Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

This commit is contained in:
user1 2023-04-30 07:44:50 -07:00 committed by Kent Keirsey
parent 10b7a58887
commit a4d1fe8819

View File

@ -179,7 +179,7 @@ class TextToLatentsInvocation(BaseInvocation):
# control: List[ControlField] = Field(description="The controlnet(s) to use")
# control: Optional[list[ControlField]] = Field(default=None, description="The controlnet(s) to use")
# control: Optional[list[ControlField]] = Field(description="The controlnet(s) to use")
# fmt: on
# fmt: on
# Schema customisation
class Config(InvocationConfig):
@ -337,6 +337,63 @@ class TextToLatentsInvocation(BaseInvocation):
multi_control = MultiControlNetModel(control_models)
model.control_model = multi_control
# loading controlnet model
if (self.control_model is None or self.control_model==''):
control_model = None
else:
# FIXME: change this to dropdown menu?
# FIXME: generalize so don't have to hardcode torch_dtype and device
control_model = ControlNetModel.from_pretrained(self.control_model,
torch_dtype=torch.float16).to("cuda")
model.control_model = control_model
# loading controlnet image (currently requires pre-processed image)
control_image = (
None if self.control_image is None
else context.services.images.get(
self.control_image.image_type, self.control_image.image_name
)
)
# copied from old backend/txt2img.py
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
if control_image is not None:
if isinstance(control_model, ControlNetModel):
control_image = model.prepare_control_image(
image=control_image,
# do_classifier_free_guidance=do_classifier_free_guidance,
do_classifier_free_guidance=True,
# width=width,
# height=height,
width=512,
height=512,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
)
elif isinstance(control_model, MultiControlNetModel):
images = []
for image_ in control_image:
image_ = model.prepare_control_image(
image=image_,
# do_classifier_free_guidance=do_classifier_free_guidance,
do_classifier_free_guidance=True,
# width=width,
# height=height,
width=512,
height=512,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
)
images.append(image_)
control_image = images
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),