mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(ui): update UI for new metadata
- Update for new routes - Update model storage in state to be `MainModelField` type instead of `string`, simplifies a lot of model handling - Update model-related stuff for model `name` --> `model_name` - Update linear graphs to use `MetadataAccumulator` - Update `ImageMetadataViewer` UI - Ensure all `recall` functions work (well, the ones that are active anyways)
This commit is contained in:
parent
bddc04af96
commit
a43c900961
@ -51,6 +51,7 @@ import {
|
||||
} from './listeners/imageUrlsReceived';
|
||||
import { addInitialImageSelectedListener } from './listeners/initialImageSelected';
|
||||
import { addModelSelectedListener } from './listeners/modelSelected';
|
||||
import { addModelsLoadedListener } from './listeners/modelsLoaded';
|
||||
import { addReceivedOpenAPISchemaListener } from './listeners/receivedOpenAPISchema';
|
||||
import {
|
||||
addReceivedPageOfImagesFulfilledListener,
|
||||
@ -224,3 +225,4 @@ addModelSelectedListener();
|
||||
|
||||
// app startup
|
||||
addAppStartedListener();
|
||||
addModelsLoadedListener();
|
||||
|
@ -1,13 +1,13 @@
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
|
||||
import { Graph } from 'services/api/types';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { controlNetProcessedImageChanged } from 'features/controlNet/store/controlNetSlice';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { imageDTOReceived } from 'services/api/thunks/image';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { Graph } from 'services/api/types';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'controlNet' });
|
||||
|
||||
@ -63,10 +63,8 @@ export const addControlNetImageProcessedListener = () => {
|
||||
|
||||
// Wait for the ImageDTO to be received
|
||||
const [imageMetadataReceivedAction] = await take(
|
||||
(
|
||||
action
|
||||
): action is ReturnType<typeof imageMetadataReceived.fulfilled> =>
|
||||
imageMetadataReceived.fulfilled.match(action) &&
|
||||
(action): action is ReturnType<typeof imageDTOReceived.fulfilled> =>
|
||||
imageDTOReceived.fulfilled.match(action) &&
|
||||
action.payload.image_name === image_name
|
||||
);
|
||||
const processedControlImage = imageMetadataReceivedAction.payload;
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { imageDTOReceived } from 'services/api/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'boards' });
|
||||
|
||||
@ -17,7 +17,7 @@ export const addImageAddedToBoardFulfilledListener = () => {
|
||||
);
|
||||
|
||||
dispatch(
|
||||
imageMetadataReceived({
|
||||
imageDTOReceived({
|
||||
image_name,
|
||||
})
|
||||
);
|
||||
|
@ -1,13 +1,13 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived, imageUpdated } from 'services/api/thunks/image';
|
||||
import { imageUpserted } from 'features/gallery/store/gallerySlice';
|
||||
import { imageDTOReceived, imageUpdated } from 'services/api/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'image' });
|
||||
|
||||
export const addImageMetadataReceivedFulfilledListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: imageMetadataReceived.fulfilled,
|
||||
actionCreator: imageDTOReceived.fulfilled,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const image = action.payload;
|
||||
|
||||
@ -40,7 +40,7 @@ export const addImageMetadataReceivedFulfilledListener = () => {
|
||||
|
||||
export const addImageMetadataReceivedRejectedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: imageMetadataReceived.rejected,
|
||||
actionCreator: imageDTOReceived.rejected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
moduleLog.debug(
|
||||
{ data: { image: action.meta.arg } },
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { imageDTOReceived } from 'services/api/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'boards' });
|
||||
|
||||
@ -17,7 +17,7 @@ export const addImageRemovedFromBoardFulfilledListener = () => {
|
||||
);
|
||||
|
||||
dispatch(
|
||||
imageMetadataReceived({
|
||||
imageDTOReceived({
|
||||
image_name,
|
||||
})
|
||||
);
|
||||
|
@ -14,7 +14,7 @@ export const addModelSelectedListener = () => {
|
||||
actionCreator: modelSelected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
const [base_model, type, name] = action.payload.split('/');
|
||||
const { base_model, model_name } = action.payload;
|
||||
|
||||
if (state.generation.model?.base_model !== base_model) {
|
||||
dispatch(
|
||||
@ -30,11 +30,7 @@ export const addModelSelectedListener = () => {
|
||||
// TODO: controlnet cleared
|
||||
}
|
||||
|
||||
const newModel = zMainModel.parse({
|
||||
id: action.payload,
|
||||
base_model,
|
||||
name,
|
||||
});
|
||||
const newModel = zMainModel.parse(action.payload);
|
||||
|
||||
dispatch(modelChanged(newModel));
|
||||
},
|
||||
|
@ -0,0 +1,42 @@
|
||||
import { modelChanged } from 'features/parameters/store/generationSlice';
|
||||
import { some } from 'lodash-es';
|
||||
import { modelsApi } from 'services/api/endpoints/models';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
export const addModelsLoadedListener = () => {
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getMainModels.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// models loaded, we need to ensure the selected model is available and if not, select the first one
|
||||
|
||||
const currentModel = getState().generation.model;
|
||||
|
||||
const isCurrentModelAvailable = some(
|
||||
action.payload.entities,
|
||||
(m) =>
|
||||
m?.model_name === currentModel?.model_name &&
|
||||
m?.base_model === currentModel?.base_model
|
||||
);
|
||||
|
||||
if (isCurrentModelAvailable) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModelId = action.payload.ids[0];
|
||||
const firstModel = action.payload.entities[firstModelId];
|
||||
|
||||
if (!firstModel) {
|
||||
// No models loaded at all
|
||||
dispatch(modelChanged(null));
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(
|
||||
modelChanged({
|
||||
base_model: firstModel.base_model,
|
||||
model_name: firstModel.model_name,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
@ -1,15 +1,15 @@
|
||||
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
import { startAppListening } from '../..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
import { progressImageSet } from 'features/system/store/systemSlice';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { imageDTOReceived } from 'services/api/thunks/image';
|
||||
import { sessionCanceled } from 'services/api/thunks/session';
|
||||
import {
|
||||
appSocketInvocationComplete,
|
||||
socketInvocationComplete,
|
||||
} from 'services/events/actions';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { sessionCanceled } from 'services/api/thunks/session';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { progressImageSet } from 'features/system/store/systemSlice';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { startAppListening } from '../..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'socketio' });
|
||||
const nodeDenylist = ['dataURL_image'];
|
||||
@ -42,13 +42,13 @@ export const addInvocationCompleteEventListener = () => {
|
||||
|
||||
// Get its metadata
|
||||
dispatch(
|
||||
imageMetadataReceived({
|
||||
imageDTOReceived({
|
||||
image_name,
|
||||
})
|
||||
);
|
||||
|
||||
const [{ payload: imageDTO }] = await take(
|
||||
imageMetadataReceived.fulfilled.match
|
||||
imageDTOReceived.fulfilled.match
|
||||
);
|
||||
|
||||
// Handle canvas image
|
||||
|
@ -47,8 +47,8 @@ const ParamEmbeddingPopover = (props: Props) => {
|
||||
const disabled = currentMainModel?.base_model !== embedding.base_model;
|
||||
|
||||
data.push({
|
||||
value: embedding.name,
|
||||
label: embedding.name,
|
||||
value: embedding.model_name,
|
||||
label: embedding.model_name,
|
||||
group: MODEL_TYPE_MAP[embedding.base_model],
|
||||
disabled,
|
||||
tooltip: disabled
|
||||
|
@ -118,7 +118,6 @@ const CurrentImagePreview = () => {
|
||||
width: 'full',
|
||||
height: 'full',
|
||||
borderRadius: 'base',
|
||||
overflow: 'scroll',
|
||||
}}
|
||||
>
|
||||
<ImageMetadataViewer image={imageDTO} />
|
||||
|
@ -0,0 +1,212 @@
|
||||
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
|
||||
import { useCallback } from 'react';
|
||||
import { UnsafeImageMetadata } from 'services/api/endpoints/images';
|
||||
import MetadataItem from './MetadataItem';
|
||||
|
||||
type Props = {
|
||||
metadata?: UnsafeImageMetadata['metadata'];
|
||||
};
|
||||
|
||||
const ImageMetadataActions = (props: Props) => {
|
||||
const { metadata } = props;
|
||||
|
||||
const {
|
||||
recallBothPrompts,
|
||||
recallPositivePrompt,
|
||||
recallNegativePrompt,
|
||||
recallSeed,
|
||||
recallInitialImage,
|
||||
recallCfgScale,
|
||||
recallModel,
|
||||
recallScheduler,
|
||||
recallSteps,
|
||||
recallWidth,
|
||||
recallHeight,
|
||||
recallStrength,
|
||||
recallAllParameters,
|
||||
} = useRecallParameters();
|
||||
|
||||
const handleRecallPositivePrompt = useCallback(() => {
|
||||
recallPositivePrompt(metadata?.positive_prompt);
|
||||
}, [metadata?.positive_prompt, recallPositivePrompt]);
|
||||
|
||||
const handleRecallNegativePrompt = useCallback(() => {
|
||||
recallNegativePrompt(metadata?.negative_prompt);
|
||||
}, [metadata?.negative_prompt, recallNegativePrompt]);
|
||||
|
||||
const handleRecallSeed = useCallback(() => {
|
||||
recallSeed(metadata?.seed);
|
||||
}, [metadata?.seed, recallSeed]);
|
||||
|
||||
const handleRecallModel = useCallback(() => {
|
||||
recallModel(metadata?.model);
|
||||
}, [metadata?.model, recallModel]);
|
||||
|
||||
const handleRecallWidth = useCallback(() => {
|
||||
recallWidth(metadata?.width);
|
||||
}, [metadata?.width, recallWidth]);
|
||||
|
||||
const handleRecallHeight = useCallback(() => {
|
||||
recallHeight(metadata?.height);
|
||||
}, [metadata?.height, recallHeight]);
|
||||
|
||||
const handleRecallScheduler = useCallback(() => {
|
||||
recallScheduler(metadata?.scheduler);
|
||||
}, [metadata?.scheduler, recallScheduler]);
|
||||
|
||||
const handleRecallSteps = useCallback(() => {
|
||||
recallSteps(metadata?.steps);
|
||||
}, [metadata?.steps, recallSteps]);
|
||||
|
||||
const handleRecallCfgScale = useCallback(() => {
|
||||
recallCfgScale(metadata?.cfg_scale);
|
||||
}, [metadata?.cfg_scale, recallCfgScale]);
|
||||
|
||||
const handleRecallStrength = useCallback(() => {
|
||||
recallStrength(metadata?.strength);
|
||||
}, [metadata?.strength, recallStrength]);
|
||||
|
||||
if (!metadata || Object.keys(metadata).length === 0) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<>
|
||||
{metadata.generation_mode && (
|
||||
<MetadataItem
|
||||
label="Generation Mode"
|
||||
value={metadata.generation_mode}
|
||||
/>
|
||||
)}
|
||||
{metadata.positive_prompt && (
|
||||
<MetadataItem
|
||||
label="Positive Prompt"
|
||||
labelPosition="top"
|
||||
value={metadata.positive_prompt}
|
||||
onClick={handleRecallPositivePrompt}
|
||||
/>
|
||||
)}
|
||||
{metadata.negative_prompt && (
|
||||
<MetadataItem
|
||||
label="Negative Prompt"
|
||||
labelPosition="top"
|
||||
value={metadata.negative_prompt}
|
||||
onClick={handleRecallNegativePrompt}
|
||||
/>
|
||||
)}
|
||||
{metadata.seed !== undefined && (
|
||||
<MetadataItem
|
||||
label="Seed"
|
||||
value={metadata.seed}
|
||||
onClick={handleRecallSeed}
|
||||
/>
|
||||
)}
|
||||
{metadata.model !== undefined && (
|
||||
<MetadataItem
|
||||
label="Model"
|
||||
value={metadata.model.model_name}
|
||||
onClick={handleRecallModel}
|
||||
/>
|
||||
)}
|
||||
{metadata.width && (
|
||||
<MetadataItem
|
||||
label="Width"
|
||||
value={metadata.width}
|
||||
onClick={handleRecallWidth}
|
||||
/>
|
||||
)}
|
||||
{metadata.height && (
|
||||
<MetadataItem
|
||||
label="Height"
|
||||
value={metadata.height}
|
||||
onClick={handleRecallHeight}
|
||||
/>
|
||||
)}
|
||||
{/* {metadata.threshold !== undefined && (
|
||||
<MetadataItem
|
||||
label="Noise Threshold"
|
||||
value={metadata.threshold}
|
||||
onClick={() => dispatch(setThreshold(Number(metadata.threshold)))}
|
||||
/>
|
||||
)}
|
||||
{metadata.perlin !== undefined && (
|
||||
<MetadataItem
|
||||
label="Perlin Noise"
|
||||
value={metadata.perlin}
|
||||
onClick={() => dispatch(setPerlin(Number(metadata.perlin)))}
|
||||
/>
|
||||
)} */}
|
||||
{metadata.scheduler && (
|
||||
<MetadataItem
|
||||
label="Scheduler"
|
||||
value={metadata.scheduler}
|
||||
onClick={handleRecallScheduler}
|
||||
/>
|
||||
)}
|
||||
{metadata.steps && (
|
||||
<MetadataItem
|
||||
label="Steps"
|
||||
value={metadata.steps}
|
||||
onClick={handleRecallSteps}
|
||||
/>
|
||||
)}
|
||||
{metadata.cfg_scale !== undefined && (
|
||||
<MetadataItem
|
||||
label="CFG scale"
|
||||
value={metadata.cfg_scale}
|
||||
onClick={handleRecallCfgScale}
|
||||
/>
|
||||
)}
|
||||
{/* {metadata.variations && metadata.variations.length > 0 && (
|
||||
<MetadataItem
|
||||
label="Seed-weight pairs"
|
||||
value={seedWeightsToString(metadata.variations)}
|
||||
onClick={() =>
|
||||
dispatch(
|
||||
setSeedWeights(seedWeightsToString(metadata.variations))
|
||||
)
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{metadata.seamless && (
|
||||
<MetadataItem
|
||||
label="Seamless"
|
||||
value={metadata.seamless}
|
||||
onClick={() => dispatch(setSeamless(metadata.seamless))}
|
||||
/>
|
||||
)}
|
||||
{metadata.hires_fix && (
|
||||
<MetadataItem
|
||||
label="High Resolution Optimization"
|
||||
value={metadata.hires_fix}
|
||||
onClick={() => dispatch(setHiresFix(metadata.hires_fix))}
|
||||
/>
|
||||
)} */}
|
||||
|
||||
{/* {init_image_path && (
|
||||
<MetadataItem
|
||||
label="Initial image"
|
||||
value={init_image_path}
|
||||
isLink
|
||||
onClick={() => dispatch(setInitialImage(init_image_path))}
|
||||
/>
|
||||
)} */}
|
||||
{metadata.strength && (
|
||||
<MetadataItem
|
||||
label="Image to image strength"
|
||||
value={metadata.strength}
|
||||
onClick={handleRecallStrength}
|
||||
/>
|
||||
)}
|
||||
{/* {metadata.fit && (
|
||||
<MetadataItem
|
||||
label="Image to image fit"
|
||||
value={metadata.fit}
|
||||
onClick={() => dispatch(setShouldFitToWidthHeight(metadata.fit))}
|
||||
/>
|
||||
)} */}
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default ImageMetadataActions;
|
@ -1,131 +1,63 @@
|
||||
import { ExternalLinkIcon } from '@chakra-ui/icons';
|
||||
import {
|
||||
Box,
|
||||
Center,
|
||||
Flex,
|
||||
IconButton,
|
||||
Link,
|
||||
Tab,
|
||||
TabList,
|
||||
TabPanel,
|
||||
TabPanels,
|
||||
Tabs,
|
||||
Text,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
|
||||
import { setShouldShowImageDetails } from 'features/ui/store/uiSlice';
|
||||
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
|
||||
import { memo } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaCopy } from 'react-icons/fa';
|
||||
import { IoArrowUndoCircleOutline } from 'react-icons/io5';
|
||||
import { skipToken } from '@reduxjs/toolkit/dist/query';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useGetImageMetadataQuery } from 'services/api/endpoints/images';
|
||||
import { ImageDTO } from 'services/api/types';
|
||||
|
||||
type MetadataItemProps = {
|
||||
isLink?: boolean;
|
||||
label: string;
|
||||
onClick?: () => void;
|
||||
value: number | string | boolean;
|
||||
labelPosition?: string;
|
||||
withCopy?: boolean;
|
||||
};
|
||||
|
||||
/**
|
||||
* Component to display an individual metadata item or parameter.
|
||||
*/
|
||||
const MetadataItem = ({
|
||||
label,
|
||||
value,
|
||||
onClick,
|
||||
isLink,
|
||||
labelPosition,
|
||||
withCopy = false,
|
||||
}: MetadataItemProps) => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
if (!value) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex gap={2}>
|
||||
{onClick && (
|
||||
<Tooltip label={`Recall ${label}`}>
|
||||
<IconButton
|
||||
aria-label={t('accessibility.useThisParameter')}
|
||||
icon={<IoArrowUndoCircleOutline />}
|
||||
size="xs"
|
||||
variant="ghost"
|
||||
fontSize={20}
|
||||
onClick={onClick}
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
{withCopy && (
|
||||
<Tooltip label={`Copy ${label}`}>
|
||||
<IconButton
|
||||
aria-label={`Copy ${label}`}
|
||||
icon={<FaCopy />}
|
||||
size="xs"
|
||||
variant="ghost"
|
||||
fontSize={14}
|
||||
onClick={() => navigator.clipboard.writeText(value.toString())}
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
<Flex direction={labelPosition ? 'column' : 'row'}>
|
||||
<Text fontWeight="semibold" whiteSpace="pre-wrap" pr={2}>
|
||||
{label}:
|
||||
</Text>
|
||||
{isLink ? (
|
||||
<Link href={value.toString()} isExternal wordBreak="break-all">
|
||||
{value.toString()} <ExternalLinkIcon mx="2px" />
|
||||
</Link>
|
||||
) : (
|
||||
<Text overflowY="scroll" wordBreak="break-all">
|
||||
{value.toString()}
|
||||
</Text>
|
||||
)}
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
import ImageMetadataActions from './ImageMetadataActions';
|
||||
import MetadataJSONViewer from './MetadataJSONViewer';
|
||||
|
||||
type ImageMetadataViewerProps = {
|
||||
image: ImageDTO;
|
||||
};
|
||||
|
||||
/**
|
||||
* Image metadata viewer overlays currently selected image and provides
|
||||
* access to any of its metadata for use in processing.
|
||||
*/
|
||||
const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const {
|
||||
recallBothPrompts,
|
||||
recallPositivePrompt,
|
||||
recallNegativePrompt,
|
||||
recallSeed,
|
||||
recallInitialImage,
|
||||
recallCfgScale,
|
||||
recallModel,
|
||||
recallScheduler,
|
||||
recallSteps,
|
||||
recallWidth,
|
||||
recallHeight,
|
||||
recallStrength,
|
||||
recallAllParameters,
|
||||
} = useRecallParameters();
|
||||
// TODO: fix hotkeys
|
||||
// const dispatch = useAppDispatch();
|
||||
// useHotkeys('esc', () => {
|
||||
// dispatch(setShouldShowImageDetails(false));
|
||||
// });
|
||||
|
||||
useHotkeys('esc', () => {
|
||||
dispatch(setShouldShowImageDetails(false));
|
||||
});
|
||||
const { data } = useGetImageMetadataQuery(image?.image_name ?? skipToken);
|
||||
const metadata = data?.metadata;
|
||||
|
||||
const sessionId = image?.session_id;
|
||||
const tabData = useMemo(() => {
|
||||
const _tabData: { label: string; data: object; copyTooltip: string }[] = [];
|
||||
|
||||
const metadata = image?.metadata;
|
||||
if (data?.metadata) {
|
||||
_tabData.push({
|
||||
label: 'Core Metadata',
|
||||
data: data?.metadata,
|
||||
copyTooltip: 'Copy Core Metadata JSON',
|
||||
});
|
||||
}
|
||||
|
||||
const { t } = useTranslation();
|
||||
if (image) {
|
||||
_tabData.push({
|
||||
label: 'Image Details',
|
||||
data: image,
|
||||
copyTooltip: 'Copy Image Details JSON',
|
||||
});
|
||||
}
|
||||
|
||||
const metadataJSON = JSON.stringify(image, null, 2);
|
||||
if (data?.graph) {
|
||||
_tabData.push({
|
||||
label: 'Graph',
|
||||
data: data?.graph,
|
||||
copyTooltip: 'Copy Graph JSON',
|
||||
});
|
||||
}
|
||||
return _tabData;
|
||||
}, [data?.metadata, data?.graph, image]);
|
||||
|
||||
return (
|
||||
<Flex
|
||||
@ -136,11 +68,13 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
width: 'full',
|
||||
height: 'full',
|
||||
backdropFilter: 'blur(20px)',
|
||||
bg: 'whiteAlpha.600',
|
||||
bg: 'baseAlpha.200',
|
||||
_dark: {
|
||||
bg: 'blackAlpha.600',
|
||||
},
|
||||
overflow: 'scroll',
|
||||
borderRadius: 'base',
|
||||
position: 'absolute',
|
||||
overflow: 'hidden',
|
||||
}}
|
||||
>
|
||||
<Flex gap={2}>
|
||||
@ -150,179 +84,42 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
|
||||
<ExternalLinkIcon mx="2px" />
|
||||
</Link>
|
||||
</Flex>
|
||||
{metadata && Object.keys(metadata).length > 0 ? (
|
||||
<>
|
||||
{metadata.type && (
|
||||
<MetadataItem label="Invocation type" value={metadata.type} />
|
||||
)}
|
||||
{sessionId && <MetadataItem label="Session ID" value={sessionId} />}
|
||||
{metadata.positive_conditioning && (
|
||||
<MetadataItem
|
||||
label="Positive Prompt"
|
||||
labelPosition="top"
|
||||
value={metadata.positive_conditioning}
|
||||
onClick={() =>
|
||||
recallPositivePrompt(metadata.positive_conditioning)
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{metadata.negative_conditioning && (
|
||||
<MetadataItem
|
||||
label="Negative Prompt"
|
||||
labelPosition="top"
|
||||
value={metadata.negative_conditioning}
|
||||
onClick={() =>
|
||||
recallNegativePrompt(metadata.negative_conditioning)
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{metadata.seed !== undefined && (
|
||||
<MetadataItem
|
||||
label="Seed"
|
||||
value={metadata.seed}
|
||||
onClick={() => recallSeed(metadata.seed)}
|
||||
/>
|
||||
)}
|
||||
{metadata.model !== undefined && (
|
||||
<MetadataItem
|
||||
label="Model"
|
||||
value={metadata.model}
|
||||
onClick={() => recallModel(metadata.model)}
|
||||
/>
|
||||
)}
|
||||
{metadata.width && (
|
||||
<MetadataItem
|
||||
label="Width"
|
||||
value={metadata.width}
|
||||
onClick={() => recallWidth(metadata.width)}
|
||||
/>
|
||||
)}
|
||||
{metadata.height && (
|
||||
<MetadataItem
|
||||
label="Height"
|
||||
value={metadata.height}
|
||||
onClick={() => recallHeight(metadata.height)}
|
||||
/>
|
||||
)}
|
||||
{/* {metadata.threshold !== undefined && (
|
||||
<MetadataItem
|
||||
label="Noise Threshold"
|
||||
value={metadata.threshold}
|
||||
onClick={() => dispatch(setThreshold(Number(metadata.threshold)))}
|
||||
/>
|
||||
)}
|
||||
{metadata.perlin !== undefined && (
|
||||
<MetadataItem
|
||||
label="Perlin Noise"
|
||||
value={metadata.perlin}
|
||||
onClick={() => dispatch(setPerlin(Number(metadata.perlin)))}
|
||||
/>
|
||||
)} */}
|
||||
{metadata.scheduler && (
|
||||
<MetadataItem
|
||||
label="Scheduler"
|
||||
value={metadata.scheduler}
|
||||
onClick={() => recallScheduler(metadata.scheduler)}
|
||||
/>
|
||||
)}
|
||||
{metadata.steps && (
|
||||
<MetadataItem
|
||||
label="Steps"
|
||||
value={metadata.steps}
|
||||
onClick={() => recallSteps(metadata.steps)}
|
||||
/>
|
||||
)}
|
||||
{metadata.cfg_scale !== undefined && (
|
||||
<MetadataItem
|
||||
label="CFG scale"
|
||||
value={metadata.cfg_scale}
|
||||
onClick={() => recallCfgScale(metadata.cfg_scale)}
|
||||
/>
|
||||
)}
|
||||
{/* {metadata.variations && metadata.variations.length > 0 && (
|
||||
<MetadataItem
|
||||
label="Seed-weight pairs"
|
||||
value={seedWeightsToString(metadata.variations)}
|
||||
onClick={() =>
|
||||
dispatch(
|
||||
setSeedWeights(seedWeightsToString(metadata.variations))
|
||||
)
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{metadata.seamless && (
|
||||
<MetadataItem
|
||||
label="Seamless"
|
||||
value={metadata.seamless}
|
||||
onClick={() => dispatch(setSeamless(metadata.seamless))}
|
||||
/>
|
||||
)}
|
||||
{metadata.hires_fix && (
|
||||
<MetadataItem
|
||||
label="High Resolution Optimization"
|
||||
value={metadata.hires_fix}
|
||||
onClick={() => dispatch(setHiresFix(metadata.hires_fix))}
|
||||
/>
|
||||
)} */}
|
||||
|
||||
{/* {init_image_path && (
|
||||
<MetadataItem
|
||||
label="Initial image"
|
||||
value={init_image_path}
|
||||
isLink
|
||||
onClick={() => dispatch(setInitialImage(init_image_path))}
|
||||
/>
|
||||
)} */}
|
||||
{metadata.strength && (
|
||||
<MetadataItem
|
||||
label="Image to image strength"
|
||||
value={metadata.strength}
|
||||
onClick={() => recallStrength(metadata.strength)}
|
||||
/>
|
||||
)}
|
||||
{/* {metadata.fit && (
|
||||
<MetadataItem
|
||||
label="Image to image fit"
|
||||
value={metadata.fit}
|
||||
onClick={() => dispatch(setShouldFitToWidthHeight(metadata.fit))}
|
||||
/>
|
||||
)} */}
|
||||
</>
|
||||
) : (
|
||||
<Center width="100%" pt={10}>
|
||||
<Text fontSize="lg" fontWeight="semibold">
|
||||
No metadata available
|
||||
</Text>
|
||||
</Center>
|
||||
)}
|
||||
<Flex gap={2} direction="column" overflow="auto">
|
||||
<Flex gap={2}>
|
||||
<Tooltip label="Copy metadata JSON">
|
||||
<IconButton
|
||||
aria-label={t('accessibility.copyMetadataJson')}
|
||||
icon={<FaCopy />}
|
||||
size="xs"
|
||||
variant="ghost"
|
||||
fontSize={14}
|
||||
onClick={() => navigator.clipboard.writeText(metadataJSON)}
|
||||
/>
|
||||
</Tooltip>
|
||||
<Text fontWeight="semibold">Metadata JSON:</Text>
|
||||
</Flex>
|
||||
<OverlayScrollbarsComponent defer>
|
||||
<Box
|
||||
sx={{
|
||||
padding: 4,
|
||||
borderRadius: 'base',
|
||||
bg: 'whiteAlpha.500',
|
||||
_dark: { bg: 'blackAlpha.500' },
|
||||
w: 'full',
|
||||
}}
|
||||
>
|
||||
<pre>{metadataJSON}</pre>
|
||||
</Box>
|
||||
</OverlayScrollbarsComponent>
|
||||
</Flex>
|
||||
<ImageMetadataActions metadata={metadata} />
|
||||
|
||||
<Tabs
|
||||
variant="line"
|
||||
sx={{ display: 'flex', flexDir: 'column', w: 'full', h: 'full' }}
|
||||
>
|
||||
<TabList>
|
||||
{tabData.map((tab) => (
|
||||
<Tab
|
||||
key={tab.label}
|
||||
sx={{
|
||||
borderTopRadius: 'base',
|
||||
}}
|
||||
>
|
||||
<Text sx={{ color: 'base.700', _dark: { color: 'base.300' } }}>
|
||||
{tab.label}
|
||||
</Text>
|
||||
</Tab>
|
||||
))}
|
||||
</TabList>
|
||||
|
||||
<TabPanels sx={{ w: 'full', h: 'full' }}>
|
||||
{tabData.map((tab) => (
|
||||
<TabPanel
|
||||
key={tab.label}
|
||||
sx={{ w: 'full', h: 'full', p: 0, pt: 4 }}
|
||||
>
|
||||
<MetadataJSONViewer
|
||||
jsonObject={tab.data}
|
||||
copyTooltip={tab.copyTooltip}
|
||||
/>
|
||||
</TabPanel>
|
||||
))}
|
||||
</TabPanels>
|
||||
</Tabs>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -0,0 +1,77 @@
|
||||
import { ExternalLinkIcon } from '@chakra-ui/icons';
|
||||
import { Flex, IconButton, Link, Text, Tooltip } from '@chakra-ui/react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaCopy } from 'react-icons/fa';
|
||||
import { IoArrowUndoCircleOutline } from 'react-icons/io5';
|
||||
|
||||
type MetadataItemProps = {
|
||||
isLink?: boolean;
|
||||
label: string;
|
||||
onClick?: () => void;
|
||||
value: number | string | boolean;
|
||||
labelPosition?: string;
|
||||
withCopy?: boolean;
|
||||
};
|
||||
|
||||
/**
|
||||
* Component to display an individual metadata item or parameter.
|
||||
*/
|
||||
const MetadataItem = ({
|
||||
label,
|
||||
value,
|
||||
onClick,
|
||||
isLink,
|
||||
labelPosition,
|
||||
withCopy = false,
|
||||
}: MetadataItemProps) => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
if (!value) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex gap={2}>
|
||||
{onClick && (
|
||||
<Tooltip label={`Recall ${label}`}>
|
||||
<IconButton
|
||||
aria-label={t('accessibility.useThisParameter')}
|
||||
icon={<IoArrowUndoCircleOutline />}
|
||||
size="xs"
|
||||
variant="ghost"
|
||||
fontSize={20}
|
||||
onClick={onClick}
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
{withCopy && (
|
||||
<Tooltip label={`Copy ${label}`}>
|
||||
<IconButton
|
||||
aria-label={`Copy ${label}`}
|
||||
icon={<FaCopy />}
|
||||
size="xs"
|
||||
variant="ghost"
|
||||
fontSize={14}
|
||||
onClick={() => navigator.clipboard.writeText(value.toString())}
|
||||
/>
|
||||
</Tooltip>
|
||||
)}
|
||||
<Flex direction={labelPosition ? 'column' : 'row'}>
|
||||
<Text fontWeight="semibold" whiteSpace="pre-wrap" pr={2}>
|
||||
{label}:
|
||||
</Text>
|
||||
{isLink ? (
|
||||
<Link href={value.toString()} isExternal wordBreak="break-all">
|
||||
{value.toString()} <ExternalLinkIcon mx="2px" />
|
||||
</Link>
|
||||
) : (
|
||||
<Text overflowY="scroll" wordBreak="break-all">
|
||||
{value.toString()}
|
||||
</Text>
|
||||
)}
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default MetadataItem;
|
@ -0,0 +1,70 @@
|
||||
import { Box, Flex, IconButton, Tooltip } from '@chakra-ui/react';
|
||||
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
|
||||
import { useMemo } from 'react';
|
||||
import { FaCopy } from 'react-icons/fa';
|
||||
|
||||
type Props = {
|
||||
copyTooltip: string;
|
||||
jsonObject: object;
|
||||
};
|
||||
|
||||
const MetadataJSONViewer = (props: Props) => {
|
||||
const { copyTooltip, jsonObject } = props;
|
||||
const jsonString = useMemo(
|
||||
() => JSON.stringify(jsonObject, null, 2),
|
||||
[jsonObject]
|
||||
);
|
||||
|
||||
return (
|
||||
<Flex
|
||||
sx={{
|
||||
borderRadius: 'base',
|
||||
bg: 'whiteAlpha.500',
|
||||
_dark: { bg: 'blackAlpha.500' },
|
||||
flexGrow: 1,
|
||||
w: 'full',
|
||||
h: 'full',
|
||||
position: 'relative',
|
||||
}}
|
||||
>
|
||||
<Box
|
||||
sx={{
|
||||
position: 'absolute',
|
||||
top: 0,
|
||||
left: 0,
|
||||
right: 0,
|
||||
bottom: 0,
|
||||
overflow: 'auto',
|
||||
p: 4,
|
||||
}}
|
||||
>
|
||||
<OverlayScrollbarsComponent
|
||||
defer
|
||||
style={{ height: '100%', width: '100%' }}
|
||||
options={{
|
||||
scrollbars: {
|
||||
visibility: 'auto',
|
||||
autoHide: 'move',
|
||||
autoHideDelay: 1300,
|
||||
theme: 'os-theme-dark',
|
||||
},
|
||||
}}
|
||||
>
|
||||
<pre>{jsonString}</pre>
|
||||
</OverlayScrollbarsComponent>
|
||||
</Box>
|
||||
<Flex sx={{ position: 'absolute', top: 0, insetInlineEnd: 0, p: 2 }}>
|
||||
<Tooltip label={copyTooltip}>
|
||||
<IconButton
|
||||
aria-label={copyTooltip}
|
||||
icon={<FaCopy />}
|
||||
variant="ghost"
|
||||
onClick={() => navigator.clipboard.writeText(jsonString)}
|
||||
/>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default MetadataJSONViewer;
|
@ -45,7 +45,7 @@ const ParamLoraSelect = () => {
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: lora.name,
|
||||
label: lora.model_name,
|
||||
disabled,
|
||||
group: MODEL_TYPE_MAP[lora.base_model],
|
||||
tooltip: disabled
|
||||
|
@ -1,94 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
|
||||
import { CollectInvocation, ControlNetInvocation } from 'services/api/types';
|
||||
import { NonNullableGraph } from '../types/types';
|
||||
import { CONTROL_NET_COLLECT } from './graphBuilders/constants';
|
||||
|
||||
export const addControlNetToLinearGraph = (
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string,
|
||||
state: RootState
|
||||
): void => {
|
||||
const { isEnabled: isControlNetEnabled, controlNets } = state.controlNet;
|
||||
|
||||
const validControlNets = getValidControlNets(controlNets);
|
||||
|
||||
if (isControlNetEnabled && Boolean(validControlNets.length)) {
|
||||
if (validControlNets.length > 1) {
|
||||
// We have multiple controlnets, add ControlNet collector
|
||||
const controlNetIterateNode: CollectInvocation = {
|
||||
id: CONTROL_NET_COLLECT,
|
||||
type: 'collect',
|
||||
};
|
||||
graph.nodes[controlNetIterateNode.id] = controlNetIterateNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetIterateNode.id, field: 'collection' },
|
||||
destination: {
|
||||
node_id: baseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
validControlNets.forEach((controlNet) => {
|
||||
const {
|
||||
controlNetId,
|
||||
controlImage,
|
||||
processedControlImage,
|
||||
beginStepPct,
|
||||
endStepPct,
|
||||
controlMode,
|
||||
model,
|
||||
processorType,
|
||||
weight,
|
||||
} = controlNet;
|
||||
|
||||
const controlNetNode: ControlNetInvocation = {
|
||||
id: `control_net_${controlNetId}`,
|
||||
type: 'controlnet',
|
||||
begin_step_percent: beginStepPct,
|
||||
end_step_percent: endStepPct,
|
||||
control_mode: controlMode,
|
||||
control_model: model as ControlNetInvocation['control_model'],
|
||||
control_weight: weight,
|
||||
};
|
||||
|
||||
if (processedControlImage && processorType !== 'none') {
|
||||
// We've already processed the image in the app, so we can just use the processed image
|
||||
controlNetNode.image = {
|
||||
image_name: processedControlImage,
|
||||
};
|
||||
} else if (controlImage) {
|
||||
// The control image is preprocessed
|
||||
controlNetNode.image = {
|
||||
image_name: controlImage,
|
||||
};
|
||||
} else {
|
||||
// Skip ControlNets without an unprocessed image - should never happen if everything is working correctly
|
||||
return;
|
||||
}
|
||||
|
||||
graph.nodes[controlNetNode.id] = controlNetNode;
|
||||
|
||||
if (validControlNets.length > 1) {
|
||||
// if we have multiple controlnets, link to the collector
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: CONTROL_NET_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// otherwise, link directly to the base node
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: baseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
@ -1,40 +0,0 @@
|
||||
import {
|
||||
Edge,
|
||||
ImageToImageInvocation,
|
||||
InpaintInvocation,
|
||||
IterateInvocation,
|
||||
RandomRangeInvocation,
|
||||
RangeInvocation,
|
||||
TextToImageInvocation,
|
||||
} from 'services/api/types';
|
||||
|
||||
export const buildEdges = (
|
||||
baseNode: TextToImageInvocation | ImageToImageInvocation | InpaintInvocation,
|
||||
rangeNode: RangeInvocation | RandomRangeInvocation,
|
||||
iterateNode: IterateInvocation
|
||||
): Edge[] => {
|
||||
const edges: Edge[] = [
|
||||
{
|
||||
source: {
|
||||
node_id: rangeNode.id,
|
||||
field: 'collection',
|
||||
},
|
||||
destination: {
|
||||
node_id: iterateNode.id,
|
||||
field: 'collection',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: iterateNode.id,
|
||||
field: 'item',
|
||||
},
|
||||
destination: {
|
||||
node_id: baseNode.id,
|
||||
field: 'seed',
|
||||
},
|
||||
},
|
||||
];
|
||||
|
||||
return edges;
|
||||
};
|
@ -0,0 +1,100 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
|
||||
import { omit } from 'lodash-es';
|
||||
import {
|
||||
CollectInvocation,
|
||||
ControlField,
|
||||
ControlNetInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
} from 'services/api/types';
|
||||
import { NonNullableGraph } from '../../types/types';
|
||||
import { CONTROL_NET_COLLECT, METADATA_ACCUMULATOR } from './constants';
|
||||
|
||||
export const addControlNetToLinearGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
): void => {
|
||||
const { isEnabled: isControlNetEnabled, controlNets } = state.controlNet;
|
||||
|
||||
const validControlNets = getValidControlNets(controlNets);
|
||||
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (isControlNetEnabled && Boolean(validControlNets.length)) {
|
||||
if (validControlNets.length) {
|
||||
// We have multiple controlnets, add ControlNet collector
|
||||
const controlNetIterateNode: CollectInvocation = {
|
||||
id: CONTROL_NET_COLLECT,
|
||||
type: 'collect',
|
||||
};
|
||||
graph.nodes[CONTROL_NET_COLLECT] = controlNetIterateNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: CONTROL_NET_COLLECT, field: 'collection' },
|
||||
destination: {
|
||||
node_id: baseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
|
||||
validControlNets.forEach((controlNet) => {
|
||||
const {
|
||||
controlNetId,
|
||||
controlImage,
|
||||
processedControlImage,
|
||||
beginStepPct,
|
||||
endStepPct,
|
||||
controlMode,
|
||||
model,
|
||||
processorType,
|
||||
weight,
|
||||
} = controlNet;
|
||||
|
||||
const controlNetNode: ControlNetInvocation = {
|
||||
id: `control_net_${controlNetId}`,
|
||||
type: 'controlnet',
|
||||
begin_step_percent: beginStepPct,
|
||||
end_step_percent: endStepPct,
|
||||
control_mode: controlMode,
|
||||
control_model: model as ControlNetInvocation['control_model'],
|
||||
control_weight: weight,
|
||||
};
|
||||
|
||||
if (processedControlImage && processorType !== 'none') {
|
||||
// We've already processed the image in the app, so we can just use the processed image
|
||||
controlNetNode.image = {
|
||||
image_name: processedControlImage,
|
||||
};
|
||||
} else if (controlImage) {
|
||||
// The control image is preprocessed
|
||||
controlNetNode.image = {
|
||||
image_name: controlImage,
|
||||
};
|
||||
} else {
|
||||
// Skip ControlNets without an unprocessed image - should never happen if everything is working correctly
|
||||
return;
|
||||
}
|
||||
|
||||
graph.nodes[controlNetNode.id] = controlNetNode;
|
||||
|
||||
// metadata accumulator only needs a control field - not the whole node
|
||||
// extract what we need and add to the accumulator
|
||||
const controlField = omit(controlNetNode, [
|
||||
'id',
|
||||
'type',
|
||||
]) as ControlField;
|
||||
metadataAccumulator.controlnets.push(controlField);
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: CONTROL_NET_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
@ -1,8 +1,10 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { unset } from 'lodash-es';
|
||||
import {
|
||||
DynamicPromptInvocation,
|
||||
IterateInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
NoiseInvocation,
|
||||
RandomIntInvocation,
|
||||
RangeOfSizeInvocation,
|
||||
@ -10,16 +12,16 @@ import {
|
||||
import {
|
||||
DYNAMIC_PROMPT,
|
||||
ITERATE,
|
||||
METADATA_ACCUMULATOR,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
RANGE_OF_SIZE,
|
||||
} from './constants';
|
||||
import { unset } from 'lodash-es';
|
||||
|
||||
export const addDynamicPromptsToGraph = (
|
||||
graph: NonNullableGraph,
|
||||
state: RootState
|
||||
state: RootState,
|
||||
graph: NonNullableGraph
|
||||
): void => {
|
||||
const { positivePrompt, iterations, seed, shouldRandomizeSeed } =
|
||||
state.generation;
|
||||
@ -30,6 +32,10 @@ export const addDynamicPromptsToGraph = (
|
||||
maxPrompts,
|
||||
} = state.dynamicPrompts;
|
||||
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (isDynamicPromptsEnabled) {
|
||||
// iteration is handled via dynamic prompts
|
||||
unset(graph.nodes[POSITIVE_CONDITIONING], 'prompt');
|
||||
@ -74,6 +80,18 @@ export const addDynamicPromptsToGraph = (
|
||||
}
|
||||
);
|
||||
|
||||
// hook up positive prompt to metadata
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: ITERATE,
|
||||
field: 'item',
|
||||
},
|
||||
destination: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'positive_prompt',
|
||||
},
|
||||
});
|
||||
|
||||
if (shouldRandomizeSeed) {
|
||||
// Random int node to generate the starting seed
|
||||
const randomIntNode: RandomIntInvocation = {
|
||||
@ -88,11 +106,22 @@ export const addDynamicPromptsToGraph = (
|
||||
source: { node_id: RANDOM_INT, field: 'a' },
|
||||
destination: { node_id: NOISE, field: 'seed' },
|
||||
});
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: RANDOM_INT, field: 'a' },
|
||||
destination: { node_id: METADATA_ACCUMULATOR, field: 'seed' },
|
||||
});
|
||||
} else {
|
||||
// User specified seed, so set the start of the range of size to the seed
|
||||
(graph.nodes[NOISE] as NoiseInvocation).seed = seed;
|
||||
|
||||
// hook up seed to metadata
|
||||
metadataAccumulator.seed = seed;
|
||||
}
|
||||
} else {
|
||||
// no dynamic prompt - hook up positive prompt
|
||||
metadataAccumulator.positive_prompt = positivePrompt;
|
||||
|
||||
const rangeOfSizeNode: RangeOfSizeInvocation = {
|
||||
id: RANGE_OF_SIZE,
|
||||
type: 'range_of_size',
|
||||
@ -130,6 +159,18 @@ export const addDynamicPromptsToGraph = (
|
||||
},
|
||||
});
|
||||
|
||||
// hook up seed to metadata
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: ITERATE,
|
||||
field: 'item',
|
||||
},
|
||||
destination: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'seed',
|
||||
},
|
||||
});
|
||||
|
||||
// handle seed
|
||||
if (shouldRandomizeSeed) {
|
||||
// Random int node to generate the starting seed
|
||||
|
@ -1,19 +1,23 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { forEach, size } from 'lodash-es';
|
||||
import { LoraLoaderInvocation } from 'services/api/types';
|
||||
import {
|
||||
LoraLoaderInvocation,
|
||||
MetadataAccumulatorInvocation,
|
||||
} from 'services/api/types';
|
||||
import { modelIdToLoRAModelField } from '../modelIdToLoRAName';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
LORA_LOADER,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING,
|
||||
} from './constants';
|
||||
|
||||
export const addLoRAsToGraph = (
|
||||
graph: NonNullableGraph,
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
): void => {
|
||||
/**
|
||||
@ -26,6 +30,9 @@ export const addLoRAsToGraph = (
|
||||
|
||||
const { loras } = state.lora;
|
||||
const loraCount = size(loras);
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (loraCount > 0) {
|
||||
// Remove MAIN_MODEL_LOADER unet connection to feed it to LoRAs
|
||||
@ -62,6 +69,10 @@ export const addLoRAsToGraph = (
|
||||
weight,
|
||||
};
|
||||
|
||||
// add the lora to the metadata accumulator
|
||||
metadataAccumulator.loras.push({ lora: loraField, weight });
|
||||
|
||||
// add to graph
|
||||
graph.nodes[currentLoraNodeId] = loraLoaderNode;
|
||||
|
||||
if (currentLoraIndex === 0) {
|
||||
|
@ -1,5 +1,6 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { MetadataAccumulatorInvocation } from 'services/api/types';
|
||||
import { modelIdToVAEModelField } from '../modelIdToVAEModelField';
|
||||
import {
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
@ -8,18 +9,22 @@ import {
|
||||
INPAINT_GRAPH,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
|
||||
export const addVAEToGraph = (
|
||||
graph: NonNullableGraph,
|
||||
state: RootState
|
||||
state: RootState,
|
||||
graph: NonNullableGraph
|
||||
): void => {
|
||||
const { vae } = state.generation;
|
||||
const vae_model = modelIdToVAEModelField(vae?.id || '');
|
||||
|
||||
const isAutoVae = !vae;
|
||||
const metadataAccumulator = graph.nodes[
|
||||
METADATA_ACCUMULATOR
|
||||
] as MetadataAccumulatorInvocation;
|
||||
|
||||
if (!isAutoVae) {
|
||||
graph.nodes[VAE_LOADER] = {
|
||||
@ -67,4 +72,8 @@ export const addVAEToGraph = (
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
if (vae) {
|
||||
metadataAccumulator.vae = vae_model;
|
||||
}
|
||||
};
|
||||
|
@ -7,8 +7,7 @@ import {
|
||||
ImageResizeInvocation,
|
||||
ImageToLatentsInvocation,
|
||||
} from 'services/api/types';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
@ -19,6 +18,7 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_LATENTS,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -37,7 +37,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -50,7 +50,10 @@ export const buildCanvasImageToImageGraph = (
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
@ -275,16 +278,51 @@ export const buildCanvasImageToImageGraph = (
|
||||
});
|
||||
}
|
||||
|
||||
addLoRAsToGraph(graph, state, LATENTS_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'img2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
strength,
|
||||
init_image: initialImage.image_name,
|
||||
};
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, LATENTS_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -212,10 +212,10 @@ export const buildCanvasInpaintGraph = (
|
||||
],
|
||||
};
|
||||
|
||||
addLoRAsToGraph(graph, state, INPAINT);
|
||||
addLoRAsToGraph(state, graph, INPAINT);
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// handle seed
|
||||
if (shouldRandomizeSeed) {
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
@ -10,6 +10,7 @@ import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -17,6 +18,8 @@ import {
|
||||
TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
/**
|
||||
* Builds the Canvas tab's Text to Image graph.
|
||||
*/
|
||||
@ -26,7 +29,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -38,7 +41,10 @@ export const buildCanvasTextToImageGraph = (
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
@ -180,16 +186,49 @@ export const buildCanvasTextToImageGraph = (
|
||||
],
|
||||
};
|
||||
|
||||
addLoRAsToGraph(graph, state, TEXT_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
};
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, TEXT_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -3,25 +3,21 @@ import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
ImageCollectionInvocation,
|
||||
ImageResizeInvocation,
|
||||
ImageToLatentsInvocation,
|
||||
IterateInvocation,
|
||||
} from 'services/api/types';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
IMAGE_COLLECTION,
|
||||
IMAGE_COLLECTION_ITERATE,
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
IMAGE_TO_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_LATENTS,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -39,7 +35,7 @@ export const buildLinearImageToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -53,14 +49,15 @@ export const buildLinearImageToImageGraph = (
|
||||
shouldUseNoiseSettings,
|
||||
} = state.generation;
|
||||
|
||||
const {
|
||||
isEnabled: isBatchEnabled,
|
||||
imageNames: batchImageNames,
|
||||
asInitialImage,
|
||||
} = state.batch;
|
||||
// TODO: add batch functionality
|
||||
// const {
|
||||
// isEnabled: isBatchEnabled,
|
||||
// imageNames: batchImageNames,
|
||||
// asInitialImage,
|
||||
// } = state.batch;
|
||||
|
||||
const shouldBatch =
|
||||
isBatchEnabled && batchImageNames.length > 0 && asInitialImage;
|
||||
// const shouldBatch =
|
||||
// isBatchEnabled && batchImageNames.length > 0 && asInitialImage;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
@ -71,12 +68,15 @@ export const buildLinearImageToImageGraph = (
|
||||
* the `fit` param. These are added to the graph at the end.
|
||||
*/
|
||||
|
||||
if (!initialImage && !shouldBatch) {
|
||||
if (!initialImage) {
|
||||
moduleLog.error('No initial image found in state');
|
||||
throw new Error('No initial image found in state');
|
||||
}
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
@ -295,51 +295,87 @@ export const buildLinearImageToImageGraph = (
|
||||
});
|
||||
}
|
||||
|
||||
if (isBatchEnabled && asInitialImage && batchImageNames.length > 0) {
|
||||
// we are going to connect an iterate up to the init image
|
||||
delete (graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image;
|
||||
// TODO: add batch functionality
|
||||
// if (isBatchEnabled && asInitialImage && batchImageNames.length > 0) {
|
||||
// // we are going to connect an iterate up to the init image
|
||||
// delete (graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image;
|
||||
|
||||
const imageCollection: ImageCollectionInvocation = {
|
||||
id: IMAGE_COLLECTION,
|
||||
type: 'image_collection',
|
||||
images: batchImageNames.map((image_name) => ({ image_name })),
|
||||
};
|
||||
// const imageCollection: ImageCollectionInvocation = {
|
||||
// id: IMAGE_COLLECTION,
|
||||
// type: 'image_collection',
|
||||
// images: batchImageNames.map((image_name) => ({ image_name })),
|
||||
// };
|
||||
|
||||
const imageCollectionIterate: IterateInvocation = {
|
||||
id: IMAGE_COLLECTION_ITERATE,
|
||||
type: 'iterate',
|
||||
};
|
||||
// const imageCollectionIterate: IterateInvocation = {
|
||||
// id: IMAGE_COLLECTION_ITERATE,
|
||||
// type: 'iterate',
|
||||
// };
|
||||
|
||||
graph.nodes[IMAGE_COLLECTION] = imageCollection;
|
||||
graph.nodes[IMAGE_COLLECTION_ITERATE] = imageCollectionIterate;
|
||||
// graph.nodes[IMAGE_COLLECTION] = imageCollection;
|
||||
// graph.nodes[IMAGE_COLLECTION_ITERATE] = imageCollectionIterate;
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_COLLECTION, field: 'collection' },
|
||||
destination: {
|
||||
node_id: IMAGE_COLLECTION_ITERATE,
|
||||
field: 'collection',
|
||||
},
|
||||
});
|
||||
// graph.edges.push({
|
||||
// source: { node_id: IMAGE_COLLECTION, field: 'collection' },
|
||||
// destination: {
|
||||
// node_id: IMAGE_COLLECTION_ITERATE,
|
||||
// field: 'collection',
|
||||
// },
|
||||
// });
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_COLLECTION_ITERATE, field: 'item' },
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
}
|
||||
// graph.edges.push({
|
||||
// source: { node_id: IMAGE_COLLECTION_ITERATE, field: 'item' },
|
||||
// destination: {
|
||||
// node_id: IMAGE_TO_LATENTS,
|
||||
// field: 'image',
|
||||
// },
|
||||
// });
|
||||
// }
|
||||
|
||||
addLoRAsToGraph(graph, state, LATENTS_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'img2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
strength,
|
||||
init_image: initialImage.imageName,
|
||||
};
|
||||
|
||||
// Add VAE
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, LATENTS_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToMainModelField } from '../modelIdToMainModelField';
|
||||
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
@ -10,6 +10,7 @@ import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
@ -17,13 +18,15 @@ import {
|
||||
TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
export const buildLinearTextToImageGraph = (
|
||||
state: RootState
|
||||
): NonNullableGraph => {
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: currentModel,
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -34,12 +37,15 @@ export const buildLinearTextToImageGraph = (
|
||||
shouldUseNoiseSettings,
|
||||
} = state.generation;
|
||||
|
||||
const model = modelIdToMainModelField(currentModel?.id || '');
|
||||
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
if (!model) {
|
||||
moduleLog.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@ -176,16 +182,49 @@ export const buildLinearTextToImageGraph = (
|
||||
],
|
||||
};
|
||||
|
||||
addLoRAsToGraph(graph, state, TEXT_TO_LATENTS);
|
||||
// add metadata accumulator, which is only mostly populated - some fields are added later
|
||||
graph.nodes[METADATA_ACCUMULATOR] = {
|
||||
id: METADATA_ACCUMULATOR,
|
||||
type: 'metadata_accumulator',
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: '', // set in addDynamicPromptsToGraph
|
||||
negative_prompt: negativePrompt,
|
||||
model,
|
||||
seed: 0, // set in addDynamicPromptsToGraph
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
vae: undefined, // option; set in addVAEToGraph
|
||||
controlnets: [], // populated in addControlNetToLinearGraph
|
||||
loras: [], // populated in addLoRAsToGraph
|
||||
clip_skip: clipSkip,
|
||||
};
|
||||
|
||||
// Add Custom VAE Support
|
||||
addVAEToGraph(graph, state);
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA_ACCUMULATOR,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
|
||||
// add dynamic prompts, mutating `graph`
|
||||
addDynamicPromptsToGraph(graph, state);
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
// add controlnet, mutating `graph`
|
||||
addControlNetToLinearGraph(graph, TEXT_TO_LATENTS, state);
|
||||
addControlNetToLinearGraph(state, graph, TEXT_TO_LATENTS);
|
||||
|
||||
return graph;
|
||||
};
|
||||
|
@ -19,6 +19,7 @@ export const CONTROL_NET_COLLECT = 'control_net_collect';
|
||||
export const DYNAMIC_PROMPT = 'dynamic_prompt';
|
||||
export const IMAGE_COLLECTION = 'image_collection';
|
||||
export const IMAGE_COLLECTION_ITERATE = 'image_collection_iterate';
|
||||
export const METADATA_ACCUMULATOR = 'metadata_accumulator';
|
||||
|
||||
// friendly graph ids
|
||||
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';
|
||||
|
@ -5,17 +5,21 @@ import {
|
||||
InputFieldTemplate,
|
||||
InvocationSchemaObject,
|
||||
InvocationTemplate,
|
||||
isInvocationSchemaObject,
|
||||
OutputFieldTemplate,
|
||||
isInvocationSchemaObject,
|
||||
} from '../types/types';
|
||||
import {
|
||||
buildInputFieldTemplate,
|
||||
buildOutputFieldTemplates,
|
||||
} from './fieldTemplateBuilders';
|
||||
|
||||
const RESERVED_FIELD_NAMES = ['id', 'type', 'is_intermediate'];
|
||||
const RESERVED_FIELD_NAMES = ['id', 'type', 'is_intermediate', 'core_metadata'];
|
||||
|
||||
const invocationDenylist = ['Graph', 'InvocationMeta'];
|
||||
const invocationDenylist = [
|
||||
'Graph',
|
||||
'InvocationMeta',
|
||||
'MetadataAccumulatorInvocation',
|
||||
];
|
||||
|
||||
export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||
// filter out non-invocation schemas, plus some tricky invocations for now
|
||||
|
@ -162,7 +162,7 @@ export const useRecallParameters = () => {
|
||||
parameterNotSetToast();
|
||||
return;
|
||||
}
|
||||
dispatch(modelSelected(model?.id || ''));
|
||||
dispatch(modelSelected(model));
|
||||
parameterSetToast();
|
||||
},
|
||||
[dispatch, parameterSetToast, parameterNotSetToast]
|
||||
|
@ -1,8 +1,10 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { ImageDTO } from 'services/api/types';
|
||||
import { ImageDTO, MainModelField } from 'services/api/types';
|
||||
|
||||
export const initialImageSelected = createAction<ImageDTO | string | undefined>(
|
||||
'generation/initialImageSelected'
|
||||
);
|
||||
|
||||
export const modelSelected = createAction<string>('generation/modelSelected');
|
||||
export const modelSelected = createAction<MainModelField>(
|
||||
'generation/modelSelected'
|
||||
);
|
||||
|
@ -8,12 +8,11 @@ import {
|
||||
setShouldShowAdvancedOptions,
|
||||
} from 'features/ui/store/uiSlice';
|
||||
import { clamp } from 'lodash-es';
|
||||
import { ImageDTO } from 'services/api/types';
|
||||
import { ImageDTO, MainModelField } from 'services/api/types';
|
||||
import { clipSkipMap } from '../components/Parameters/Advanced/ParamClipSkip';
|
||||
import {
|
||||
CfgScaleParam,
|
||||
HeightParam,
|
||||
MainModelParam,
|
||||
NegativePromptParam,
|
||||
PositivePromptParam,
|
||||
SchedulerParam,
|
||||
@ -54,7 +53,7 @@ export interface GenerationState {
|
||||
shouldUseSymmetry: boolean;
|
||||
horizontalSymmetrySteps: number;
|
||||
verticalSymmetrySteps: number;
|
||||
model: MainModelParam | null;
|
||||
model: MainModelField | null;
|
||||
vae: VaeModelParam | null;
|
||||
seamlessXAxis: boolean;
|
||||
seamlessYAxis: boolean;
|
||||
@ -227,23 +226,17 @@ export const generationSlice = createSlice({
|
||||
const { image_name, width, height } = action.payload;
|
||||
state.initialImage = { imageName: image_name, width, height };
|
||||
},
|
||||
modelSelected: (state, action: PayloadAction<string>) => {
|
||||
const [base_model, type, name] = action.payload.split('/');
|
||||
modelChanged: (state, action: PayloadAction<MainModelField | null>) => {
|
||||
if (!action.payload) {
|
||||
state.model = null;
|
||||
}
|
||||
|
||||
state.model = zMainModel.parse({
|
||||
id: action.payload,
|
||||
base_model,
|
||||
name,
|
||||
type,
|
||||
});
|
||||
state.model = zMainModel.parse(action.payload);
|
||||
|
||||
// Clamp ClipSkip Based On Selected Model
|
||||
const { maxClip } = clipSkipMap[state.model.base_model];
|
||||
state.clipSkip = clamp(state.clipSkip, 0, maxClip);
|
||||
},
|
||||
modelChanged: (state, action: PayloadAction<MainModelParam>) => {
|
||||
state.model = action.payload;
|
||||
},
|
||||
vaeSelected: (state, action: PayloadAction<VaeModelParam | null>) => {
|
||||
state.vae = action.payload;
|
||||
},
|
||||
|
@ -135,8 +135,7 @@ export type BaseModelParam = z.infer<typeof zBaseModel>;
|
||||
* TODO: Make this a dynamically generated enum?
|
||||
*/
|
||||
export const zMainModel = z.object({
|
||||
id: z.string(),
|
||||
name: z.string(),
|
||||
model_name: z.string(),
|
||||
base_model: zBaseModel,
|
||||
});
|
||||
|
||||
|
@ -1,13 +1,16 @@
|
||||
import { memo, useCallback, useEffect, useMemo } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { modelIdToMainModelField } from 'features/nodes/util/modelIdToMainModelField';
|
||||
import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { forEach, isString } from 'lodash-es';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
|
||||
export const MODEL_TYPE_MAP = {
|
||||
@ -15,13 +18,17 @@ export const MODEL_TYPE_MAP = {
|
||||
'sd-2': 'Stable Diffusion 2.x',
|
||||
};
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => ({ currentModel: state.generation.model }),
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ModelSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const currentModel = useAppSelector(
|
||||
(state: RootState) => state.generation.model
|
||||
);
|
||||
const { currentModel } = useAppSelector(selector);
|
||||
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery();
|
||||
|
||||
@ -39,7 +46,7 @@ const ModelSelect = () => {
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.name,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
@ -48,7 +55,10 @@ const ModelSelect = () => {
|
||||
}, [mainModels]);
|
||||
|
||||
const selectedModel = useMemo(
|
||||
() => mainModels?.entities[currentModel?.id || ''],
|
||||
() =>
|
||||
mainModels?.entities[
|
||||
`${currentModel?.base_model}/main/${currentModel?.model_name}`
|
||||
],
|
||||
[mainModels?.entities, currentModel]
|
||||
);
|
||||
|
||||
@ -57,31 +67,13 @@ const ModelSelect = () => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
dispatch(modelSelected(v));
|
||||
|
||||
const modelField = modelIdToMainModelField(v);
|
||||
dispatch(modelSelected(modelField));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
if (isLoading) {
|
||||
// return early here to avoid resetting model selection before we've loaded the available models
|
||||
return;
|
||||
}
|
||||
|
||||
if (selectedModel && mainModels?.ids.includes(selectedModel?.id)) {
|
||||
// the selected model is an available model, no need to change it
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModel = mainModels?.ids[0];
|
||||
|
||||
if (!isString(firstModel)) {
|
||||
return;
|
||||
}
|
||||
|
||||
handleChangeModel(firstModel);
|
||||
}, [handleChangeModel, isLoading, mainModels?.ids, selectedModel]);
|
||||
|
||||
return isLoading ? (
|
||||
<IAIMantineSelect
|
||||
label={t('modelManager.model')}
|
||||
@ -94,9 +86,10 @@ const ModelSelect = () => {
|
||||
tooltip={selectedModel?.description}
|
||||
label={t('modelManager.model')}
|
||||
value={selectedModel?.id}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models detected!'}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models available'}
|
||||
data={data}
|
||||
error={data.length === 0}
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
/>
|
||||
);
|
||||
|
@ -50,7 +50,7 @@ const VAESelect = () => {
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.name,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
disabled,
|
||||
tooltip: disabled
|
||||
|
@ -1,13 +1,22 @@
|
||||
import { ApiFullTagDescription, api } from '..';
|
||||
import { components } from '../schema';
|
||||
import { ImageDTO } from '../types';
|
||||
|
||||
/**
|
||||
* This is an unsafe type; the object inside is not guaranteed to be valid.
|
||||
*/
|
||||
export type UnsafeImageMetadata = {
|
||||
metadata: components['schemas']['CoreMetadata'];
|
||||
graph: NonNullable<components['schemas']['Graph']>;
|
||||
};
|
||||
|
||||
export const imagesApi = api.injectEndpoints({
|
||||
endpoints: (build) => ({
|
||||
/**
|
||||
* Image Queries
|
||||
*/
|
||||
getImageDTO: build.query<ImageDTO, string>({
|
||||
query: (image_name) => ({ url: `images/${image_name}/metadata` }),
|
||||
query: (image_name) => ({ url: `images/${image_name}` }),
|
||||
providesTags: (result, error, arg) => {
|
||||
const tags: ApiFullTagDescription[] = [{ type: 'Image', id: arg }];
|
||||
if (result?.board_id) {
|
||||
@ -17,7 +26,17 @@ export const imagesApi = api.injectEndpoints({
|
||||
},
|
||||
keepUnusedDataFor: 86400, // 24 hours
|
||||
}),
|
||||
getImageMetadata: build.query<UnsafeImageMetadata, string>({
|
||||
query: (image_name) => ({ url: `images/${image_name}/metadata` }),
|
||||
providesTags: (result, error, arg) => {
|
||||
const tags: ApiFullTagDescription[] = [
|
||||
{ type: 'ImageMetadata', id: arg },
|
||||
];
|
||||
return tags;
|
||||
},
|
||||
keepUnusedDataFor: 86400, // 24 hours
|
||||
}),
|
||||
}),
|
||||
});
|
||||
|
||||
export const { useGetImageDTOQuery } = imagesApi;
|
||||
export const { useGetImageDTOQuery, useGetImageMetadataQuery } = imagesApi;
|
||||
|
@ -33,25 +33,28 @@ type AnyModelConfigEntity =
|
||||
| VaeModelConfigEntity;
|
||||
|
||||
const mainModelsAdapter = createEntityAdapter<MainModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
const loraModelsAdapter = createEntityAdapter<LoRAModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
const controlNetModelsAdapter =
|
||||
createEntityAdapter<ControlNetModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
const textualInversionModelsAdapter =
|
||||
createEntityAdapter<TextualInversionModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
const vaeModelsAdapter = createEntityAdapter<VaeModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
|
||||
export const getModelId = ({ base_model, type, name }: AnyModelConfig) =>
|
||||
`${base_model}/${type}/${name}`;
|
||||
export const getModelId = ({
|
||||
base_model,
|
||||
model_type,
|
||||
model_name,
|
||||
}: AnyModelConfig) => `${base_model}/${model_type}/${model_name}`;
|
||||
|
||||
const createModelEntities = <T extends AnyModelConfigEntity>(
|
||||
models: AnyModelConfig[]
|
||||
|
@ -1,3 +1,4 @@
|
||||
import { FullTagDescription } from '@reduxjs/toolkit/dist/query/endpointDefinitions';
|
||||
import {
|
||||
BaseQueryFn,
|
||||
FetchArgs,
|
||||
@ -5,10 +6,9 @@ import {
|
||||
createApi,
|
||||
fetchBaseQuery,
|
||||
} from '@reduxjs/toolkit/query/react';
|
||||
import { FullTagDescription } from '@reduxjs/toolkit/dist/query/endpointDefinitions';
|
||||
import { $authToken, $baseUrl } from 'services/api/client';
|
||||
|
||||
export const tagTypes = ['Board', 'Image', 'Model'];
|
||||
export const tagTypes = ['Board', 'Image', 'ImageMetadata', 'Model'];
|
||||
export type ApiFullTagDescription = FullTagDescription<
|
||||
(typeof tagTypes)[number]
|
||||
>;
|
||||
|
@ -1,9 +1,9 @@
|
||||
import queryString from 'query-string';
|
||||
import { createAppAsyncThunk } from 'app/store/storeUtils';
|
||||
import { selectImagesAll } from 'features/gallery/store/gallerySlice';
|
||||
import { size } from 'lodash-es';
|
||||
import { paths } from 'services/api/schema';
|
||||
import queryString from 'query-string';
|
||||
import { $client } from 'services/api/client';
|
||||
import { paths } from 'services/api/schema';
|
||||
|
||||
type GetImageUrlsArg =
|
||||
paths['/api/v1/images/{image_name}/urls']['get']['parameters']['path'];
|
||||
@ -24,7 +24,7 @@ export const imageUrlsReceived = createAppAsyncThunk<
|
||||
GetImageUrlsResponse,
|
||||
GetImageUrlsArg,
|
||||
GetImageUrlsThunkConfig
|
||||
>('api/imageUrlsReceived', async (arg, { rejectWithValue }) => {
|
||||
>('thunkApi/imageUrlsReceived', async (arg, { rejectWithValue }) => {
|
||||
const { image_name } = arg;
|
||||
const { get } = $client.get();
|
||||
const { data, error, response } = await get(
|
||||
@ -46,10 +46,10 @@ export const imageUrlsReceived = createAppAsyncThunk<
|
||||
});
|
||||
|
||||
type GetImageMetadataArg =
|
||||
paths['/api/v1/images/{image_name}/metadata']['get']['parameters']['path'];
|
||||
paths['/api/v1/images/{image_name}']['get']['parameters']['path'];
|
||||
|
||||
type GetImageMetadataResponse =
|
||||
paths['/api/v1/images/{image_name}/metadata']['get']['responses']['200']['content']['application/json'];
|
||||
paths['/api/v1/images/{image_name}']['get']['responses']['200']['content']['application/json'];
|
||||
|
||||
type GetImageMetadataThunkConfig = {
|
||||
rejectValue: {
|
||||
@ -58,21 +58,18 @@ type GetImageMetadataThunkConfig = {
|
||||
};
|
||||
};
|
||||
|
||||
export const imageMetadataReceived = createAppAsyncThunk<
|
||||
export const imageDTOReceived = createAppAsyncThunk<
|
||||
GetImageMetadataResponse,
|
||||
GetImageMetadataArg,
|
||||
GetImageMetadataThunkConfig
|
||||
>('api/imageMetadataReceived', async (arg, { rejectWithValue }) => {
|
||||
>('thunkApi/imageMetadataReceived', async (arg, { rejectWithValue }) => {
|
||||
const { image_name } = arg;
|
||||
const { get } = $client.get();
|
||||
const { data, error, response } = await get(
|
||||
'/api/v1/images/{image_name}/metadata',
|
||||
{
|
||||
params: {
|
||||
path: { image_name },
|
||||
},
|
||||
}
|
||||
);
|
||||
const { data, error, response } = await get('/api/v1/images/{image_name}', {
|
||||
params: {
|
||||
path: { image_name },
|
||||
},
|
||||
});
|
||||
|
||||
if (error) {
|
||||
return rejectWithValue({ arg, error });
|
||||
@ -148,7 +145,7 @@ export const imageUploaded = createAppAsyncThunk<
|
||||
UploadImageResponse,
|
||||
UploadImageArg,
|
||||
UploadImageThunkConfig
|
||||
>('api/imageUploaded', async (arg, { rejectWithValue }) => {
|
||||
>('thunkApi/imageUploaded', async (arg, { rejectWithValue }) => {
|
||||
const {
|
||||
postUploadAction,
|
||||
file,
|
||||
@ -199,7 +196,7 @@ export const imageDeleted = createAppAsyncThunk<
|
||||
DeleteImageResponse,
|
||||
DeleteImageArg,
|
||||
DeleteImageThunkConfig
|
||||
>('api/imageDeleted', async (arg, { rejectWithValue }) => {
|
||||
>('thunkApi/imageDeleted', async (arg, { rejectWithValue }) => {
|
||||
const { image_name } = arg;
|
||||
const { del } = $client.get();
|
||||
const { data, error, response } = await del('/api/v1/images/{image_name}', {
|
||||
@ -235,7 +232,7 @@ export const imageUpdated = createAppAsyncThunk<
|
||||
UpdateImageResponse,
|
||||
UpdateImageArg,
|
||||
UpdateImageThunkConfig
|
||||
>('api/imageUpdated', async (arg, { rejectWithValue }) => {
|
||||
>('thunkApi/imageUpdated', async (arg, { rejectWithValue }) => {
|
||||
const { image_name, image_category, is_intermediate, session_id } = arg;
|
||||
const { patch } = $client.get();
|
||||
const { data, error, response } = await patch('/api/v1/images/{image_name}', {
|
||||
@ -284,46 +281,49 @@ export const receivedPageOfImages = createAppAsyncThunk<
|
||||
ListImagesResponse,
|
||||
ListImagesArg,
|
||||
ListImagesThunkConfig
|
||||
>('api/receivedPageOfImages', async (arg, { getState, rejectWithValue }) => {
|
||||
const { get } = $client.get();
|
||||
>(
|
||||
'thunkApi/receivedPageOfImages',
|
||||
async (arg, { getState, rejectWithValue }) => {
|
||||
const { get } = $client.get();
|
||||
|
||||
const state = getState();
|
||||
const { categories, selectedBoardId } = state.gallery;
|
||||
const state = getState();
|
||||
const { categories, selectedBoardId } = state.gallery;
|
||||
|
||||
const images = selectImagesAll(state).filter((i) => {
|
||||
const isInCategory = categories.includes(i.image_category);
|
||||
const isInSelectedBoard = selectedBoardId
|
||||
? i.board_id === selectedBoardId
|
||||
: true;
|
||||
return isInCategory && isInSelectedBoard;
|
||||
});
|
||||
const images = selectImagesAll(state).filter((i) => {
|
||||
const isInCategory = categories.includes(i.image_category);
|
||||
const isInSelectedBoard = selectedBoardId
|
||||
? i.board_id === selectedBoardId
|
||||
: true;
|
||||
return isInCategory && isInSelectedBoard;
|
||||
});
|
||||
|
||||
let query: ListImagesArg = {};
|
||||
let query: ListImagesArg = {};
|
||||
|
||||
if (size(arg)) {
|
||||
query = {
|
||||
...DEFAULT_IMAGES_LISTED_ARG,
|
||||
offset: images.length,
|
||||
...arg,
|
||||
};
|
||||
} else {
|
||||
query = {
|
||||
...DEFAULT_IMAGES_LISTED_ARG,
|
||||
categories,
|
||||
offset: images.length,
|
||||
};
|
||||
if (size(arg)) {
|
||||
query = {
|
||||
...DEFAULT_IMAGES_LISTED_ARG,
|
||||
offset: images.length,
|
||||
...arg,
|
||||
};
|
||||
} else {
|
||||
query = {
|
||||
...DEFAULT_IMAGES_LISTED_ARG,
|
||||
categories,
|
||||
offset: images.length,
|
||||
};
|
||||
}
|
||||
|
||||
const { data, error, response } = await get('/api/v1/images/', {
|
||||
params: {
|
||||
query,
|
||||
},
|
||||
querySerializer: (q) => queryString.stringify(q, { arrayFormat: 'none' }),
|
||||
});
|
||||
|
||||
if (error) {
|
||||
return rejectWithValue({ arg, error });
|
||||
}
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
const { data, error, response } = await get('/api/v1/images/', {
|
||||
params: {
|
||||
query,
|
||||
},
|
||||
querySerializer: (q) => queryString.stringify(q, { arrayFormat: 'none' }),
|
||||
});
|
||||
|
||||
if (error) {
|
||||
return rejectWithValue({ arg, error });
|
||||
}
|
||||
|
||||
return data;
|
||||
});
|
||||
);
|
||||
|
@ -19,6 +19,7 @@ export type ImageChanges = components['schemas']['ImageRecordChanges'];
|
||||
export type ImageCategory = components['schemas']['ImageCategory'];
|
||||
export type ResourceOrigin = components['schemas']['ResourceOrigin'];
|
||||
export type ImageField = components['schemas']['ImageField'];
|
||||
export type ImageMetadata = components['schemas']['ImageMetadata'];
|
||||
export type OffsetPaginatedResults_BoardDTO_ =
|
||||
components['schemas']['OffsetPaginatedResults_BoardDTO_'];
|
||||
export type OffsetPaginatedResults_ImageDTO_ =
|
||||
@ -31,6 +32,7 @@ export type MainModelField = components['schemas']['MainModelField'];
|
||||
export type VAEModelField = components['schemas']['VAEModelField'];
|
||||
export type LoRAModelField = components['schemas']['LoRAModelField'];
|
||||
export type ModelsList = components['schemas']['ModelsList'];
|
||||
export type ControlField = components['schemas']['ControlField'];
|
||||
|
||||
// Model Configs
|
||||
export type LoRAModelConfig = components['schemas']['LoRAModelConfig'];
|
||||
@ -107,6 +109,9 @@ export type MainModelLoaderInvocation = TypeReq<
|
||||
export type LoraLoaderInvocation = TypeReq<
|
||||
components['schemas']['LoraLoaderInvocation']
|
||||
>;
|
||||
export type MetadataAccumulatorInvocation = TypeReq<
|
||||
components['schemas']['MetadataAccumulatorInvocation']
|
||||
>;
|
||||
|
||||
// ControlNet Nodes
|
||||
export type ControlNetInvocation = TypeReq<
|
||||
|
Loading…
Reference in New Issue
Block a user