mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
This commit is contained in:
parent
10b7a58887
commit
a4d1fe8819
@ -179,7 +179,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
# control: List[ControlField] = Field(description="The controlnet(s) to use")
|
||||
# control: Optional[list[ControlField]] = Field(default=None, description="The controlnet(s) to use")
|
||||
# control: Optional[list[ControlField]] = Field(description="The controlnet(s) to use")
|
||||
# fmt: on
|
||||
# fmt: on
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
@ -337,6 +337,63 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
multi_control = MultiControlNetModel(control_models)
|
||||
model.control_model = multi_control
|
||||
|
||||
# loading controlnet model
|
||||
if (self.control_model is None or self.control_model==''):
|
||||
control_model = None
|
||||
else:
|
||||
# FIXME: change this to dropdown menu?
|
||||
# FIXME: generalize so don't have to hardcode torch_dtype and device
|
||||
control_model = ControlNetModel.from_pretrained(self.control_model,
|
||||
torch_dtype=torch.float16).to("cuda")
|
||||
model.control_model = control_model
|
||||
|
||||
# loading controlnet image (currently requires pre-processed image)
|
||||
control_image = (
|
||||
None if self.control_image is None
|
||||
else context.services.images.get(
|
||||
self.control_image.image_type, self.control_image.image_name
|
||||
)
|
||||
)
|
||||
|
||||
# copied from old backend/txt2img.py
|
||||
# FIXME: still need to test with different widths, heights, devices, dtypes
|
||||
# and add in batch_size, num_images_per_prompt?
|
||||
if control_image is not None:
|
||||
if isinstance(control_model, ControlNetModel):
|
||||
control_image = model.prepare_control_image(
|
||||
image=control_image,
|
||||
# do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
do_classifier_free_guidance=True,
|
||||
# width=width,
|
||||
# height=height,
|
||||
width=512,
|
||||
height=512,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
)
|
||||
elif isinstance(control_model, MultiControlNetModel):
|
||||
images = []
|
||||
for image_ in control_image:
|
||||
image_ = model.prepare_control_image(
|
||||
image=image_,
|
||||
# do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
do_classifier_free_guidance=True,
|
||||
# width=width,
|
||||
# height=height,
|
||||
width=512,
|
||||
height=512,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
)
|
||||
images.append(image_)
|
||||
control_image = images
|
||||
|
||||
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
||||
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
|
||||
|
Loading…
Reference in New Issue
Block a user