
|
||||
print(f">> Downloading {repo_id}...", end="")
|
||||
logger.info(f"Downloading {repo_id}...", end="")
|
||||
try:
|
||||
for file in (
|
||||
"README.md",
|
||||
@ -235,22 +236,22 @@ class HuggingFaceConceptsLibrary(object):
|
||||
)
|
||||
except ul_error.HTTPError as e:
|
||||
if e.code == 404:
|
||||
print(
|
||||
logger.warning(
|
||||
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
|
||||
)
|
||||
else:
|
||||
print(
|
||||
logger.warning(
|
||||
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
|
||||
)
|
||||
os.rmdir(dest)
|
||||
return False
|
||||
except ul_error.URLError as e:
|
||||
print(
|
||||
f"ERROR while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
|
||||
logger.error(
|
||||
f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
|
||||
)
|
||||
os.rmdir(dest)
|
||||
return False
|
||||
print("...{:.2f}Kb".format(bytes / 1024))
|
||||
logger.info("...{:.2f}Kb".format(bytes / 1024))
|
||||
return succeeded
|
||||
|
||||
def _concept_id(self, concept_name: str) -> str:
|
||||
|
@ -13,9 +13,9 @@ from compel.cross_attention_control import Arguments
|
||||
from diffusers.models.attention_processor import AttentionProcessor
|
||||
from torch import nn
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...util import torch_dtype
|
||||
|
||||
|
||||
class CrossAttentionType(enum.Enum):
|
||||
SELF = 1
|
||||
TOKENS = 2
|
||||
@ -421,7 +421,7 @@ def get_cross_attention_modules(
|
||||
expected_count = 16
|
||||
if cross_attention_modules_in_model_count != expected_count:
|
||||
# non-fatal error but .swap() won't work.
|
||||
print(
|
||||
logger.error(
|
||||
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
|
||||
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
|
||||
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
|
||||
|
@ -8,6 +8,7 @@ import torch
|
||||
from diffusers.models.attention_processor import AttentionProcessor
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from .cross_attention_control import (
|
||||
@ -466,10 +467,14 @@ class InvokeAIDiffuserComponent:
|
||||
outside = torch.count_nonzero(
|
||||
(latents < -current_threshold) | (latents > current_threshold)
|
||||
)
|
||||
print(
|
||||
f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
|
||||
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
|
||||
f" | {outside / latents.numel() * 100:.2f}% values outside threshold"
|
||||
logger.info(
|
||||
f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})"
|
||||
)
|
||||
logger.debug(
|
||||
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
|
||||
)
|
||||
logger.debug(
|
||||
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
|
||||
)
|
||||
|
||||
if maxval < current_threshold and minval > -current_threshold:
|
||||
@ -496,9 +501,11 @@ class InvokeAIDiffuserComponent:
|
||||
)
|
||||
|
||||
if self.debug_thresholding:
|
||||
print(
|
||||
f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
|
||||
f" | {num_altered / latents.numel() * 100:.2f}% values altered"
|
||||
logger.debug(
|
||||
f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})"
|
||||
)
|
||||
logger.debug(
|
||||
f"{num_altered / latents.numel() * 100:.2f}% values altered"
|
||||
)
|
||||
|
||||
return latents
|
||||
|
@ -10,7 +10,7 @@ from torchvision.utils import make_grid
|
||||
|
||||
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
||||
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
||||
|
||||
|
||||
@ -191,7 +191,7 @@ def mkdirs(paths):
|
||||
def mkdir_and_rename(path):
|
||||
if os.path.exists(path):
|
||||
new_name = path + "_archived_" + get_timestamp()
|
||||
print("Path already exists. Rename it to [{:s}]".format(new_name))
|
||||
logger.error("Path already exists. Rename it to [{:s}]".format(new_name))
|
||||
os.replace(path, new_name)
|
||||
os.makedirs(path)
|
||||
|
||||
|
@ -10,6 +10,7 @@ from compel.embeddings_provider import BaseTextualInversionManager
|
||||
from picklescan.scanner import scan_file_path
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .concepts_lib import HuggingFaceConceptsLibrary
|
||||
|
||||
@dataclass
|
||||
@ -59,12 +60,12 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
or self.has_textual_inversion_for_trigger_string(concept_name)
|
||||
or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>")
|
||||
): # in case a token with literal angle brackets encountered
|
||||
print(f">> Loaded local embedding for trigger {concept_name}")
|
||||
logger.info(f"Loaded local embedding for trigger {concept_name}")
|
||||
continue
|
||||
bin_file = self.hf_concepts_library.get_concept_model_path(concept_name)
|
||||
if not bin_file:
|
||||
continue
|
||||
print(f">> Loaded remote embedding for trigger {concept_name}")
|
||||
logger.info(f"Loaded remote embedding for trigger {concept_name}")
|
||||
self.load_textual_inversion(bin_file)
|
||||
self.hf_concepts_library.concepts_loaded[concept_name] = True
|
||||
|
||||
@ -85,8 +86,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
embedding_list = self._parse_embedding(str(ckpt_path))
|
||||
for embedding_info in embedding_list:
|
||||
if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim):
|
||||
print(
|
||||
f" ** Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
|
||||
logger.warning(
|
||||
f"Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
|
||||
)
|
||||
continue
|
||||
|
||||
@ -105,8 +106,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
if ckpt_path.name == "learned_embeds.bin"
|
||||
else f"<{ckpt_path.stem}>"
|
||||
)
|
||||
print(
|
||||
f">> {sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
|
||||
logger.info(
|
||||
f"{sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
|
||||
)
|
||||
trigger_str = replacement_trigger_str
|
||||
|
||||
@ -120,8 +121,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
self.trigger_to_sourcefile[trigger_str] = sourcefile
|
||||
|
||||
except ValueError as e:
|
||||
print(f' | Ignoring incompatible embedding {embedding_info["name"]}')
|
||||
print(f" | The error was {str(e)}")
|
||||
logger.debug(f'Ignoring incompatible embedding {embedding_info["name"]}')
|
||||
logger.debug(f"The error was {str(e)}")
|
||||
|
||||
def _add_textual_inversion(
|
||||
self, trigger_str, embedding, defer_injecting_tokens=False
|
||||
@ -133,8 +134,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
:return: The token id for the added embedding, either existing or newly-added.
|
||||
"""
|
||||
if trigger_str in [ti.trigger_string for ti in self.textual_inversions]:
|
||||
print(
|
||||
f"** TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
|
||||
logger.warning(
|
||||
f"TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
|
||||
)
|
||||
return
|
||||
if not self.full_precision:
|
||||
@ -155,11 +156,11 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
|
||||
except ValueError as e:
|
||||
if str(e).startswith("Warning"):
|
||||
print(f">> {str(e)}")
|
||||
logger.warning(f"{str(e)}")
|
||||
else:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
f"** TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
|
||||
logger.error(
|
||||
f"TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
|
||||
)
|
||||
raise
|
||||
|
||||
@ -219,16 +220,16 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
for ti in self.textual_inversions:
|
||||
if ti.trigger_token_id is None and ti.trigger_string in prompt_string:
|
||||
if ti.embedding_vector_length > 1:
|
||||
print(
|
||||
f">> Preparing tokens for textual inversion {ti.trigger_string}..."
|
||||
logger.info(
|
||||
f"Preparing tokens for textual inversion {ti.trigger_string}..."
|
||||
)
|
||||
try:
|
||||
self._inject_tokens_and_assign_embeddings(ti)
|
||||
except ValueError as e:
|
||||
print(
|
||||
f" | Ignoring incompatible embedding trigger {ti.trigger_string}"
|
||||
logger.debug(
|
||||
f"Ignoring incompatible embedding trigger {ti.trigger_string}"
|
||||
)
|
||||
print(f" | The error was {str(e)}")
|
||||
logger.debug(f"The error was {str(e)}")
|
||||
continue
|
||||
injected_token_ids.append(ti.trigger_token_id)
|
||||
injected_token_ids.extend(ti.pad_token_ids)
|
||||
@ -306,16 +307,16 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
if suffix in [".pt",".ckpt",".bin"]:
|
||||
scan_result = scan_file_path(embedding_file)
|
||||
if scan_result.infected_files > 0:
|
||||
print(
|
||||
f" ** Security Issues Found in Model: {scan_result.issues_count}"
|
||||
logger.critical(
|
||||
f"Security Issues Found in Model: {scan_result.issues_count}"
|
||||
)
|
||||
print(" ** For your safety, InvokeAI will not load this embed.")
|
||||
logger.critical("For your safety, InvokeAI will not load this embed.")
|
||||
return list()
|
||||
ckpt = torch.load(embedding_file,map_location="cpu")
|
||||
else:
|
||||
ckpt = safetensors.torch.load_file(embedding_file)
|
||||
except Exception as e:
|
||||
print(f" ** Notice: unrecognized embedding file format: {embedding_file}: {e}")
|
||||
logger.warning(f"Notice: unrecognized embedding file format: {embedding_file}: {e}")
|
||||
return list()
|
||||
|
||||
# try to figure out what kind of embedding file it is and parse accordingly
|
||||
@ -334,7 +335,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
|
||||
def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
|
||||
basename = Path(file_path).stem
|
||||
print(f' | Loading v1 embedding file: {basename}')
|
||||
logger.debug(f'Loading v1 embedding file: {basename}')
|
||||
|
||||
embeddings = list()
|
||||
token_counter = -1
|
||||
@ -342,7 +343,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
if token_counter < 0:
|
||||
trigger = embedding_ckpt["name"]
|
||||
elif token_counter == 0:
|
||||
trigger = f'<basename>'
|
||||
trigger = '<basename>'
|
||||
else:
|
||||
trigger = f'<{basename}-{int(token_counter:=token_counter)}>'
|
||||
token_counter += 1
|
||||
@ -365,7 +366,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
This handles embedding .pt file variant #2.
|
||||
"""
|
||||
basename = Path(file_path).stem
|
||||
print(f' | Loading v2 embedding file: {basename}')
|
||||
logger.debug(f'Loading v2 embedding file: {basename}')
|
||||
embeddings = list()
|
||||
|
||||
if isinstance(
|
||||
@ -384,7 +385,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
)
|
||||
embeddings.append(embedding_info)
|
||||
else:
|
||||
print(f" ** {basename}: Unrecognized embedding format")
|
||||
logger.warning(f"{basename}: Unrecognized embedding format")
|
||||
|
||||
return embeddings
|
||||
|
||||
@ -393,7 +394,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
Parse 'version 3' of the .pt textual inversion embedding files.
|
||||
"""
|
||||
basename = Path(file_path).stem
|
||||
print(f' | Loading v3 embedding file: {basename}')
|
||||
logger.debug(f'Loading v3 embedding file: {basename}')
|
||||
embedding = embedding_ckpt['emb_params']
|
||||
embedding_info = EmbeddingInfo(
|
||||
name = f'<{basename}>',
|
||||
@ -411,11 +412,11 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
basename = Path(filepath).stem
|
||||
short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name
|
||||
|
||||
print(f' | Loading v4 embedding file: {short_path}')
|
||||
logger.debug(f'Loading v4 embedding file: {short_path}')
|
||||
|
||||
embeddings = list()
|
||||
if list(embedding_ckpt.keys()) == 0:
|
||||
print(f" ** Invalid embeddings file: {short_path}")
|
||||
logger.warning(f"Invalid embeddings file: {short_path}")
|
||||
else:
|
||||
for token,embedding in embedding_ckpt.items():
|
||||
embedding_info = EmbeddingInfo(
|
||||
|
109
invokeai/backend/util/logging.py
Normal file
109
invokeai/backend/util/logging.py
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
|
||||
|
||||
"""invokeai.util.logging
|
||||
|
||||
Logging class for InvokeAI that produces console messages that follow
|
||||
the conventions established in InvokeAI 1.X through 2.X.
|
||||
|
||||
|
||||
One way to use it:
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
logger = InvokeAILogger.getLogger(__name__)
|
||||
logger.critical('this is critical')
|
||||
logger.error('this is an error')
|
||||
logger.warning('this is a warning')
|
||||
logger.info('this is info')
|
||||
logger.debug('this is debugging')
|
||||
|
||||
Console messages:
|
||||
### this is critical
|
||||
*** this is an error ***
|
||||
** this is a warning
|
||||
>> this is info
|
||||
| this is debugging
|
||||
|
||||
Another way:
|
||||
import invokeai.backend.util.logging as ialog
|
||||
ialogger.debug('this is a debugging message')
|
||||
"""
|
||||
import logging
|
||||
|
||||
# module level functions
|
||||
def debug(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
|
||||
|
||||
def info(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
|
||||
|
||||
def warning(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
|
||||
|
||||
def error(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
|
||||
|
||||
def critical(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
|
||||
|
||||
def log(level, msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
|
||||
|
||||
def disable(level=logging.CRITICAL):
|
||||
InvokeAILogger.getLogger().disable(level)
|
||||
|
||||
def basicConfig(**kwargs):
|
||||
InvokeAILogger.getLogger().basicConfig(**kwargs)
|
||||
|
||||
def getLogger(name: str=None)->logging.Logger:
|
||||
return InvokeAILogger.getLogger(name)
|
||||
|
||||
class InvokeAILogFormatter(logging.Formatter):
|
||||
'''
|
||||
Repurposed from:
|
||||
https://stackoverflow.com/questions/14844970/modifying-logging-message-format-based-on-message-logging-level-in-python3
|
||||
'''
|
||||
crit_fmt = "### %(msg)s"
|
||||
err_fmt = "*** %(msg)s"
|
||||
warn_fmt = "** %(msg)s"
|
||||
info_fmt = ">> %(msg)s"
|
||||
dbg_fmt = " | %(msg)s"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(fmt="%(levelno)d: %(msg)s", datefmt=None, style='%')
|
||||
|
||||
def format(self, record):
|
||||
# Remember the format used when the logging module
|
||||
# was installed (in the event that this formatter is
|
||||
# used with the vanilla logging module.
|
||||
format_orig = self._style._fmt
|
||||
if record.levelno == logging.DEBUG:
|
||||
self._style._fmt = InvokeAILogFormatter.dbg_fmt
|
||||
if record.levelno == logging.INFO:
|
||||
self._style._fmt = InvokeAILogFormatter.info_fmt
|
||||
if record.levelno == logging.WARNING:
|
||||
self._style._fmt = InvokeAILogFormatter.warn_fmt
|
||||
if record.levelno == logging.ERROR:
|
||||
self._style._fmt = InvokeAILogFormatter.err_fmt
|
||||
if record.levelno == logging.CRITICAL:
|
||||
self._style._fmt = InvokeAILogFormatter.crit_fmt
|
||||
|
||||
# parent class does the work
|
||||
result = super().format(record)
|
||||
self._style._fmt = format_orig
|
||||
return result
|
||||
|
||||
class InvokeAILogger(object):
|
||||
loggers = dict()
|
||||
|
||||
@classmethod
|
||||
def getLogger(self, name:str='invokeai')->logging.Logger:
|
||||
if name not in self.loggers:
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
ch = logging.StreamHandler()
|
||||
fmt = InvokeAILogFormatter()
|
||||
ch.setFormatter(fmt)
|
||||
logger.addHandler(ch)
|
||||
self.loggers[name] = logger
|
||||
return self.loggers[name]
|
@ -18,6 +18,7 @@ import torch
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from tqdm import tqdm
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .devices import torch_dtype
|
||||
|
||||
|
||||
@ -38,7 +39,7 @@ def log_txt_as_img(wh, xc, size=10):
|
||||
try:
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
logger.warning("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
@ -80,8 +81,8 @@ def mean_flat(tensor):
|
||||
def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(
|
||||
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
|
||||
logger.debug(
|
||||
f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
|
||||
)
|
||||
return total_params
|
||||
|
||||
@ -132,8 +133,8 @@ def parallel_data_prefetch(
|
||||
raise ValueError("list expected but function got ndarray.")
|
||||
elif isinstance(data, abc.Iterable):
|
||||
if isinstance(data, dict):
|
||||
print(
|
||||
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
logger.warning(
|
||||
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
)
|
||||
data = list(data.values())
|
||||
if target_data_type == "ndarray":
|
||||
@ -175,7 +176,7 @@ def parallel_data_prefetch(
|
||||
processes += [p]
|
||||
|
||||
# start processes
|
||||
print("Start prefetching...")
|
||||
logger.info("Start prefetching...")
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
@ -194,7 +195,7 @@ def parallel_data_prefetch(
|
||||
gather_res[res[0]] = res[1]
|
||||
|
||||
except Exception as e:
|
||||
print("Exception: ", e)
|
||||
logger.error("Exception: ", e)
|
||||
for p in processes:
|
||||
p.terminate()
|
||||
|
||||
@ -202,7 +203,7 @@ def parallel_data_prefetch(
|
||||
finally:
|
||||
for p in processes:
|
||||
p.join()
|
||||
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
|
||||
if target_data_type == "ndarray":
|
||||
if not isinstance(gather_res[0], np.ndarray):
|
||||
@ -318,23 +319,23 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
|
||||
resp = requests.get(url, headers=header, stream=True) # new request with range
|
||||
|
||||
if exist_size > content_length:
|
||||
print("* corrupt existing file found. re-downloading")
|
||||
logger.warning("corrupt existing file found. re-downloading")
|
||||
os.remove(dest)
|
||||
exist_size = 0
|
||||
|
||||
if resp.status_code == 416 or exist_size == content_length:
|
||||
print(f"* {dest}: complete file found. Skipping.")
|
||||
logger.warning(f"{dest}: complete file found. Skipping.")
|
||||
return dest
|
||||
elif resp.status_code == 206 or exist_size > 0:
|
||||
print(f"* {dest}: partial file found. Resuming...")
|
||||
logger.warning(f"{dest}: partial file found. Resuming...")
|
||||
elif resp.status_code != 200:
|
||||
print(f"** An error occurred during downloading {dest}: {resp.reason}")
|
||||
logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
|
||||
else:
|
||||
print(f"* {dest}: Downloading...")
|
||||
logger.error(f"{dest}: Downloading...")
|
||||
|
||||
try:
|
||||
if content_length < 2000:
|
||||
print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
|
||||
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
|
||||
return None
|
||||
|
||||
with open(dest, open_mode) as file, tqdm(
|
||||
@ -349,7 +350,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
except Exception as e:
|
||||
print(f"An error occurred while downloading {dest}: {str(e)}")
|
||||
logger.error(f"An error occurred while downloading {dest}: {str(e)}")
|
||||
return None
|
||||
|
||||
return dest
|
||||
|
@ -19,6 +19,7 @@ from PIL import Image
|
||||
from PIL.Image import Image as ImageType
|
||||
from werkzeug.utils import secure_filename
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
import invokeai.frontend.web.dist as frontend
|
||||
|
||||
from .. import Generate
|
||||
@ -213,7 +214,7 @@ class InvokeAIWebServer:
|
||||
self.load_socketio_listeners(self.socketio)
|
||||
|
||||
if args.gui:
|
||||
print(">> Launching Invoke AI GUI")
|
||||
logger.info("Launching Invoke AI GUI")
|
||||
try:
|
||||
from flaskwebgui import FlaskUI
|
||||
|
||||
@ -231,17 +232,17 @@ class InvokeAIWebServer:
|
||||
sys.exit(0)
|
||||
else:
|
||||
useSSL = args.certfile or args.keyfile
|
||||
print(">> Started Invoke AI Web Server")
|
||||
logger.info("Started Invoke AI Web Server")
|
||||
if self.host == "0.0.0.0":
|
||||
print(
|
||||
logger.info(
|
||||
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
|
||||
)
|
||||
else:
|
||||
print(
|
||||
">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
|
||||
logger.info(
|
||||
"Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
|
||||
)
|
||||
print(
|
||||
f">> Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
|
||||
logger.info(
|
||||
f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
|
||||
)
|
||||
if not useSSL:
|
||||
self.socketio.run(app=self.app, host=self.host, port=self.port)
|
||||
@ -273,7 +274,7 @@ class InvokeAIWebServer:
|
||||
# path for thumbnail images
|
||||
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
|
||||
# txt log
|
||||
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
|
||||
self.log_path = os.path.join(self.result_path, "invoke_logger.txt")
|
||||
# make all output paths
|
||||
[
|
||||
os.makedirs(path, exist_ok=True)
|
||||
@ -290,7 +291,7 @@ class InvokeAIWebServer:
|
||||
def load_socketio_listeners(self, socketio):
|
||||
@socketio.on("requestSystemConfig")
|
||||
def handle_request_capabilities():
|
||||
print(">> System config requested")
|
||||
logger.info("System config requested")
|
||||
config = self.get_system_config()
|
||||
config["model_list"] = self.generate.model_manager.list_models()
|
||||
config["infill_methods"] = infill_methods()
|
||||
@ -330,7 +331,7 @@ class InvokeAIWebServer:
|
||||
if model_name in current_model_list:
|
||||
update = True
|
||||
|
||||
print(f">> Adding New Model: {model_name}")
|
||||
logger.info(f"Adding New Model: {model_name}")
|
||||
|
||||
self.generate.model_manager.add_model(
|
||||
model_name=model_name,
|
||||
@ -348,14 +349,14 @@ class InvokeAIWebServer:
|
||||
"update": update,
|
||||
},
|
||||
)
|
||||
print(f">> New Model Added: {model_name}")
|
||||
logger.info(f"New Model Added: {model_name}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@socketio.on("deleteModel")
|
||||
def handle_delete_model(model_name: str):
|
||||
try:
|
||||
print(f">> Deleting Model: {model_name}")
|
||||
logger.info(f"Deleting Model: {model_name}")
|
||||
self.generate.model_manager.del_model(model_name)
|
||||
self.generate.model_manager.commit(opt.conf)
|
||||
updated_model_list = self.generate.model_manager.list_models()
|
||||
@ -366,14 +367,14 @@ class InvokeAIWebServer:
|
||||
"model_list": updated_model_list,
|
||||
},
|
||||
)
|
||||
print(f">> Model Deleted: {model_name}")
|
||||
logger.info(f"Model Deleted: {model_name}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@socketio.on("requestModelChange")
|
||||
def handle_set_model(model_name: str):
|
||||
try:
|
||||
print(f">> Model change requested: {model_name}")
|
||||
logger.info(f"Model change requested: {model_name}")
|
||||
model = self.generate.set_model(model_name)
|
||||
model_list = self.generate.model_manager.list_models()
|
||||
if model is None:
|
||||
@ -454,7 +455,7 @@ class InvokeAIWebServer:
|
||||
"update": True,
|
||||
},
|
||||
)
|
||||
print(f">> Model Converted: {model_name}")
|
||||
logger.info(f"Model Converted: {model_name}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@ -490,7 +491,7 @@ class InvokeAIWebServer:
|
||||
if vae := self.generate.model_manager.config[models_to_merge[0]].get(
|
||||
"vae", None
|
||||
):
|
||||
print(f">> Using configured VAE assigned to {models_to_merge[0]}")
|
||||
logger.info(f"Using configured VAE assigned to {models_to_merge[0]}")
|
||||
merged_model_config.update(vae=vae)
|
||||
|
||||
self.generate.model_manager.import_diffuser_model(
|
||||
@ -507,8 +508,8 @@ class InvokeAIWebServer:
|
||||
"update": True,
|
||||
},
|
||||
)
|
||||
print(f">> Models Merged: {models_to_merge}")
|
||||
print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
||||
logger.info(f"Models Merged: {models_to_merge}")
|
||||
logger.info(f"New Model Added: {model_merge_info['merged_model_name']}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@ -698,7 +699,7 @@ class InvokeAIWebServer:
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
print(f">> Unable to load {path}")
|
||||
logger.info(f"Unable to load {path}")
|
||||
socketio.emit(
|
||||
"error", {"message": f"Unable to load {path}: {str(e)}"}
|
||||
)
|
||||
@ -735,9 +736,9 @@ class InvokeAIWebServer:
|
||||
printable_parameters["init_mask"][:64] + "..."
|
||||
)
|
||||
|
||||
print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n")
|
||||
print(f">> ESRGAN Parameters: {esrgan_parameters}")
|
||||
print(f">> Facetool Parameters: {facetool_parameters}")
|
||||
logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n")
|
||||
logger.info(f"ESRGAN Parameters: {esrgan_parameters}")
|
||||
logger.info(f"Facetool Parameters: {facetool_parameters}")
|
||||
|
||||
self.generate_images(
|
||||
generation_parameters,
|
||||
@ -750,8 +751,8 @@ class InvokeAIWebServer:
|
||||
@socketio.on("runPostprocessing")
|
||||
def handle_run_postprocessing(original_image, postprocessing_parameters):
|
||||
try:
|
||||
print(
|
||||
f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
|
||||
logger.info(
|
||||
f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
|
||||
)
|
||||
|
||||
progress = Progress()
|
||||
@ -861,14 +862,14 @@ class InvokeAIWebServer:
|
||||
|
||||
@socketio.on("cancel")
|
||||
def handle_cancel():
|
||||
print(">> Cancel processing requested")
|
||||
logger.info("Cancel processing requested")
|
||||
self.canceled.set()
|
||||
|
||||
# TODO: I think this needs a safety mechanism.
|
||||
@socketio.on("deleteImage")
|
||||
def handle_delete_image(url, thumbnail, uuid, category):
|
||||
try:
|
||||
print(f'>> Delete requested "{url}"')
|
||||
logger.info(f'Delete requested "{url}"')
|
||||
from send2trash import send2trash
|
||||
|
||||
path = self.get_image_path_from_url(url)
|
||||
@ -1263,7 +1264,7 @@ class InvokeAIWebServer:
|
||||
image, os.path.basename(path), self.thumbnail_image_path
|
||||
)
|
||||
|
||||
print(f'\n\n>> Image generated: "{path}"\n')
|
||||
logger.info(f'Image generated: "{path}"\n')
|
||||
self.write_log_message(f'[Generated] "{path}": {command}')
|
||||
|
||||
if progress.total_iterations > progress.current_iteration:
|
||||
@ -1329,7 +1330,7 @@ class InvokeAIWebServer:
|
||||
except Exception as e:
|
||||
# Clear the CUDA cache on an exception
|
||||
self.empty_cuda_cache()
|
||||
print(e)
|
||||
logger.error(e)
|
||||
self.handle_exceptions(e)
|
||||
|
||||
def empty_cuda_cache(self):
|
||||
|
@ -16,6 +16,7 @@ if sys.platform == "darwin":
|
||||
import pyparsing # type: ignore
|
||||
|
||||
import invokeai.version as invokeai
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
from ...backend import Generate, ModelManager
|
||||
from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png
|
||||
@ -69,7 +70,7 @@ def main():
|
||||
# run any post-install patches needed
|
||||
run_patches()
|
||||
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
logger.info(f"Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
if not args.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
@ -78,8 +79,8 @@ def main():
|
||||
opt, FileNotFoundError(f"The file {config_file} could not be found.")
|
||||
)
|
||||
|
||||
print(f">> {invokeai.__app_name__}, version {invokeai.__version__}")
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
logger.info(f"{invokeai.__app_name__}, version {invokeai.__version__}")
|
||||
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# loading here to avoid long delays on startup
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
@ -121,7 +122,7 @@ def main():
|
||||
else:
|
||||
raise FileNotFoundError(f"{opt.infile} not found.")
|
||||
except (FileNotFoundError, IOError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
logger.critical('Aborted',exc_info=True)
|
||||
sys.exit(-1)
|
||||
|
||||
# creating a Generate object:
|
||||
@ -142,12 +143,12 @@ def main():
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(opt, e)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
except (IOError, KeyError):
|
||||
logger.critical("Aborted",exc_info=True)
|
||||
sys.exit(-1)
|
||||
|
||||
if opt.seamless:
|
||||
print(">> changed to seamless tiling mode")
|
||||
logger.info("Changed to seamless tiling mode")
|
||||
|
||||
# preload the model
|
||||
try:
|
||||
@ -180,9 +181,7 @@ def main():
|
||||
f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}'
|
||||
)
|
||||
except Exception:
|
||||
print(">> An error occurred:")
|
||||
traceback.print_exc()
|
||||
|
||||
logger.error("An error occurred",exc_info=True)
|
||||
|
||||
# TODO: main_loop() has gotten busy. Needs to be refactored.
|
||||
def main_loop(gen, opt):
|
||||
@ -248,7 +247,7 @@ def main_loop(gen, opt):
|
||||
if not opt.prompt:
|
||||
oldargs = metadata_from_png(opt.init_img)
|
||||
opt.prompt = oldargs.prompt
|
||||
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
|
||||
logger.info(f'Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
|
||||
except (OSError, AttributeError, KeyError):
|
||||
pass
|
||||
|
||||
@ -265,9 +264,9 @@ def main_loop(gen, opt):
|
||||
if opt.init_img is not None and re.match("^-\\d+$", opt.init_img):
|
||||
try:
|
||||
opt.init_img = last_results[int(opt.init_img)][0]
|
||||
print(f">> Reusing previous image {opt.init_img}")
|
||||
logger.info(f"Reusing previous image {opt.init_img}")
|
||||
except IndexError:
|
||||
print(f">> No previous initial image at position {opt.init_img} found")
|
||||
logger.info(f"No previous initial image at position {opt.init_img} found")
|
||||
opt.init_img = None
|
||||
continue
|
||||
|
||||
@ -288,9 +287,9 @@ def main_loop(gen, opt):
|
||||
if opt.seed is not None and opt.seed < 0 and operation != "postprocess":
|
||||
try:
|
||||
opt.seed = last_results[opt.seed][1]
|
||||
print(f">> Reusing previous seed {opt.seed}")
|
||||
logger.info(f"Reusing previous seed {opt.seed}")
|
||||
except IndexError:
|
||||
print(f">> No previous seed at position {opt.seed} found")
|
||||
logger.info(f"No previous seed at position {opt.seed} found")
|
||||
opt.seed = None
|
||||
continue
|
||||
|
||||
@ -309,7 +308,7 @@ def main_loop(gen, opt):
|
||||
subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))]
|
||||
current_outdir = os.path.join(opt.outdir, subdir)
|
||||
|
||||
print('Writing files to directory: "' + current_outdir + '"')
|
||||
logger.info('Writing files to directory: "' + current_outdir + '"')
|
||||
|
||||
# make sure the output directory exists
|
||||
if not os.path.exists(current_outdir):
|
||||
@ -438,15 +437,14 @@ def main_loop(gen, opt):
|
||||
catch_interrupts=catch_ctrl_c,
|
||||
**vars(opt),
|
||||
)
|
||||
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
|
||||
print("** An error occurred while processing your prompt **")
|
||||
print(f"** {str(e)} **")
|
||||
except (PromptParser.ParsingException, pyparsing.ParseException):
|
||||
logger.error("An error occurred while processing your prompt",exc_info=True)
|
||||
elif operation == "postprocess":
|
||||
print(f">> fixing {opt.prompt}")
|
||||
logger.info(f"fixing {opt.prompt}")
|
||||
opt.last_operation = do_postprocess(gen, opt, image_writer)
|
||||
|
||||
elif operation == "mask":
|
||||
print(f">> generating masks from {opt.prompt}")
|
||||
logger.info(f"generating masks from {opt.prompt}")
|
||||
do_textmask(gen, opt, image_writer)
|
||||
|
||||
if opt.grid and len(grid_images) > 0:
|
||||
@ -469,12 +467,12 @@ def main_loop(gen, opt):
|
||||
)
|
||||
results = [[path, formatted_dream_prompt]]
|
||||
|
||||
except AssertionError as e:
|
||||
print(e)
|
||||
except AssertionError:
|
||||
logger.error(e)
|
||||
continue
|
||||
|
||||
except OSError as e:
|
||||
print(e)
|
||||
logger.error(e)
|
||||
continue
|
||||
|
||||
print("Outputs:")
|
||||
@ -513,7 +511,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
gen.set_model(model_name)
|
||||
add_embedding_terms(gen, completer)
|
||||
except KeyError as e:
|
||||
print(str(e))
|
||||
logger.error(e)
|
||||
except Exception as e:
|
||||
report_model_error(opt, e)
|
||||
completer.add_history(command)
|
||||
@ -527,8 +525,8 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith("!import"):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print(
|
||||
"** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
|
||||
logger.warning(
|
||||
"please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
|
||||
)
|
||||
else:
|
||||
try:
|
||||
@ -541,7 +539,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith(("!convert", "!optimize")):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print("** please provide the path to a .ckpt or .safetensors model")
|
||||
logger.warning("please provide the path to a .ckpt or .safetensors model")
|
||||
else:
|
||||
try:
|
||||
convert_model(path[1], gen, opt, completer)
|
||||
@ -553,7 +551,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith("!edit"):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print("** please provide the name of a model")
|
||||
logger.warning("please provide the name of a model")
|
||||
else:
|
||||
edit_model(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
@ -562,7 +560,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith("!del"):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print("** please provide the name of a model")
|
||||
logger.warning("please provide the name of a model")
|
||||
else:
|
||||
del_config(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
@ -642,8 +640,8 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
try:
|
||||
default_name = url_attachment_name(model_path)
|
||||
default_name = Path(default_name).stem
|
||||
except Exception as e:
|
||||
print(f"** URL: {str(e)}")
|
||||
except Exception:
|
||||
logger.warning(f"A problem occurred while assigning the name of the downloaded model",exc_info=True)
|
||||
model_name, model_desc = _get_model_name_and_desc(
|
||||
gen.model_manager,
|
||||
completer,
|
||||
@ -664,11 +662,11 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
model_config_file=config_file,
|
||||
)
|
||||
if not imported_name:
|
||||
print("** Aborting import.")
|
||||
logger.error("Aborting import.")
|
||||
return
|
||||
|
||||
if not _verify_load(imported_name, gen):
|
||||
print("** model failed to load. Discarding configuration entry")
|
||||
logger.error("model failed to load. Discarding configuration entry")
|
||||
gen.model_manager.del_model(imported_name)
|
||||
return
|
||||
if click.confirm("Make this the default model?", default=False):
|
||||
@ -676,7 +674,7 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
|
||||
gen.model_manager.commit(opt.conf)
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
print(f">> {imported_name} successfully installed")
|
||||
logger.info(f"{imported_name} successfully installed")
|
||||
|
||||
def _pick_configuration_file(completer)->Path:
|
||||
print(
|
||||
@ -720,21 +718,21 @@ Please select the type of this model:
|
||||
return choice
|
||||
|
||||
def _verify_load(model_name: str, gen) -> bool:
|
||||
print(">> Verifying that new model loads...")
|
||||
logger.info("Verifying that new model loads...")
|
||||
current_model = gen.model_name
|
||||
try:
|
||||
if not gen.set_model(model_name):
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"** model failed to load: {str(e)}")
|
||||
print(
|
||||
logger.warning(f"model failed to load: {str(e)}")
|
||||
logger.warning(
|
||||
"** note that importing 2.X checkpoints is not supported. Please use !convert_model instead."
|
||||
)
|
||||
return False
|
||||
if click.confirm("Keep model loaded?", default=True):
|
||||
gen.set_model(model_name)
|
||||
else:
|
||||
print(">> Restoring previous model")
|
||||
logger.info("Restoring previous model")
|
||||
gen.set_model(current_model)
|
||||
return True
|
||||
|
||||
@ -757,7 +755,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
ckpt_path = None
|
||||
original_config_file = None
|
||||
if model_name_or_path == gen.model_name:
|
||||
print("** Can't convert the active model. !switch to another model first. **")
|
||||
logger.warning("Can't convert the active model. !switch to another model first. **")
|
||||
return
|
||||
elif model_info := manager.model_info(model_name_or_path):
|
||||
if "weights" in model_info:
|
||||
@ -767,7 +765,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
model_description = model_info["description"]
|
||||
vae_path = model_info.get("vae")
|
||||
else:
|
||||
print(f"** {model_name_or_path} is not a legacy .ckpt weights file")
|
||||
logger.warning(f"{model_name_or_path} is not a legacy .ckpt weights file")
|
||||
return
|
||||
model_name = manager.convert_and_import(
|
||||
ckpt_path,
|
||||
@ -788,16 +786,16 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
manager.commit(opt.conf)
|
||||
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
|
||||
ckpt_path.unlink(missing_ok=True)
|
||||
print(f"{ckpt_path} deleted")
|
||||
logger.warning(f"{ckpt_path} deleted")
|
||||
|
||||
|
||||
def del_config(model_name: str, gen, opt, completer):
|
||||
current_model = gen.model_name
|
||||
if model_name == current_model:
|
||||
print("** Can't delete active model. !switch to another model first. **")
|
||||
logger.warning("Can't delete active model. !switch to another model first. **")
|
||||
return
|
||||
if model_name not in gen.model_manager.config:
|
||||
print(f"** Unknown model {model_name}")
|
||||
logger.warning(f"Unknown model {model_name}")
|
||||
return
|
||||
|
||||
if not click.confirm(
|
||||
@ -810,17 +808,17 @@ def del_config(model_name: str, gen, opt, completer):
|
||||
)
|
||||
gen.model_manager.del_model(model_name, delete_files=delete_completely)
|
||||
gen.model_manager.commit(opt.conf)
|
||||
print(f"** {model_name} deleted")
|
||||
logger.warning(f"{model_name} deleted")
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
|
||||
|
||||
def edit_model(model_name: str, gen, opt, completer):
|
||||
manager = gen.model_manager
|
||||
if not (info := manager.model_info(model_name)):
|
||||
print(f"** Unknown model {model_name}")
|
||||
logger.warning(f"** Unknown model {model_name}")
|
||||
return
|
||||
|
||||
print(f"\n>> Editing model {model_name} from configuration file {opt.conf}")
|
||||
print()
|
||||
logger.info(f"Editing model {model_name} from configuration file {opt.conf}")
|
||||
new_name = _get_model_name(manager.list_models(), completer, model_name)
|
||||
|
||||
for attribute in info.keys():
|
||||
@ -858,7 +856,7 @@ def edit_model(model_name: str, gen, opt, completer):
|
||||
manager.set_default_model(new_name)
|
||||
manager.commit(opt.conf)
|
||||
completer.update_models(manager.list_models())
|
||||
print(">> Model successfully updated")
|
||||
logger.info("Model successfully updated")
|
||||
|
||||
|
||||
def _get_model_name(existing_names, completer, default_name: str = "") -> str:
|
||||
@ -869,11 +867,11 @@ def _get_model_name(existing_names, completer, default_name: str = "") -> str:
|
||||
if len(model_name) == 0:
|
||||
model_name = default_name
|
||||
if not re.match("^[\w._+:/-]+$", model_name):
|
||||
print(
|
||||
'** model name must contain only words, digits and the characters "._+:/-" **'
|
||||
logger.warning(
|
||||
'model name must contain only words, digits and the characters "._+:/-" **'
|
||||
)
|
||||
elif model_name != default_name and model_name in existing_names:
|
||||
print(f"** the name {model_name} is already in use. Pick another.")
|
||||
logger.warning(f"the name {model_name} is already in use. Pick another.")
|
||||
else:
|
||||
done = True
|
||||
return model_name
|
||||
@ -940,11 +938,10 @@ def do_postprocess(gen, opt, callback):
|
||||
opt=opt,
|
||||
)
|
||||
except OSError:
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(f"** {file_path}: file could not be read")
|
||||
logger.error(f"{file_path}: file could not be read",exc_info=True)
|
||||
return
|
||||
except (KeyError, AttributeError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
logger.error(f"an error occurred while applying the {tool} postprocessor",exc_info=True)
|
||||
return
|
||||
return opt.last_operation
|
||||
|
||||
@ -999,13 +996,13 @@ def prepare_image_metadata(
|
||||
try:
|
||||
filename = opt.fnformat.format(**wildcards)
|
||||
except KeyError as e:
|
||||
print(
|
||||
f"** The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
|
||||
logger.error(
|
||||
f"The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
|
||||
)
|
||||
filename = f"{prefix}.{seed}.png"
|
||||
except IndexError:
|
||||
print(
|
||||
"** The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
|
||||
logger.error(
|
||||
"The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
|
||||
)
|
||||
filename = f"{prefix}.{seed}.png"
|
||||
|
||||
@ -1094,14 +1091,14 @@ def split_variations(variations_string) -> list:
|
||||
for part in variations_string.split(","):
|
||||
seed_and_weight = part.split(":")
|
||||
if len(seed_and_weight) != 2:
|
||||
print(f'** Could not parse with_variation part "{part}"')
|
||||
logger.warning(f'Could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
try:
|
||||
seed = int(seed_and_weight[0])
|
||||
weight = float(seed_and_weight[1])
|
||||
except ValueError:
|
||||
print(f'** Could not parse with_variation part "{part}"')
|
||||
logger.warning(f'Could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
parts.append([seed, weight])
|
||||
@ -1125,23 +1122,23 @@ def load_face_restoration(opt):
|
||||
opt.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
logger.info("Face restoration disabled")
|
||||
if opt.esrgan:
|
||||
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
logger.info("Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
logger.info("Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
return gfpgan, codeformer, esrgan
|
||||
|
||||
|
||||
def make_step_callback(gen, opt, prefix):
|
||||
destination = os.path.join(opt.outdir, "intermediates", prefix)
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
print(f">> Intermediate images will be written into {destination}")
|
||||
logger.info(f"Intermediate images will be written into {destination}")
|
||||
|
||||
def callback(state: PipelineIntermediateState):
|
||||
latents = state.latents
|
||||
@ -1183,21 +1180,20 @@ def retrieve_dream_command(opt, command, completer):
|
||||
try:
|
||||
cmd = dream_cmd_from_png(path)
|
||||
except OSError:
|
||||
print(f"## {tokens[0]}: file could not be read")
|
||||
logger.error(f"{tokens[0]}: file could not be read")
|
||||
except (KeyError, AttributeError, IndexError):
|
||||
print(f"## {tokens[0]}: file has no metadata")
|
||||
logger.error(f"{tokens[0]}: file has no metadata")
|
||||
except:
|
||||
print(f"## {tokens[0]}: file could not be processed")
|
||||
logger.error(f"{tokens[0]}: file could not be processed")
|
||||
if len(cmd) > 0:
|
||||
completer.set_line(cmd)
|
||||
|
||||
|
||||
def write_commands(opt, file_path: str, outfilepath: str):
|
||||
dir, basename = os.path.split(file_path)
|
||||
try:
|
||||
paths = sorted(list(Path(dir).glob(basename)))
|
||||
except ValueError:
|
||||
print(f'## "{basename}": unacceptable pattern')
|
||||
logger.error(f'"{basename}": unacceptable pattern')
|
||||
return
|
||||
|
||||
commands = []
|
||||
@ -1206,9 +1202,9 @@ def write_commands(opt, file_path: str, outfilepath: str):
|
||||
try:
|
||||
cmd = dream_cmd_from_png(path)
|
||||
except (KeyError, AttributeError, IndexError):
|
||||
print(f"## {path}: file has no metadata")
|
||||
logger.error(f"{path}: file has no metadata")
|
||||
except:
|
||||
print(f"## {path}: file could not be processed")
|
||||
logger.error(f"{path}: file could not be processed")
|
||||
if cmd:
|
||||
commands.append(f"# {path}")
|
||||
commands.append(cmd)
|
||||
@ -1218,18 +1214,18 @@ def write_commands(opt, file_path: str, outfilepath: str):
|
||||
outfilepath = os.path.join(opt.outdir, basename)
|
||||
with open(outfilepath, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(commands))
|
||||
print(f">> File {outfilepath} with commands created")
|
||||
logger.info(f"File {outfilepath} with commands created")
|
||||
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception):
|
||||
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
print(
|
||||
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
logger.warning(f'An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
logger.warning(
|
||||
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
)
|
||||
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||||
if yes_to_all:
|
||||
print(
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
logger.warning(
|
||||
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
if not click.confirm(
|
||||
@ -1238,7 +1234,7 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
logger.info("invokeai-configure is launching....\n")
|
||||
|
||||
# Match arguments that were set on the CLI
|
||||
# only the arguments accepted by the configuration script are parsed
|
||||
@ -1255,7 +1251,7 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
from ..install import invokeai_configure
|
||||
|
||||
invokeai_configure()
|
||||
print("** InvokeAI will now restart")
|
||||
logger.warning("InvokeAI will now restart")
|
||||
sys.argv = previous_args
|
||||
main() # would rather do a os.exec(), but doesn't exist?
|
||||
sys.exit(0)
|
||||
|
@ -22,6 +22,7 @@ import torch
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals, global_config_dir
|
||||
|
||||
from ...backend.config.model_install_backend import (
|
||||
@ -455,8 +456,8 @@ def main():
|
||||
Globals.root = os.path.expanduser(get_root(opt.root) or "")
|
||||
|
||||
if not global_config_dir().exists():
|
||||
print(
|
||||
">> Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
||||
logger.info(
|
||||
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
||||
)
|
||||
from invokeai.frontend.install import invokeai_configure
|
||||
|
||||
@ -466,18 +467,18 @@ def main():
|
||||
try:
|
||||
select_and_download_models(opt)
|
||||
except AssertionError as e:
|
||||
print(str(e))
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
print("\nGoodbye! Come back soon.")
|
||||
logger.info("Goodbye! Come back soon.")
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
print(
|
||||
"** Insufficient vertical space for the interface. Please make your window taller and try again"
|
||||
logger.error(
|
||||
"Insufficient vertical space for the interface. Please make your window taller and try again"
|
||||
)
|
||||
elif str(e).startswith("addwstr"):
|
||||
print(
|
||||
"** Insufficient horizontal space for the interface. Please make your window wider and try again."
|
||||
logger.error(
|
||||
"Insufficient horizontal space for the interface. Please make your window wider and try again."
|
||||
)
|
||||
|
||||
|
||||
|
@ -27,6 +27,8 @@ from ...backend.globals import (
|
||||
global_models_dir,
|
||||
global_set_root,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...backend.model_management import ModelManager
|
||||
from ...frontend.install.widgets import FloatTitleSlider
|
||||
|
||||
@ -113,7 +115,7 @@ def merge_diffusion_models_and_commit(
|
||||
model_name=merged_model_name, description=f'Merge of models {", ".join(models)}'
|
||||
)
|
||||
if vae := model_manager.config[models[0]].get("vae", None):
|
||||
print(f">> Using configured VAE assigned to {models[0]}")
|
||||
logger.info(f"Using configured VAE assigned to {models[0]}")
|
||||
import_args.update(vae=vae)
|
||||
model_manager.import_diffuser_model(dump_path, **import_args)
|
||||
model_manager.commit(config_file)
|
||||
@ -391,10 +393,8 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
|
||||
for name in self.model_manager.model_names()
|
||||
if self.model_manager.model_info(name).get("format") == "diffusers"
|
||||
]
|
||||
print(model_names)
|
||||
return sorted(model_names)
|
||||
|
||||
|
||||
class Mergeapp(npyscreen.NPSAppManaged):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@ -414,7 +414,7 @@ def run_gui(args: Namespace):
|
||||
|
||||
args = mergeapp.merge_arguments
|
||||
merge_diffusion_models_and_commit(**args)
|
||||
print(f'>> Models merged into new model: "{args["merged_model_name"]}".')
|
||||
logger.info(f'Models merged into new model: "{args["merged_model_name"]}".')
|
||||
|
||||
|
||||
def run_cli(args: Namespace):
|
||||
@ -425,8 +425,8 @@ def run_cli(args: Namespace):
|
||||
|
||||
if not args.merged_model_name:
|
||||
args.merged_model_name = "+".join(args.models)
|
||||
print(
|
||||
f'>> No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
|
||||
logger.info(
|
||||
f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
|
||||
)
|
||||
|
||||
model_manager = ModelManager(OmegaConf.load(global_config_file()))
|
||||
@ -435,7 +435,7 @@ def run_cli(args: Namespace):
|
||||
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
|
||||
|
||||
merge_diffusion_models_and_commit(**vars(args))
|
||||
print(f'>> Models merged into new model: "{args.merged_model_name}".')
|
||||
logger.info(f'Models merged into new model: "{args.merged_model_name}".')
|
||||
|
||||
|
||||
def main():
|
||||
@ -455,17 +455,16 @@ def main():
|
||||
run_cli(args)
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
print(
|
||||
"** You need to have at least two diffusers models defined in models.yaml in order to merge"
|
||||
logger.error(
|
||||
"You need to have at least two diffusers models defined in models.yaml in order to merge"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
"** Not enough room for the user interface. Try making this window larger."
|
||||
logger.error(
|
||||
"Not enough room for the user interface. Try making this window larger."
|
||||
)
|
||||
sys.exit(-1)
|
||||
except Exception:
|
||||
print(">> An error occurred:")
|
||||
traceback.print_exc()
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
sys.exit(-1)
|
||||
|
@ -20,6 +20,7 @@ import npyscreen
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals, global_set_root
|
||||
|
||||
from ...backend.training import do_textual_inversion_training, parse_args
|
||||
@ -368,14 +369,14 @@ def copy_to_embeddings_folder(args: dict):
|
||||
dest_dir_name = args["placeholder_token"].strip("<>")
|
||||
destination = Path(Globals.root, "embeddings", dest_dir_name)
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
shutil.copy(source, destination)
|
||||
if (
|
||||
input("Delete training logs and intermediate checkpoints? [y] ") or "y"
|
||||
).startswith(("y", "Y")):
|
||||
shutil.rmtree(Path(args["output_dir"]))
|
||||
else:
|
||||
print(f'>> Keeping {args["output_dir"]}')
|
||||
logger.info(f'Keeping {args["output_dir"]}')
|
||||
|
||||
|
||||
def save_args(args: dict):
|
||||
@ -422,10 +423,10 @@ def do_front_end(args: Namespace):
|
||||
do_textual_inversion_training(**args)
|
||||
copy_to_embeddings_folder(args)
|
||||
except Exception as e:
|
||||
print("** An exception occurred during training. The exception was:")
|
||||
print(str(e))
|
||||
print("** DETAILS:")
|
||||
print(traceback.format_exc())
|
||||
logger.error("An exception occurred during training. The exception was:")
|
||||
logger.error(str(e))
|
||||
logger.error("DETAILS:")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
|
||||
def main():
|
||||
@ -437,21 +438,21 @@ def main():
|
||||
else:
|
||||
do_textual_inversion_training(**vars(args))
|
||||
except AssertionError as e:
|
||||
print(str(e))
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
except (widget.NotEnoughSpaceForWidget, Exception) as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
print(
|
||||
"** You need to have at least one diffusers models defined in models.yaml in order to train"
|
||||
logger.error(
|
||||
"You need to have at least one diffusers models defined in models.yaml in order to train"
|
||||
)
|
||||
elif str(e).startswith("addwstr"):
|
||||
print(
|
||||
"** Not enough window space for the interface. Please make your window larger and try again."
|
||||
logger.error(
|
||||
"Not enough window space for the interface. Please make your window larger and try again."
|
||||
)
|
||||
else:
|
||||
print(f"** An error has occurred: {str(e)}")
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
|
||||
|
||||
|
@ -25,6 +25,7 @@ def mock_services():
|
||||
return InvocationServices(
|
||||
model_manager = None, # type: ignore
|
||||
events = None, # type: ignore
|
||||
logger = None, # type: ignore
|
||||
images = None, # type: ignore
|
||||
latents = None, # type: ignore
|
||||
metadata = None, # type: ignore
|
||||
|
@ -23,6 +23,7 @@ def mock_services() -> InvocationServices:
|
||||
return InvocationServices(
|
||||
model_manager = None, # type: ignore
|
||||
events = TestEventService(),
|
||||
logger = None, # type: ignore
|
||||
images = None, # type: ignore
|
||||
latents = None, # type: ignore
|
||||
metadata = None, # type: ignore
|
||||
|
Loading…
Reference in New Issue
Block a user