mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
resolve conflicts between lstein & sttalker changes
This commit is contained in:
commit
a87d52a389
@ -248,7 +248,6 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
precision="float16" if unet.dtype == torch.float16 else "float32",
|
||||
#precision="float16", # TODO:
|
||||
)
|
||||
|
||||
def prep_control_data(self,
|
||||
|
@ -40,456 +40,7 @@ from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
from .lora import LoRAModel, TextualInversionModel
|
||||
|
||||
def get_model_path(repo_id_or_path: str):
|
||||
globals = get_invokeai_config()
|
||||
|
||||
if os.path.exists(repo_id_or_path):
|
||||
return repo_id_or_path
|
||||
|
||||
cache = scan_cache_dir(globals.cache_dir)
|
||||
for repo in cache.repos:
|
||||
if repo.repo_id != repo_id_or_path:
|
||||
continue
|
||||
for rev in repo.revisions:
|
||||
if "main" in rev.refs:
|
||||
return rev.snapshot_path
|
||||
raise Exception(f"{repo_id_or_path} - not found")
|
||||
|
||||
def calc_model_size_by_fs(
|
||||
repo_id_or_path: str,
|
||||
subfolder: Optional[str] = None,
|
||||
variant: Optional[str] = None
|
||||
):
|
||||
model_path = get_model_path(repo_id_or_path)
|
||||
if subfolder is not None:
|
||||
model_path = os.path.join(model_path, subfolder)
|
||||
|
||||
# this can happen when, for example, the safety checker
|
||||
# is not downloaded.
|
||||
if not os.path.exists(model_path):
|
||||
return 0
|
||||
|
||||
all_files = os.listdir(model_path)
|
||||
all_files = [f for f in all_files if os.path.isfile(os.path.join(model_path, f))]
|
||||
|
||||
fp16_files = set([f for f in all_files if ".fp16." in f or ".fp16-" in f])
|
||||
bit8_files = set([f for f in all_files if ".8bit." in f or ".8bit-" in f])
|
||||
other_files = set(all_files) - fp16_files - bit8_files
|
||||
|
||||
if variant is None:
|
||||
files = other_files
|
||||
elif variant == "fp16":
|
||||
files = fp16_files
|
||||
elif variant == "8bit":
|
||||
files = bit8_files
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown variant: {variant}")
|
||||
|
||||
# try read from index if exists
|
||||
index_postfix = ".index.json"
|
||||
if variant is not None:
|
||||
index_postfix = f".index.{variant}.json"
|
||||
|
||||
for file in files:
|
||||
if not file.endswith(index_postfix):
|
||||
continue
|
||||
try:
|
||||
with open(os.path.join(model_path, file), "r") as f:
|
||||
index_data = json.loads(f.read())
|
||||
return int(index_data["metadata"]["total_size"])
|
||||
except:
|
||||
pass
|
||||
|
||||
# calculate files size if there is no index file
|
||||
formats = [
|
||||
(".safetensors",), # safetensors
|
||||
(".bin",), # torch
|
||||
(".onnx", ".pb"), # onnx
|
||||
(".msgpack",), # flax
|
||||
(".ckpt",), # tf
|
||||
(".h5",), # tf2
|
||||
]
|
||||
|
||||
for file_format in formats:
|
||||
model_files = [f for f in files if f.endswith(file_format)]
|
||||
if len(model_files) == 0:
|
||||
continue
|
||||
|
||||
model_size = 0
|
||||
for model_file in model_files:
|
||||
file_stats = os.stat(os.path.join(model_path, model_file))
|
||||
model_size += file_stats.st_size
|
||||
return model_size
|
||||
|
||||
#raise NotImplementedError(f"Unknown model structure! Files: {all_files}")
|
||||
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
|
||||
|
||||
|
||||
def calc_model_size_by_data(model) -> int:
|
||||
if isinstance(model, DiffusionPipeline):
|
||||
return _calc_pipeline_by_data(model)
|
||||
elif isinstance(model, torch.nn.Module):
|
||||
return _calc_model_by_data(model)
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def _calc_pipeline_by_data(pipeline) -> int:
|
||||
res = 0
|
||||
for submodel_key in pipeline.components.keys():
|
||||
submodel = getattr(pipeline, submodel_key)
|
||||
if submodel is not None and isinstance(submodel, torch.nn.Module):
|
||||
res += _calc_model_by_data(submodel)
|
||||
return res
|
||||
|
||||
|
||||
def _calc_model_by_data(model) -> int:
|
||||
mem_params = sum([param.nelement()*param.element_size() for param in model.parameters()])
|
||||
mem_bufs = sum([buf.nelement()*buf.element_size() for buf in model.buffers()])
|
||||
mem = mem_params + mem_bufs # in bytes
|
||||
return mem
|
||||
|
||||
|
||||
|
||||
|
||||
class SDModelType(str, Enum):
|
||||
Diffusers = "diffusers"
|
||||
Classifier = "classifier"
|
||||
UNet = "unet"
|
||||
TextEncoder = "text_encoder"
|
||||
Tokenizer = "tokenizer"
|
||||
Vae = "vae"
|
||||
Scheduler = "scheduler"
|
||||
Lora = "lora"
|
||||
TextualInversion = "textual_inversion"
|
||||
ControlNet = "control_net"
|
||||
|
||||
class BaseModel(str, Enum):
|
||||
StableDiffusion1_5 = "SD-1"
|
||||
StableDiffusion2Base = "SD-2-base" # 512 pixels; this will have epsilon parameterization
|
||||
StableDiffusion2 = "SD-2" # 768 pixels; this will have v-prediction parameterization
|
||||
|
||||
class ModelInfoBase:
|
||||
#model_path: str
|
||||
#model_type: SDModelType
|
||||
|
||||
def __init__(self, repo_id_or_path: str, model_type: SDModelType):
|
||||
self.repo_id_or_path = repo_id_or_path # TODO: or use allways path?
|
||||
self.model_path = get_model_path(repo_id_or_path)
|
||||
self.model_type = model_type
|
||||
|
||||
def _definition_to_type(self, subtypes: List[str]) -> Type:
|
||||
if len(subtypes) < 2:
|
||||
raise Exception("Invalid subfolder definition!")
|
||||
if subtypes[0] in ["diffusers", "transformers"]:
|
||||
res_type = sys.modules[subtypes[0]]
|
||||
subtypes = subtypes[1:]
|
||||
|
||||
else:
|
||||
res_type = sys.modules["diffusers"]
|
||||
res_type = getattr(res_type, "pipelines")
|
||||
|
||||
|
||||
for subtype in subtypes:
|
||||
res_type = getattr(res_type, subtype)
|
||||
return res_type
|
||||
|
||||
|
||||
class DiffusersModelInfo(ModelInfoBase):
|
||||
#child_types: Dict[str, Type]
|
||||
#child_sizes: Dict[str, int]
|
||||
|
||||
def __init__(self, repo_id_or_path: str, model_type: SDModelType):
|
||||
assert model_type == SDModelType.Diffusers
|
||||
super().__init__(repo_id_or_path, model_type)
|
||||
|
||||
self.child_types: Dict[str, Type] = dict()
|
||||
self.child_sizes: Dict[str, int] = dict()
|
||||
|
||||
try:
|
||||
config_data = DiffusionPipeline.load_config(repo_id_or_path)
|
||||
#config_data = json.loads(os.path.join(self.model_path, "model_index.json"))
|
||||
except:
|
||||
raise Exception("Invalid diffusers model! (model_index.json not found or invalid)")
|
||||
|
||||
config_data.pop("_ignore_files", None)
|
||||
|
||||
# retrieve all folder_names that contain relevant files
|
||||
child_components = [k for k, v in config_data.items() if isinstance(v, list)]
|
||||
|
||||
for child_name in child_components:
|
||||
child_type = self._definition_to_type(config_data[child_name])
|
||||
self.child_types[child_name] = child_type
|
||||
self.child_sizes[child_name] = calc_model_size_by_fs(repo_id_or_path, subfolder=child_name)
|
||||
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is None:
|
||||
return sum(self.child_sizes.values())
|
||||
else:
|
||||
return self.child_sizes[child_type]
|
||||
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
child_type: Optional[SDModelType] = None,
|
||||
torch_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
# return pipeline in different function to pass more arguments
|
||||
if child_type is None:
|
||||
raise Exception("Child model type can't be null on diffusers model")
|
||||
if child_type not in self.child_types:
|
||||
return None # TODO: or raise
|
||||
|
||||
# TODO:
|
||||
for variant in ["fp16", "main", None]:
|
||||
try:
|
||||
model = self.child_types[child_type].from_pretrained(
|
||||
self.repo_id_or_path,
|
||||
subfolder=child_type.value,
|
||||
cache_dir=get_invokeai_config().cache_dir,
|
||||
torch_dtype=torch_dtype,
|
||||
variant=variant,
|
||||
)
|
||||
break
|
||||
except Exception as e:
|
||||
print("====ERR LOAD====")
|
||||
print(f"{variant}: {e}")
|
||||
|
||||
# calc more accurate size
|
||||
self.child_sizes[child_type] = calc_model_size_by_data(model)
|
||||
return model
|
||||
|
||||
|
||||
def get_pipeline(self, **kwargs):
|
||||
return DiffusionPipeline.from_pretrained(
|
||||
self.repo_id_or_path,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class EmptyConfigLoader(ConfigMixin):
|
||||
|
||||
@classmethod
|
||||
def load_config(cls, *args, **kwargs):
|
||||
cls.config_name = kwargs.pop("config_name")
|
||||
return super().load_config(*args, **kwargs)
|
||||
|
||||
|
||||
class ClassifierModelInfo(ModelInfoBase):
|
||||
#child_types: Dict[str, Type]
|
||||
#child_sizes: Dict[str, int]
|
||||
|
||||
def __init__(self, repo_id_or_path: str, model_type: SDModelType):
|
||||
assert model_type == SDModelType.Classifier
|
||||
super().__init__(repo_id_or_path, model_type)
|
||||
|
||||
self.child_types: Dict[str, Type] = dict()
|
||||
self.child_sizes: Dict[str, int] = dict()
|
||||
|
||||
try:
|
||||
main_config = EmptyConfigLoader.load_config(self.repo_id_or_path, config_name="config.json")
|
||||
#main_config = json.loads(os.path.join(self.model_path, "config.json"))
|
||||
except:
|
||||
raise Exception("Invalid classifier model! (config.json not found or invalid)")
|
||||
|
||||
self._load_tokenizer(main_config)
|
||||
self._load_text_encoder(main_config)
|
||||
self._load_feature_extractor(main_config)
|
||||
|
||||
|
||||
def _load_tokenizer(self, main_config: dict):
|
||||
try:
|
||||
tokenizer_config = EmptyConfigLoader.load_config(self.repo_id_or_path, config_name="tokenizer_config.json")
|
||||
#tokenizer_config = json.loads(os.path.join(self.model_path, "tokenizer_config.json"))
|
||||
except:
|
||||
raise Exception("Invalid classifier model! (Failed to load tokenizer_config.json)")
|
||||
|
||||
if "tokenizer_class" in tokenizer_config:
|
||||
tokenizer_class_name = tokenizer_config["tokenizer_class"]
|
||||
elif "model_type" in main_config:
|
||||
tokenizer_class_name = transformers.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES[main_config["model_type"]]
|
||||
else:
|
||||
raise Exception("Invalid classifier model! (Failed to detect tokenizer type)")
|
||||
|
||||
self.child_types[SDModelType.Tokenizer] = self._definition_to_type(["transformers", tokenizer_class_name])
|
||||
self.child_sizes[SDModelType.Tokenizer] = 0
|
||||
|
||||
|
||||
def _load_text_encoder(self, main_config: dict):
|
||||
if "architectures" in main_config and len(main_config["architectures"]) > 0:
|
||||
text_encoder_class_name = main_config["architectures"][0]
|
||||
elif "model_type" in main_config:
|
||||
text_encoder_class_name = transformers.models.auto.modeling_auto.MODEL_FOR_PRETRAINING_MAPPING_NAMES[main_config["model_type"]]
|
||||
else:
|
||||
raise Exception("Invalid classifier model! (Failed to detect text_encoder type)")
|
||||
|
||||
self.child_types[SDModelType.TextEncoder] = self._definition_to_type(["transformers", text_encoder_class_name])
|
||||
self.child_sizes[SDModelType.TextEncoder] = calc_model_size_by_fs(self.repo_id_or_path)
|
||||
|
||||
|
||||
def _load_feature_extractor(self, main_config: dict):
|
||||
self.child_sizes[SDModelType.FeatureExtractor] = 0
|
||||
try:
|
||||
feature_extractor_config = EmptyConfigLoader.load_config(self.repo_id_or_path, config_name="preprocessor_config.json")
|
||||
except:
|
||||
return # feature extractor not passed with t5
|
||||
|
||||
try:
|
||||
feature_extractor_class_name = feature_extractor_config["feature_extractor_type"]
|
||||
self.child_types[SDModelType.FeatureExtractor] = self._definition_to_type(["transformers", feature_extractor_class_name])
|
||||
except:
|
||||
raise Exception("Invalid classifier model! (Unknown feature_extrator type)")
|
||||
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is None:
|
||||
return sum(self.child_sizes.values())
|
||||
else:
|
||||
return self.child_sizes[child_type]
|
||||
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
child_type: Optional[SDModelType] = None,
|
||||
torch_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if child_type is None:
|
||||
raise Exception("Child model type can't be null on classififer model")
|
||||
if child_type not in self.child_types:
|
||||
return None # TODO: or raise
|
||||
|
||||
model = self.child_types[child_type].from_pretrained(
|
||||
self.repo_id_or_path,
|
||||
subfolder=child_type.value,
|
||||
cache_dir=get_invokeai_config().cache_dir,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
# calc more accurate size
|
||||
self.child_sizes[child_type] = calc_model_size_by_data(model)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
class VaeModelInfo(ModelInfoBase):
|
||||
#vae_class: Type
|
||||
#model_size: int
|
||||
|
||||
def __init__(self, repo_id_or_path: str, model_type: SDModelType):
|
||||
assert model_type == SDModelType.Vae
|
||||
super().__init__(repo_id_or_path, model_type)
|
||||
|
||||
try:
|
||||
config = EmptyConfigLoader.load_config(repo_id_or_path, config_name="config.json")
|
||||
#config = json.loads(os.path.join(self.model_path, "config.json"))
|
||||
except:
|
||||
raise Exception("Invalid vae model! (config.json not found or invalid)")
|
||||
|
||||
try:
|
||||
vae_class_name = config.get("_class_name", "AutoencoderKL")
|
||||
self.vae_class = self._definition_to_type(["diffusers", vae_class_name])
|
||||
self.model_size = calc_model_size_by_fs(repo_id_or_path)
|
||||
except:
|
||||
raise Exception("Invalid vae model! (Unkown vae type)")
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in vae model")
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
child_type: Optional[SDModelType] = None,
|
||||
torch_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in vae model")
|
||||
|
||||
model = self.vae_class.from_pretrained(
|
||||
self.repo_id_or_path,
|
||||
cache_dir=get_invokeai_config().cache_dir,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
# calc more accurate size
|
||||
self.model_size = calc_model_size_by_data(model)
|
||||
return model
|
||||
|
||||
|
||||
class LoRAModelInfo(ModelInfoBase):
|
||||
#model_size: int
|
||||
|
||||
def __init__(self, file_path: str, model_type: SDModelType):
|
||||
assert model_type == SDModelType.Lora
|
||||
# check manualy as super().__init__ will try to resolve repo_id too
|
||||
if not os.path.exists(file_path):
|
||||
raise Exception("Model not found")
|
||||
super().__init__(file_path, model_type)
|
||||
|
||||
self.model_size = os.path.getsize(file_path)
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in lora")
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
child_type: Optional[SDModelType] = None,
|
||||
torch_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in lora")
|
||||
|
||||
model = LoRAModel.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
self.model_size = model.calc_size()
|
||||
return model
|
||||
|
||||
|
||||
class TextualInversionModelInfo(ModelInfoBase):
|
||||
#model_size: int
|
||||
|
||||
def __init__(self, file_path: str, model_type: SDModelType):
|
||||
assert model_type == SDModelType.TextualInversion
|
||||
# check manualy as super().__init__ will try to resolve repo_id too
|
||||
if not os.path.exists(file_path):
|
||||
raise Exception("Model not found")
|
||||
super().__init__(file_path, model_type)
|
||||
|
||||
self.model_size = os.path.getsize(file_path)
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in textual inversion")
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
child_type: Optional[SDModelType] = None,
|
||||
torch_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in textual inversion")
|
||||
|
||||
model = TextualInversionModel.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
self.model_size = model.embedding.nelement() * model.embedding.element_size()
|
||||
return model
|
||||
|
||||
|
||||
MODEL_TYPES = {
|
||||
SDModelType.Diffusers: DiffusersModelInfo,
|
||||
SDModelType.Classifier: ClassifierModelInfo,
|
||||
SDModelType.Vae: VaeModelInfo,
|
||||
SDModelType.Lora: LoRAModelInfo,
|
||||
SDModelType.TextualInversion: TextualInversionModelInfo,
|
||||
}
|
||||
from .models import MODEL_CLASSES
|
||||
|
||||
|
||||
# Maximum size of the cache, in gigs
|
||||
@ -499,10 +50,6 @@ DEFAULT_MAX_CACHE_SIZE = 6.0
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
|
||||
# TODO:
|
||||
class EmptyScheduler(SchedulerMixin, ConfigMixin):
|
||||
pass
|
||||
|
||||
class ModelLocker(object):
|
||||
"Forward declaration"
|
||||
pass
|
||||
@ -583,12 +130,10 @@ class ModelCache(object):
|
||||
self,
|
||||
model_path: str,
|
||||
model_type: SDModelType,
|
||||
revision: Optional[str] = None,
|
||||
submodel_type: Optional[SDModelType] = None,
|
||||
):
|
||||
revision = revision or "main"
|
||||
|
||||
key = f"{model_path}:{model_type}:{revision}"
|
||||
key = f"{model_path}:{model_type}"
|
||||
if submodel_type:
|
||||
key += f":{submodel_type}"
|
||||
return key
|
||||
@ -606,55 +151,51 @@ class ModelCache(object):
|
||||
def _get_model_info(
|
||||
self,
|
||||
model_path: str,
|
||||
model_type: SDModelType,
|
||||
revision: str,
|
||||
model_class: Type[ModelBase],
|
||||
):
|
||||
model_info_key = self.get_key(
|
||||
model_path=model_path,
|
||||
model_type=model_type,
|
||||
revision=revision,
|
||||
submodel_type=None,
|
||||
)
|
||||
|
||||
if model_info_key not in self.model_infos:
|
||||
if model_type not in MODEL_TYPES:
|
||||
raise Exception(f"Unknown/unsupported model type: {model_type}")
|
||||
|
||||
self.model_infos[model_info_key] = MODEL_TYPES[model_type](
|
||||
self.model_infos[model_info_key] = model_class(
|
||||
model_path,
|
||||
model_type,
|
||||
)
|
||||
|
||||
return self.model_infos[model_info_key]
|
||||
|
||||
# TODO: args
|
||||
def get_model(
|
||||
self,
|
||||
repo_id_or_path: Union[str, Path],
|
||||
model_type: SDModelType = SDModelType.Diffusers,
|
||||
submodel: Optional[SDModelType] = None,
|
||||
revision: Optional[str] = None,
|
||||
variant: Optional[str] = None,
|
||||
model_path: Union[str, Path],
|
||||
model_class: Type[ModelBase],
|
||||
submodel: Optional[SubModelType] = None,
|
||||
gpu_load: bool = True,
|
||||
) -> Any:
|
||||
|
||||
model_path = get_model_path(repo_id_or_path)
|
||||
if not isinstance(model_path, Path):
|
||||
model_path = Path(model_path)
|
||||
|
||||
if not os.path.exists(model_path):
|
||||
raise Exception(f"Model not found: {model_path}")
|
||||
|
||||
model_info = self._get_model_info(
|
||||
model_path=model_path,
|
||||
model_type=model_type,
|
||||
revision=revision,
|
||||
model_class=model_class,
|
||||
)
|
||||
# TODO: variant
|
||||
key = self.get_key(
|
||||
model_path=model_path,
|
||||
model_type=model_type,
|
||||
revision=revision,
|
||||
model_type=model_type, # TODO:
|
||||
submodel_type=submodel,
|
||||
)
|
||||
|
||||
# TODO: lock for no copies on simultaneous calls?
|
||||
cache_entry = self._cached_models.get(key, None)
|
||||
if cache_entry is None:
|
||||
self.logger.info(f'Loading model {repo_id_or_path}, type {model_type}:{submodel}')
|
||||
self.logger.info(f'Loading model {model_path}, type {model_type}:{submodel}')
|
||||
|
||||
# this will remove older cached models until
|
||||
# there is sufficient room to load the requested model
|
||||
@ -662,7 +203,7 @@ class ModelCache(object):
|
||||
|
||||
# clean memory to make MemoryUsage() more accurate
|
||||
gc.collect()
|
||||
model = model_info.get_model(submodel, torch_dtype=self.precision)
|
||||
model = model_info.get_model(submodel, torch_dtype=self.precision, variant=)
|
||||
if mem_used := model_info.get_size(submodel):
|
||||
self.logger.debug(f'CPU RAM used for load: {(mem_used/GIG):.2f} GB')
|
||||
|
||||
@ -732,20 +273,14 @@ class ModelCache(object):
|
||||
|
||||
def model_hash(
|
||||
self,
|
||||
repo_id_or_path: Union[str, Path],
|
||||
revision: str = "main",
|
||||
model_path: Union[str, Path],
|
||||
) -> str:
|
||||
'''
|
||||
Given the HF repo id or path to a model on disk, returns a unique
|
||||
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
||||
:param repo_id_or_path: repo_id string or Path to model file/directory on disk.
|
||||
:param revision: optional revision string (if fetching a HF repo_id)
|
||||
:param model_path: Path to model file/directory on disk.
|
||||
'''
|
||||
revision = revision or "main"
|
||||
if Path(repo_id_or_path).is_dir():
|
||||
return self._local_model_hash(repo_id_or_path)
|
||||
else:
|
||||
return self._hf_commit_hash(repo_id_or_path,revision)
|
||||
return self._local_model_hash(model_path)
|
||||
|
||||
def cache_size(self) -> float:
|
||||
"Return the current size of the cache, in GB"
|
||||
@ -840,17 +375,6 @@ class ModelCache(object):
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
|
||||
def _hf_commit_hash(self, repo_id: str, revision: str='main') -> str:
|
||||
api = HfApi()
|
||||
info = api.list_repo_refs(
|
||||
repo_id=repo_id,
|
||||
repo_type='model',
|
||||
)
|
||||
desired_revisions = [branch for branch in info.branches if branch.name==revision]
|
||||
if not desired_revisions:
|
||||
raise KeyError(f"Revision '{revision}' not found in {repo_id}")
|
||||
return desired_revisions[0].target_commit
|
||||
|
||||
class SilenceWarnings(object):
|
||||
def __init__(self):
|
||||
|
@ -163,7 +163,6 @@ import safetensors
|
||||
import safetensors.torch
|
||||
import torch
|
||||
from diffusers import AutoencoderKL
|
||||
from diffusers.utils import is_safetensors_available
|
||||
from huggingface_hub import scan_cache_dir
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
@ -172,8 +171,8 @@ import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.util import CUDA_DEVICE, download_with_resume
|
||||
from ..install.model_install_backend import Dataset_path, hf_download_with_resume
|
||||
from .model_cache import (ModelCache, ModelLocker, SDModelType,
|
||||
SilenceWarnings)
|
||||
from .model_cache import ModelCache, ModelLocker, SilenceWarnings
|
||||
from .models import BaseModelType, ModelType, SubModelType, MODEL_CLASSES
|
||||
# We are only starting to number the config file with release 3.
|
||||
# The config file version doesn't have to start at release version, but it will help
|
||||
# reduce confusion.
|
||||
@ -201,14 +200,6 @@ class InvalidModelError(Exception):
|
||||
"Raised when an invalid model is requested"
|
||||
pass
|
||||
|
||||
class SDLegacyType(Enum):
|
||||
V1 = auto()
|
||||
V1_INPAINT = auto()
|
||||
V2 = auto()
|
||||
V2_e = auto()
|
||||
V2_v = auto()
|
||||
UNKNOWN = auto()
|
||||
|
||||
MAX_CACHE_SIZE = 6.0 # GB
|
||||
|
||||
|
||||
@ -280,32 +271,45 @@ class ModelManager(object):
|
||||
def model_exists(
|
||||
self,
|
||||
model_name: str,
|
||||
model_type: SDModelType = SDModelType.Diffusers,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
) -> bool:
|
||||
"""
|
||||
Given a model name, returns True if it is a valid
|
||||
identifier.
|
||||
"""
|
||||
model_key = self.create_key(model_name, model_type)
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
return model_key in self.config
|
||||
|
||||
def create_key(self, model_name: str, model_type: SDModelType) -> str:
|
||||
return f"{model_type}/{model_name}"
|
||||
def create_key(
|
||||
self,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
) -> str:
|
||||
return f"{base_model}/{model_type}/{model_name}"
|
||||
|
||||
def parse_key(self, model_key: str) -> Tuple[str, SDModelType]:
|
||||
model_type_str, model_name = model_key.split('/', 1)
|
||||
def parse_key(self, model_key: str) -> Tuple[str, BaseModelType, ModelType]:
|
||||
base_model_str, model_type_str, model_name = model_key.split('/', 2)
|
||||
try:
|
||||
model_type = SDModelType(model_type_str)
|
||||
return (model_name, model_type)
|
||||
except:
|
||||
raise Exception(f"Unknown model type: {model_type_str}")
|
||||
|
||||
try:
|
||||
base_model = BaseModelType(base_model_str)
|
||||
except:
|
||||
raise Exception(f"Unknown base model: {base_model_str}")
|
||||
|
||||
return (model_name, base_model, model_type)
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
model_name: str,
|
||||
model_type: SDModelType = SDModelType.Diffusers,
|
||||
submodel: Optional[SDModelType] = None,
|
||||
) -> SDModelInfo:
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
submodel_type: Optional[SubModelType] = None
|
||||
):
|
||||
"""Given a model named identified in models.yaml, return
|
||||
an SDModelInfo object describing it.
|
||||
:param model_name: symbolic name of the model in models.yaml
|
||||
@ -344,205 +348,181 @@ class ModelManager(object):
|
||||
# raises an InvalidModelError
|
||||
|
||||
"""
|
||||
model_key = self.create_key(model_name, model_type)
|
||||
if model_key not in self.config:
|
||||
raise InvalidModelError(
|
||||
f'"{model_key}" is not a known model name. Please check your models.yaml file'
|
||||
)
|
||||
|
||||
# get the required loading info out of the config file
|
||||
mconfig = self.config[model_key]
|
||||
|
||||
# type already checked as it's part of key
|
||||
location = None
|
||||
if model_type == SDModelType.Diffusers:
|
||||
# intercept stanzas that point to checkpoint weights and replace them with the equivalent diffusers model
|
||||
if mconfig.format in ["ckpt", "safetensors"]:
|
||||
location = self.convert_ckpt_and_cache(mconfig) # TODO: Maybe don't do this any longer?
|
||||
elif mconfig.get('path'):
|
||||
location = self.globals.root_dir / mconfig.get('path')
|
||||
elif p := mconfig.get('path'):
|
||||
location = self.globals.root_dir / p
|
||||
|
||||
revision = mconfig.get('revision')
|
||||
if model_type in [SDModelType.Lora, SDModelType.TextualInversion]:
|
||||
hash = "<NO_HASH>" # TODO:
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
|
||||
#if model_type in {
|
||||
# ModelType.Lora,
|
||||
# ModelType.ControlNet,
|
||||
# ModelType.TextualInversion,
|
||||
# ModelType.Vae,
|
||||
#}:
|
||||
if not model_class.has_config:
|
||||
#if model_class.Config is None:
|
||||
# skip config
|
||||
# load from
|
||||
# /models/{base_model}/{model_type}/{model_name}
|
||||
# /models/{base_model}/{model_type}/{model_name}.{ext}
|
||||
|
||||
model_config = None
|
||||
|
||||
for ext in {"pt", "ckpt", "safetensors"}:
|
||||
model_path = os.path.join(model_dir, base_model, model_type, f"{model_name}.{ext}")
|
||||
if os.path.exists(model_path):
|
||||
break
|
||||
else:
|
||||
model_path = os.path.join(model_dir, base_model, model_type, model_name)
|
||||
if not os.path.exists(model_path):
|
||||
raise InvalidModelError(
|
||||
f"Model not found - \"{base_model}/{model_type}/{model_name}\" "
|
||||
)
|
||||
|
||||
else:
|
||||
hash = self.cache.model_hash(location, revision)
|
||||
# find in config
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
if model_key not in self.config:
|
||||
raise InvalidModelError(
|
||||
f'"{model_key}" is not a known model name. Please check your models.yaml file'
|
||||
)
|
||||
|
||||
if not location:
|
||||
return None
|
||||
model_config = self.config[model_key]
|
||||
|
||||
# /models/{base_model}/{model_type}/{name}.ckpt or .safentesors
|
||||
# /models/{base_model}/{model_type}/{name}/
|
||||
model_path = model_config.path
|
||||
|
||||
# If the caller is asking for part of the model and the config indicates
|
||||
# an external replacement for that field, then we fetch the replacement
|
||||
if submodel and mconfig.get(submodel):
|
||||
location = mconfig.get(submodel).get('path') \
|
||||
or mconfig.get(submodel).get('repo_id')
|
||||
model_type = submodel
|
||||
submodel = None
|
||||
# vae/movq override
|
||||
# TODO:
|
||||
if submodel is not None and submodel in model_config:
|
||||
model_path = model_config[submodel]["path"]
|
||||
model_type = submodel
|
||||
submodel = None
|
||||
|
||||
# to support the traditional way of attaching a VAE
|
||||
# to a model, we hacked in `attach_model_part`
|
||||
# TODO:
|
||||
if model_type == SDModelType.Vae and "vae" in mconfig:
|
||||
print("NOT_IMPLEMENTED - RETURN CUSTOM VAE")
|
||||
|
||||
model_context = self.cache.get_model(
|
||||
location,
|
||||
model_type = model_type,
|
||||
revision = revision,
|
||||
submodel = submodel,
|
||||
dst_convert_path = None # TODO:
|
||||
model_path = model_class.convert_if_required(
|
||||
model_path,
|
||||
dst_convert_path,
|
||||
model_config,
|
||||
)
|
||||
|
||||
# in case we need to communicate information about this
|
||||
# model to the cache manager, then we need to remember
|
||||
# the cache key
|
||||
self.cache_keys[model_key] = model_context.key
|
||||
|
||||
model_context = self.cache.get_model(
|
||||
model_path,
|
||||
model_class,
|
||||
submodel,
|
||||
)
|
||||
|
||||
hash = "<NO_HASH>" # TODO:
|
||||
|
||||
return SDModelInfo(
|
||||
context = model_context,
|
||||
name = model_name,
|
||||
base_model = base_model,
|
||||
type = submodel or model_type,
|
||||
hash = hash,
|
||||
location = location,
|
||||
revision = revision,
|
||||
location = model_path, # TODO:
|
||||
precision = self.cache.precision,
|
||||
_cache = self.cache
|
||||
_cache = self.cache,
|
||||
)
|
||||
|
||||
def default_model(self) -> Optional[Tuple[str, SDModelType]]:
|
||||
def default_model(self) -> Optional[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Returns the name of the default model, or None
|
||||
if none is defined.
|
||||
"""
|
||||
for model_name, model_type in self.model_names():
|
||||
model_key = self.create_key(model_name, model_type)
|
||||
if self.config[model_key].get("default"):
|
||||
return (model_name, model_type)
|
||||
return self.model_names()[0][0]
|
||||
for model_key, model_config in self.config.items():
|
||||
if model_config.get("default", False):
|
||||
return self.parse_key(model_key)
|
||||
|
||||
def set_default_model(self, model_name: str, model_type: SDModelType=SDModelType.Diffusers) -> None:
|
||||
for model_key, _ in self.config.items():
|
||||
return self.parse_key(model_key)
|
||||
else:
|
||||
return None # TODO: or redo as (None, None, None)
|
||||
|
||||
def set_default_model(
|
||||
self,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
) -> None:
|
||||
"""
|
||||
Set the default model. The change will not take
|
||||
effect until you call model_manager.commit()
|
||||
"""
|
||||
assert self.model_exists(model_name, model_type), f"unknown model '{model_name}'"
|
||||
|
||||
config = self.config
|
||||
for model_name, model_type in self.model_names():
|
||||
key = self.create_key(model_name, model_type)
|
||||
config[key].pop("default", None)
|
||||
config[self.create_key(model_name, model_type)]["default"] = True
|
||||
model_key = self.model_key(model_name, base_model, model_type)
|
||||
if model_key not in self.config:
|
||||
raise Exception(f"Unknown model: {model_key}")
|
||||
|
||||
for cur_model_key, config in self.config.items():
|
||||
if cur_model_key == model_key:
|
||||
config["default"] = True
|
||||
else:
|
||||
config.pop("default", None)
|
||||
|
||||
def model_info(
|
||||
self,
|
||||
model_name: str,
|
||||
model_type: SDModelType=SDModelType.Diffusers,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
) -> dict:
|
||||
"""
|
||||
Given a model name returns the OmegaConf (dict-like) object describing it.
|
||||
"""
|
||||
if not self.model_exists(model_name, model_type):
|
||||
return None
|
||||
return self.config[self.create_key(model_name, model_type)]
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
return self.config.get(model_key, None)
|
||||
|
||||
def model_names(self) -> List[Tuple[str, SDModelType]]:
|
||||
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Return a list of (str, SDModelType) corresponding to all models
|
||||
Return a list of (str, BaseModelType, ModelType) corresponding to all models
|
||||
known to the configuration.
|
||||
"""
|
||||
return [(self.parse_key(x)) for x in self.config.keys() if isinstance(self.config[x], DictConfig)]
|
||||
|
||||
def is_legacy(self, model_name: str, model_type: SDModelType.Diffusers) -> bool:
|
||||
def list_models(
|
||||
self,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
model_type: Optional[SDModelType] = None,
|
||||
) -> Dict[str, Dict[str, str]]:
|
||||
"""
|
||||
Return true if this is a legacy (.ckpt) model
|
||||
"""
|
||||
# if we are converting legacy files automatically, then
|
||||
# there are no legacy ckpts!
|
||||
if self.globals.ckpt_convert:
|
||||
return False
|
||||
info = self.model_info(model_name, model_type)
|
||||
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
|
||||
return True
|
||||
return False
|
||||
|
||||
def list_models(self, model_type: SDModelType=None) -> dict[str,dict[str,str]]:
|
||||
"""
|
||||
Return a dict of models, in format [model_type][model_name], with
|
||||
following fields:
|
||||
model_name
|
||||
model_type
|
||||
format
|
||||
description
|
||||
status
|
||||
# for folders only
|
||||
repo_id
|
||||
path
|
||||
subfolder
|
||||
vae
|
||||
# for ckpts only
|
||||
config
|
||||
weights
|
||||
vae
|
||||
Return a dict of models, in format [base_model][model_type][model_name]
|
||||
|
||||
Please use model_manager.models() to get all the model names,
|
||||
model_manager.model_info('model-name') to get the stanza for the model
|
||||
named 'model-name', and model_manager.config to get the full OmegaConf
|
||||
object derived from models.yaml
|
||||
"""
|
||||
models = {}
|
||||
assert not(model_type is not None and base_model is None), "model_type must be provided with base_model"
|
||||
|
||||
models = dict()
|
||||
for model_key in sorted(self.config, key=str.casefold):
|
||||
stanza = self.config[model_key]
|
||||
# don't include VAEs in listing (legacy style)
|
||||
if "config" in stanza and "/VAE/" in stanza["config"]:
|
||||
continue
|
||||
|
||||
if model_key.startswith('_'):
|
||||
continue
|
||||
|
||||
model_name, stanza_type = self.parse_key(model_key)
|
||||
model_name, m_base_model, stanza_type = self.parse_key(model_key)
|
||||
if base_model is not None and m_base_model != base_model:
|
||||
continue
|
||||
if model_type is not None and model_type != stanza_type:
|
||||
continue
|
||||
|
||||
if m_base_model not in models:
|
||||
models[m_base_model] = dict()
|
||||
if stanza_type not in models:
|
||||
models[stanza_type] = dict()
|
||||
models[m_base_model][stanza_type] = dict()
|
||||
|
||||
models[stanza_type][model_name] = dict()
|
||||
|
||||
model_format = stanza.get('format')
|
||||
|
||||
# Common Attribs
|
||||
description = stanza.get("description", None)
|
||||
models[stanza_type][model_name].update(
|
||||
model_name=model_name,
|
||||
model_type=stanza_type,
|
||||
format=model_format,
|
||||
description=description,
|
||||
status="unknown", # TODO: no more status as model loaded separately
|
||||
model_class = MODEL_CLASSES[m_base_model][stanza_type]
|
||||
models[m_base_model][stanza_type][model_name] = model_class.build_config(
|
||||
**stanza,
|
||||
name=model_name,
|
||||
base_model=base_model,
|
||||
type=stanza_type,
|
||||
)
|
||||
|
||||
# Checkpoint Config Parse
|
||||
if model_format in ["ckpt","safetensors"]:
|
||||
models[stanza_type][model_name].update(
|
||||
config = str(stanza.get("config", None)),
|
||||
weights = str(stanza.get("weights", None)),
|
||||
vae = str(stanza.get("vae", None)),
|
||||
)
|
||||
|
||||
# Diffusers Config Parse
|
||||
elif model_format == "folder":
|
||||
if vae := stanza.get("vae", None):
|
||||
if isinstance(vae, DictConfig):
|
||||
vae = dict(
|
||||
repo_id = str(vae.get("repo_id", None)),
|
||||
path = str(vae.get("path", None)),
|
||||
subfolder = str(vae.get("subfolder", None)),
|
||||
)
|
||||
|
||||
models[stanza_type][model_name].update(
|
||||
vae = vae,
|
||||
repo_id = str(stanza.get("repo_id", None)),
|
||||
path = str(stanza.get("path", None)),
|
||||
)
|
||||
#models[m_base_model][stanza_type][model_name] = model_class.Config(
|
||||
# **stanza,
|
||||
# name=model_name,
|
||||
# base_model=base_model,
|
||||
# type=stanza_type,
|
||||
#).dict()
|
||||
|
||||
return models
|
||||
|
||||
@ -552,7 +532,7 @@ class ModelManager(object):
|
||||
"""
|
||||
for model_type, model_dict in self.list_models().items():
|
||||
for model_name, model_info in model_dict.items():
|
||||
line = f'{model_info["model_name"]:25s} {model_info["status"]:>15s} {model_info["model_type"]:10s} {model_info["description"]}'
|
||||
line = f'{model_info["name"]:25s} {model_info["status"]:>15s} {model_info["type"]:10s} {model_info["description"]}'
|
||||
if model_info["status"] in ["in gpu","locked in gpu"]:
|
||||
line = f"\033[1m{line}\033[0m"
|
||||
print(line)
|
||||
@ -601,7 +581,8 @@ class ModelManager(object):
|
||||
def add_model(
|
||||
self,
|
||||
model_name: str,
|
||||
model_type: SDModelType,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
model_attributes: dict,
|
||||
clobber: bool = False,
|
||||
) -> None:
|
||||
@ -613,38 +594,31 @@ class ModelManager(object):
|
||||
attributes are incorrect or the model name is missing.
|
||||
"""
|
||||
|
||||
if model_type == SDModelType.Fiffusers:
|
||||
# TODO: automaticaly or manualy?
|
||||
#assert "format" in model_attributes, 'missing required field "format"'
|
||||
model_format = "ckpt" if "weights" in model_attributes else "diffusers"
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
|
||||
if model_format == "diffusers":
|
||||
assert (
|
||||
"description" in model_attributes
|
||||
), 'required field "description" is missing'
|
||||
assert (
|
||||
"path" in model_attributes or "repo_id" in model_attributes
|
||||
), 'model must have either the "path" or "repo_id" fields defined'
|
||||
model_class.build_config(
|
||||
**model_attributes,
|
||||
name=model_name,
|
||||
base_model=base_model,
|
||||
type=model_type,
|
||||
)
|
||||
#model_cfg = model_class.Config(
|
||||
# **model_attributes,
|
||||
# name=model_name,
|
||||
# base_model=base_model,
|
||||
# type=model_type,
|
||||
#)
|
||||
|
||||
elif model_format == "ckpt":
|
||||
for field in ("description", "weights", "config"):
|
||||
assert field in model_attributes, f"required field {field} is missing"
|
||||
|
||||
else:
|
||||
assert "weights" in model_attributes and "description" in model_attributes
|
||||
|
||||
model_key = self.create_key(model_name, model_type)
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
|
||||
assert (
|
||||
clobber or model_key not in self.config
|
||||
), f'attempt to overwrite existing model definition "{model_key}"'
|
||||
|
||||
self.config[model_key] = model_attributes
|
||||
|
||||
if "weights" in self.config[model_key]:
|
||||
self.config[model_key]["weights"].replace("\\", "/")
|
||||
|
||||
if clobber and model_key in self.cache_keys:
|
||||
# TODO:
|
||||
self.cache.uncache_model(self.cache_keys[model_key])
|
||||
del self.cache_keys[model_key]
|
||||
|
||||
@ -739,326 +713,6 @@ class ModelManager(object):
|
||||
),
|
||||
True
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
|
||||
"""
|
||||
Given a pickle or safetensors model object, probes contents
|
||||
of the object and returns an SDLegacyType indicating its
|
||||
format. Valid return values include:
|
||||
SDLegacyType.V1
|
||||
SDLegacyType.V1_INPAINT
|
||||
SDLegacyType.V2 (V2 prediction type unknown)
|
||||
SDLegacyType.V2_e (V2 using 'epsilon' prediction type)
|
||||
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
|
||||
SDLegacyType.UNKNOWN
|
||||
"""
|
||||
global_step = checkpoint.get("global_step")
|
||||
state_dict = checkpoint.get("state_dict") or checkpoint
|
||||
|
||||
try:
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
||||
if global_step == 220000:
|
||||
return SDLegacyType.V2_e
|
||||
elif global_step == 110000:
|
||||
return SDLegacyType.V2_v
|
||||
else:
|
||||
return SDLegacyType.V2
|
||||
# otherwise we assume a V1 file
|
||||
in_channels = state_dict[
|
||||
"model.diffusion_model.input_blocks.0.0.weight"
|
||||
].shape[1]
|
||||
if in_channels == 9:
|
||||
return SDLegacyType.V1_INPAINT
|
||||
elif in_channels == 4:
|
||||
return SDLegacyType.V1
|
||||
else:
|
||||
return SDLegacyType.UNKNOWN
|
||||
except KeyError:
|
||||
return SDLegacyType.UNKNOWN
|
||||
|
||||
def heuristic_import(
|
||||
self,
|
||||
path_url_or_repo: str,
|
||||
model_name: Optional[str] = None,
|
||||
description: Optional[str] = None,
|
||||
model_config_file: Optional[Path] = None,
|
||||
commit_to_conf: Optional[Path] = None,
|
||||
config_file_callback: Optional[Callable[[Path], Path]] = None,
|
||||
) -> str:
|
||||
"""Accept a string which could be:
|
||||
- a HF diffusers repo_id
|
||||
- a URL pointing to a legacy .ckpt or .safetensors file
|
||||
- a local path pointing to a legacy .ckpt or .safetensors file
|
||||
- a local directory containing .ckpt and .safetensors files
|
||||
- a local directory containing a diffusers model
|
||||
|
||||
After determining the nature of the model and downloading it
|
||||
(if necessary), the file is probed to determine the correct
|
||||
configuration file (if needed) and it is imported.
|
||||
|
||||
The model_name and/or description can be provided. If not, they will
|
||||
be generated automatically.
|
||||
|
||||
If commit_to_conf is provided, the newly loaded model will be written
|
||||
to the `models.yaml` file at the indicated path. Otherwise, the changes
|
||||
will only remain in memory.
|
||||
|
||||
The routine will do its best to figure out the config file
|
||||
needed to convert legacy checkpoint file, but if it can't it
|
||||
will call the config_file_callback routine, if provided. The
|
||||
callback accepts a single argument, the Path to the checkpoint
|
||||
file, and returns a Path to the config file to use.
|
||||
|
||||
The (potentially derived) name of the model is returned on
|
||||
success, or None on failure. When multiple models are added
|
||||
from a directory, only the last imported one is returned.
|
||||
|
||||
"""
|
||||
model_path: Path = None
|
||||
thing = str(path_url_or_repo) # to save typing
|
||||
|
||||
self.logger.info(f"Probing {thing} for import")
|
||||
|
||||
if thing.startswith(("http:", "https:", "ftp:")):
|
||||
self.logger.info(f"{thing} appears to be a URL")
|
||||
model_path = self._resolve_path(
|
||||
thing, "models/ldm/stable-diffusion-v1"
|
||||
) # _resolve_path does a download if needed
|
||||
|
||||
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
|
||||
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
|
||||
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
|
||||
return
|
||||
else:
|
||||
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
|
||||
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
|
||||
|
||||
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
|
||||
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing,
|
||||
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
|
||||
model_name=model_name,
|
||||
description=description,
|
||||
commit_to_conf=commit_to_conf,
|
||||
)
|
||||
|
||||
elif Path(thing).is_dir():
|
||||
if (Path(thing) / "model_index.json").exists():
|
||||
self.logger.debug(f"{thing} appears to be a diffusers model.")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
else:
|
||||
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
|
||||
for m in list(Path(thing).rglob("*.ckpt")) + list(
|
||||
Path(thing).rglob("*.safetensors")
|
||||
):
|
||||
if model_name := self.heuristic_import(
|
||||
str(m),
|
||||
commit_to_conf=commit_to_conf,
|
||||
config_file_callback=config_file_callback,
|
||||
):
|
||||
self.logger.info(f"{model_name} successfully imported")
|
||||
return model_name
|
||||
|
||||
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
|
||||
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
|
||||
return model_name
|
||||
else:
|
||||
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
||||
|
||||
# Model_path is set in the event of a legacy checkpoint file.
|
||||
# If not set, we're all done
|
||||
if not model_path:
|
||||
return
|
||||
|
||||
if model_path.stem in self.config: # already imported
|
||||
self.logger.debug("Already imported. Skipping")
|
||||
return model_path.stem
|
||||
|
||||
# another round of heuristics to guess the correct config file.
|
||||
checkpoint = None
|
||||
if model_path.suffix in [".ckpt", ".pt"]:
|
||||
self.cache.scan_model(model_path, model_path)
|
||||
checkpoint = torch.load(model_path)
|
||||
else:
|
||||
checkpoint = safetensors.torch.load_file(model_path)
|
||||
|
||||
# additional probing needed if no config file provided
|
||||
if model_config_file is None:
|
||||
# look for a like-named .yaml file in same directory
|
||||
if model_path.with_suffix(".yaml").exists():
|
||||
model_config_file = model_path.with_suffix(".yaml")
|
||||
self.logger.debug(f"Using config file {model_config_file.name}")
|
||||
|
||||
else:
|
||||
model_type = self.probe_model_type(checkpoint)
|
||||
if model_type == SDLegacyType.V1:
|
||||
self.logger.debug("SD-v1 model detected")
|
||||
model_config_file = self.globals.legacy_conf_path / "v1-inference.yaml"
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
self.logger.debug("SD-v1 inpainting model detected")
|
||||
model_config_file = self.globals.legacy_conf_path / "v1-inpainting-inference.yaml"
|
||||
elif model_type == SDLegacyType.V2_v:
|
||||
self.logger.debug("SD-v2-v model detected")
|
||||
model_config_file = self.globals.legacy_conf_path / "v2-inference-v.yaml"
|
||||
elif model_type == SDLegacyType.V2_e:
|
||||
self.logger.debug("SD-v2-e model detected")
|
||||
model_config_file = self.globals.legacy_conf_path / "v2-inference.yaml"
|
||||
elif model_type == SDLegacyType.V2:
|
||||
self.logger.warning(
|
||||
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined."
|
||||
)
|
||||
else:
|
||||
self.logger.warning(
|
||||
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model."
|
||||
)
|
||||
|
||||
if not model_config_file and config_file_callback:
|
||||
model_config_file = config_file_callback(model_path)
|
||||
|
||||
# despite our best efforts, we could not find a model config file, so give up
|
||||
if not model_config_file:
|
||||
return
|
||||
|
||||
# look for a custom vae, a like-named file ending with .vae in the same directory
|
||||
vae_path = None
|
||||
for suffix in ["pt", "ckpt", "safetensors"]:
|
||||
if (model_path.with_suffix(f".vae.{suffix}")).exists():
|
||||
vae_path = model_path.with_suffix(f".vae.{suffix}")
|
||||
self.logger.debug(f"Using VAE file {vae_path.name}")
|
||||
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
|
||||
|
||||
diffuser_path = self.globals.converted_ckpts_dir / model_path.stem
|
||||
with SilenceWarnings():
|
||||
model_name = self.convert_and_import(
|
||||
model_path,
|
||||
diffusers_path=diffuser_path,
|
||||
vae=vae,
|
||||
vae_path=str(vae_path),
|
||||
model_name=model_name,
|
||||
model_description=description,
|
||||
original_config_file=model_config_file,
|
||||
commit_to_conf=commit_to_conf,
|
||||
scan_needed=False,
|
||||
)
|
||||
return model_name
|
||||
|
||||
def convert_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
||||
"""
|
||||
Convert the checkpoint model indicated in mconfig into a
|
||||
diffusers, cache it to disk, and return Path to converted
|
||||
file. If already on disk then just returns Path.
|
||||
"""
|
||||
weights = self.globals.root_dir / mconfig.weights
|
||||
config_file = self.globals.root_dir / mconfig.config
|
||||
diffusers_path = self.globals.converted_ckpts_dir / weights.stem
|
||||
|
||||
# return cached version if it exists
|
||||
if diffusers_path.exists():
|
||||
return diffusers_path
|
||||
|
||||
vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
||||
|
||||
# to avoid circular import errors
|
||||
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
||||
with SilenceWarnings():
|
||||
convert_ckpt_to_diffusers(
|
||||
weights,
|
||||
diffusers_path,
|
||||
extract_ema=True,
|
||||
original_config_file=config_file,
|
||||
vae=vae_model,
|
||||
vae_path=str(self.globals.root_dir / vae_ckpt_path) if vae_ckpt_path else None,
|
||||
scan_needed=True,
|
||||
)
|
||||
return diffusers_path
|
||||
|
||||
def convert_vae_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
||||
"""
|
||||
Convert the VAE indicated in mconfig into a diffusers AutoencoderKL
|
||||
object, cache it to disk, and return Path to converted
|
||||
file. If already on disk then just returns Path.
|
||||
"""
|
||||
root = self.globals.root_dir
|
||||
weights_file = root / mconfig.weights
|
||||
config_file = root / mconfig.config
|
||||
diffusers_path = self.globals.converted_ckpts_dir / weights_file.stem
|
||||
image_size = mconfig.get('width') or mconfig.get('height') or 512
|
||||
|
||||
# return cached version if it exists
|
||||
if diffusers_path.exists():
|
||||
return diffusers_path
|
||||
|
||||
# this avoids circular import error
|
||||
from .convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
||||
checkpoint = torch.load(weights_file, map_location="cpu")\
|
||||
if weights_file.suffix in ['.ckpt','.pt'] \
|
||||
else safetensors.torch.load_file(weights_file)
|
||||
|
||||
# sometimes weights are hidden under "state_dict", and sometimes not
|
||||
if "state_dict" in checkpoint:
|
||||
checkpoint = checkpoint["state_dict"]
|
||||
|
||||
config = OmegaConf.load(config_file)
|
||||
|
||||
vae_model = convert_ldm_vae_to_diffusers(
|
||||
checkpoint = checkpoint,
|
||||
vae_config = config,
|
||||
image_size = image_size
|
||||
)
|
||||
vae_model.save_pretrained(
|
||||
diffusers_path,
|
||||
safe_serialization=is_safetensors_available()
|
||||
)
|
||||
return diffusers_path
|
||||
|
||||
def _get_vae_for_conversion(
|
||||
self,
|
||||
weights: Path,
|
||||
mconfig: DictConfig
|
||||
) -> Tuple[Path, AutoencoderKL]:
|
||||
# VAE handling is convoluted
|
||||
# 1. If there is a .vae.ckpt file sharing same stem as weights, then use
|
||||
# it as the vae_path passed to convert
|
||||
vae_ckpt_path = None
|
||||
vae_diffusers_location = None
|
||||
vae_model = None
|
||||
for suffix in ["pt", "ckpt", "safetensors"]:
|
||||
if (weights.with_suffix(f".vae.{suffix}")).exists():
|
||||
vae_ckpt_path = weights.with_suffix(f".vae.{suffix}")
|
||||
self.logger.debug(f"Using VAE file {vae_ckpt_path.name}")
|
||||
if vae_ckpt_path:
|
||||
return (vae_ckpt_path, None)
|
||||
|
||||
# 2. If mconfig has a vae weights path, then we use that as vae_path
|
||||
vae_config = mconfig.get('vae')
|
||||
if vae_config and isinstance(vae_config,str):
|
||||
vae_ckpt_path = vae_config
|
||||
return (vae_ckpt_path, None)
|
||||
|
||||
# 3. If mconfig has a vae dict, then we use it as the diffusers-style vae
|
||||
if vae_config and isinstance(vae_config,DictConfig):
|
||||
vae_diffusers_location = self.globals.root_dir / vae_config.get('path') \
|
||||
if vae_config.get('path') \
|
||||
else vae_config.get('repo_id')
|
||||
|
||||
# 4. Otherwise, we use stabilityai/sd-vae-ft-mse "because it works"
|
||||
else:
|
||||
vae_diffusers_location = "stabilityai/sd-vae-ft-mse"
|
||||
|
||||
if vae_diffusers_location:
|
||||
vae_model = self.cache.get_model(vae_diffusers_location, SDModelType.Vae).model
|
||||
return (None, vae_model)
|
||||
|
||||
return (None, None)
|
||||
|
||||
def convert_and_import(
|
||||
self,
|
||||
|
726
invokeai/backend/model_management/models.py
Normal file
726
invokeai/backend/model_management/models.py
Normal file
@ -0,0 +1,726 @@
|
||||
import sys
|
||||
from enum import Enum
|
||||
import torch
|
||||
import safetensors.torch
|
||||
from diffusers.utils import is_safetensors_available
|
||||
|
||||
class BaseModelType(str, Enum):
|
||||
#StableDiffusion1_5 = "stable_diffusion_1_5"
|
||||
#StableDiffusion2 = "stable_diffusion_2"
|
||||
#StableDiffusion2Base = "stable_diffusion_2_base"
|
||||
# TODO: maybe then add sample size(512/768)?
|
||||
StableDiffusion1_5 = "SD-1"
|
||||
StableDiffusion2Base = "SD-2-base" # 512 pixels; this will have epsilon parameterization
|
||||
StableDiffusion2 = "SD-2" # 768 pixels; this will have v-prediction parameterization
|
||||
#Kandinsky2_1 = "kandinsky_2_1"
|
||||
|
||||
class ModelType(str, Enum):
|
||||
Pipeline = "pipeline"
|
||||
Classifier = "classifier"
|
||||
Vae = "vae"
|
||||
|
||||
Lora = "lora"
|
||||
ControlNet = "controlnet"
|
||||
TextualInversion = "embedding"
|
||||
|
||||
class SubModelType:
|
||||
UNet = "unet"
|
||||
TextEncoder = "text_encoder"
|
||||
Tokenizer = "tokenizer"
|
||||
Vae = "vae"
|
||||
Scheduler = "scheduler"
|
||||
SafetyChecker = "safety_checker"
|
||||
#MoVQ = "movq"
|
||||
|
||||
MODEL_CLASSES = {
|
||||
BaseModel.StableDiffusion1_5: {
|
||||
ModelType.Pipeline: StableDiffusionModel,
|
||||
ModelType.Classifier: ClassifierModel,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoraModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
BaseModel.StableDiffusion2: {
|
||||
ModelType.Pipeline: StableDiffusionModel,
|
||||
ModelType.Classifier: ClassifierModel,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoraModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
BaseModel.StableDiffusion2Base: {
|
||||
ModelType.Pipeline: StableDiffusionModel,
|
||||
ModelType.Classifier: ClassifierModel,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoraModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
#BaseModel.Kandinsky2_1: {
|
||||
# ModelType.Pipeline: Kandinsky2_1Model,
|
||||
# ModelType.Classifier: ClassifierModel,
|
||||
# ModelType.MoVQ: MoVQModel,
|
||||
# ModelType.Lora: LoraModel,
|
||||
# ModelType.ControlNet: ControlNetModel,
|
||||
# ModelType.TextualInversion: TextualInversionModel,
|
||||
#},
|
||||
}
|
||||
|
||||
class EmptyConfigLoader(ConfigMixin):
|
||||
@classmethod
|
||||
def load_config(cls, *args, **kwargs):
|
||||
cls.config_name = kwargs.pop("config_name")
|
||||
return super().load_config(*args, **kwargs)
|
||||
|
||||
class ModelBase:
|
||||
#model_path: str
|
||||
#base_model: BaseModelType
|
||||
#model_type: ModelType
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_path: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
):
|
||||
self.model_path = model_path
|
||||
self.base_model = base_model
|
||||
self.model_type = model_type
|
||||
|
||||
def _hf_definition_to_type(self, subtypes: List[str]) -> Type:
|
||||
if len(subtypes) < 2:
|
||||
raise Exception("Invalid subfolder definition!")
|
||||
if subtypes[0] in ["diffusers", "transformers"]:
|
||||
res_type = sys.modules[subtypes[0]]
|
||||
subtypes = subtypes[1:]
|
||||
|
||||
else:
|
||||
res_type = sys.modules["diffusers"]
|
||||
res_type = getattr(res_type, "pipelines")
|
||||
|
||||
|
||||
for subtype in subtypes:
|
||||
res_type = getattr(res_type, subtype)
|
||||
return res_type
|
||||
|
||||
|
||||
class DiffusersModel(ModelBase):
|
||||
#child_types: Dict[str, Type]
|
||||
#child_sizes: Dict[str, int]
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
self.child_types: Dict[str, Type] = dict()
|
||||
self.child_sizes: Dict[str, int] = dict()
|
||||
|
||||
try:
|
||||
config_data = DiffusionPipeline.load_config(self.model_path)
|
||||
#config_data = json.loads(os.path.join(self.model_path, "model_index.json"))
|
||||
except:
|
||||
raise Exception("Invalid diffusers model! (model_index.json not found or invalid)")
|
||||
|
||||
config_data.pop("_ignore_files", None)
|
||||
|
||||
# retrieve all folder_names that contain relevant files
|
||||
child_components = [k for k, v in config_data.items() if isinstance(v, list)]
|
||||
|
||||
for child_name in child_components:
|
||||
child_type = self._hf_definition_to_type(config_data[child_name])
|
||||
self.child_types[child_name] = child_type
|
||||
self.child_sizes[child_name] = calc_model_size_by_fs(self.model_path, subfolder=child_name)
|
||||
|
||||
|
||||
def get_size(self, child_type: Optional[SubModelType] = None):
|
||||
if child_type is None:
|
||||
return sum(self.child_sizes.values())
|
||||
else:
|
||||
return self.child_sizes[child_type]
|
||||
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SubModelType] = None,
|
||||
):
|
||||
# return pipeline in different function to pass more arguments
|
||||
if child_type is None:
|
||||
raise Exception("Child model type can't be null on diffusers model")
|
||||
if child_type not in self.child_types:
|
||||
return None # TODO: or raise
|
||||
|
||||
if torch_dtype == torch.float16:
|
||||
variants = ["fp16", None]
|
||||
else:
|
||||
variants = [None, "fp16"]
|
||||
|
||||
# TODO: better error handling(differentiate not found from others)
|
||||
for variant in variants:
|
||||
try:
|
||||
# TODO: set cache_dir to /dev/null to be sure that cache not used?
|
||||
model = self.child_types[child_type].from_pretrained(
|
||||
self.model_path,
|
||||
subfolder=child_type.value,
|
||||
torch_dtype=torch_dtype,
|
||||
variant=variant,
|
||||
local_files_only=True,
|
||||
)
|
||||
break
|
||||
except Exception as e:
|
||||
print("====ERR LOAD====")
|
||||
print(f"{variant}: {e}")
|
||||
|
||||
# calc more accurate size
|
||||
self.child_sizes[child_type] = calc_model_size_by_data(model)
|
||||
return model
|
||||
|
||||
#def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
||||
|
||||
|
||||
class StableDiffusionModel(DiffusersModel):
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model in {
|
||||
BaseModelType.StableDiffusion1_5,
|
||||
BaseModelType.StableDiffusion2,
|
||||
BaseModelType.StableDiffusion2Base,
|
||||
}
|
||||
assert model_type == ModelType.Pipeline
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
@staticmethod
|
||||
def convert_if_required(model_path: Union[str, Path], dst_path: str, config: Optional[dict]) -> Path:
|
||||
if not isinstance(model_path, Path):
|
||||
model_path = Path(model_path)
|
||||
|
||||
# TODO: args
|
||||
# TODO: set model_path, to config? pass dst_path as arg?
|
||||
# TODO: check
|
||||
return _convert_ckpt_and_cache(config)
|
||||
|
||||
class classproperty(object): # pylint: disable=invalid-name
|
||||
"""Class property decorator.
|
||||
|
||||
Example usage:
|
||||
|
||||
class MyClass(object):
|
||||
|
||||
@classproperty
|
||||
def value(cls):
|
||||
return '123'
|
||||
|
||||
> print MyClass.value
|
||||
123
|
||||
"""
|
||||
|
||||
def __init__(self, func):
|
||||
self._func = func
|
||||
|
||||
def __get__(self, owner_self, owner_cls):
|
||||
return self._func(owner_cls)
|
||||
|
||||
class ModelConfigBase(BaseModel):
|
||||
path: str # or Path
|
||||
name: str
|
||||
description: Optional[str]
|
||||
|
||||
|
||||
class StableDiffusionDModel(DiffusersModel):
|
||||
class Config(ModelConfigBase):
|
||||
format: str
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
|
||||
@root_validator
|
||||
def validator(cls, values):
|
||||
if values["format"] not in {"checkpoint", "diffusers"}:
|
||||
raise ValueError(f"Unkown stable diffusion model format: {values['format']}")
|
||||
if values["config"] is not None and values["format"] != "checkpoint":
|
||||
raise ValueError(f"Custom config field allowed only in checkpoint stable diffusion model")
|
||||
return values
|
||||
|
||||
# return config only for checkpoint format
|
||||
def dict(self, *args, **kwargs):
|
||||
result = super().dict(*args, **kwargs)
|
||||
if self.format != "checkpoint":
|
||||
result.pop("config", None)
|
||||
return result
|
||||
|
||||
@classproperty
|
||||
def has_config(self):
|
||||
return True
|
||||
|
||||
def build_config(self, **kwargs) -> dict:
|
||||
try:
|
||||
res = dict(
|
||||
path=kwargs["path"],
|
||||
name=kwargs["name"],
|
||||
description=kwargs.get("description", None),
|
||||
|
||||
format=kwargs["format"],
|
||||
vae=kwargs.get("vae", None),
|
||||
)
|
||||
if res["format"] not in {"checkpoint", "diffusers"}:
|
||||
raise Exception(f"Unkonwn stable diffusion model format: {res['format']}")
|
||||
if res["format"] == "checkpoint":
|
||||
res["config"] = kwargs.get("config", None)
|
||||
# TODO: raise if config specified for diffusers?
|
||||
|
||||
return res
|
||||
|
||||
except KeyError as e:
|
||||
raise Exception(f"Field \"{e.args[0]}\" not found!")
|
||||
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model == BaseModelType.StableDiffusion1_5
|
||||
assert model_type == ModelType.Pipeline
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(cls, model_path: str, dst_path: str, config: Optional[dict]) -> str:
|
||||
model_config = cls.Config(
|
||||
**config,
|
||||
path=model_path,
|
||||
name="",
|
||||
)
|
||||
|
||||
if hasattr(model_config, "config"):
|
||||
convert_ckpt_and_cache(
|
||||
model_path=model_path,
|
||||
dst_path=dst_path,
|
||||
config=config,
|
||||
)
|
||||
return dst_path
|
||||
|
||||
else:
|
||||
return model_path
|
||||
|
||||
class StableDiffusion15CheckpointModel(DiffusersModel):
|
||||
class Cnfig(ModelConfigBase):
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
|
||||
class StableDiffusion2BaseDiffusersModel(DiffusersModel):
|
||||
class Config(ModelConfigBase):
|
||||
vae: Optional[str] = Field(None)
|
||||
|
||||
class StableDiffusion2BaseCheckpointModel(DiffusersModel):
|
||||
class Cnfig(ModelConfigBase):
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
|
||||
class StableDiffusion2DiffusersModel(DiffusersModel):
|
||||
class Config(ModelConfigBase):
|
||||
vae: Optional[str] = Field(None)
|
||||
attention_upscale: bool = Field(True)
|
||||
|
||||
class StableDiffusion2CheckpointModel(DiffusersModel):
|
||||
class Config(ModelConfigBase):
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
attention_upscale: bool = Field(True)
|
||||
|
||||
|
||||
class ClassifierModel(ModelBase):
|
||||
#child_types: Dict[str, Type]
|
||||
#child_sizes: Dict[str, int]
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == SDModelType.Classifier
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
self.child_types: Dict[str, Type] = dict()
|
||||
self.child_sizes: Dict[str, int] = dict()
|
||||
|
||||
try:
|
||||
main_config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
|
||||
#main_config = json.loads(os.path.join(self.model_path, "config.json"))
|
||||
except:
|
||||
raise Exception("Invalid classifier model! (config.json not found or invalid)")
|
||||
|
||||
self._load_tokenizer(main_config)
|
||||
self._load_text_encoder(main_config)
|
||||
self._load_feature_extractor(main_config)
|
||||
|
||||
|
||||
def _load_tokenizer(self, main_config: dict):
|
||||
try:
|
||||
tokenizer_config = EmptyConfigLoader.load_config(self.model_path, config_name="tokenizer_config.json")
|
||||
#tokenizer_config = json.loads(os.path.join(self.model_path, "tokenizer_config.json"))
|
||||
except:
|
||||
raise Exception("Invalid classifier model! (Failed to load tokenizer_config.json)")
|
||||
|
||||
if "tokenizer_class" in tokenizer_config:
|
||||
tokenizer_class_name = tokenizer_config["tokenizer_class"]
|
||||
elif "model_type" in main_config:
|
||||
tokenizer_class_name = transformers.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES[main_config["model_type"]]
|
||||
else:
|
||||
raise Exception("Invalid classifier model! (Failed to detect tokenizer type)")
|
||||
|
||||
self.child_types[SDModelType.Tokenizer] = self._hf_definition_to_type(["transformers", tokenizer_class_name])
|
||||
self.child_sizes[SDModelType.Tokenizer] = 0
|
||||
|
||||
|
||||
def _load_text_encoder(self, main_config: dict):
|
||||
if "architectures" in main_config and len(main_config["architectures"]) > 0:
|
||||
text_encoder_class_name = main_config["architectures"][0]
|
||||
elif "model_type" in main_config:
|
||||
text_encoder_class_name = transformers.models.auto.modeling_auto.MODEL_FOR_PRETRAINING_MAPPING_NAMES[main_config["model_type"]]
|
||||
else:
|
||||
raise Exception("Invalid classifier model! (Failed to detect text_encoder type)")
|
||||
|
||||
self.child_types[SDModelType.TextEncoder] = self._hf_definition_to_type(["transformers", text_encoder_class_name])
|
||||
self.child_sizes[SDModelType.TextEncoder] = calc_model_size_by_fs(self.model_path)
|
||||
|
||||
|
||||
def _load_feature_extractor(self, main_config: dict):
|
||||
self.child_sizes[SDModelType.FeatureExtractor] = 0
|
||||
try:
|
||||
feature_extractor_config = EmptyConfigLoader.load_config(self.model_path, config_name="preprocessor_config.json")
|
||||
except:
|
||||
return # feature extractor not passed with t5
|
||||
|
||||
try:
|
||||
feature_extractor_class_name = feature_extractor_config["feature_extractor_type"]
|
||||
self.child_types[SDModelType.FeatureExtractor] = self._hf_definition_to_type(["transformers", feature_extractor_class_name])
|
||||
except:
|
||||
raise Exception("Invalid classifier model! (Unknown feature_extrator type)")
|
||||
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is None:
|
||||
return sum(self.child_sizes.values())
|
||||
else:
|
||||
return self.child_sizes[child_type]
|
||||
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SDModelType] = None,
|
||||
):
|
||||
if child_type is None:
|
||||
raise Exception("Child model type can't be null on classififer model")
|
||||
if child_type not in self.child_types:
|
||||
return None # TODO: or raise
|
||||
|
||||
model = self.child_types[child_type].from_pretrained(
|
||||
self.model_path,
|
||||
subfolder=child_type.value,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
# calc more accurate size
|
||||
self.child_sizes[child_type] = calc_model_size_by_data(model)
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
||||
if not isinstance(model_path, Path):
|
||||
model_path = Path(model_path)
|
||||
return model_path
|
||||
|
||||
|
||||
|
||||
class VaeModel(ModelBase):
|
||||
#vae_class: Type
|
||||
#model_size: int
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.Vae
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
try:
|
||||
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
|
||||
#config = json.loads(os.path.join(self.model_path, "config.json"))
|
||||
except:
|
||||
raise Exception("Invalid vae model! (config.json not found or invalid)")
|
||||
|
||||
try:
|
||||
vae_class_name = config.get("_class_name", "AutoencoderKL")
|
||||
self.vae_class = self._hf_definition_to_type(["diffusers", vae_class_name])
|
||||
self.model_size = calc_model_size_by_fs(self.model_path)
|
||||
except:
|
||||
raise Exception("Invalid vae model! (Unkown vae type)")
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in vae model")
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SDModelType] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in vae model")
|
||||
|
||||
model = self.vae_class.from_pretrained(
|
||||
self.model_path,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
# calc more accurate size
|
||||
self.model_size = calc_model_size_by_data(model)
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
||||
if not isinstance(model_path, Path):
|
||||
model_path = Path(model_path)
|
||||
# TODO:
|
||||
#_convert_vae_ckpt_and_cache
|
||||
raise Exception("TODO: ")
|
||||
|
||||
|
||||
class LoRAModel(ModelBase):
|
||||
#model_size: int
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.Lora
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
self.model_size = os.path.getsize(self.model_path)
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in lora")
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SDModelType] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in lora")
|
||||
|
||||
model = LoRAModel.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
self.model_size = model.calc_size()
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
||||
if not isinstance(model_path, Path):
|
||||
model_path = Path(model_path)
|
||||
|
||||
# TODO: add diffusers lora when it stabilizes a bit
|
||||
return model_path
|
||||
|
||||
|
||||
class TextualInversionModel(ModelBase):
|
||||
#model_size: int
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.TextualInversion
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
self.model_size = os.path.getsize(self.model_path)
|
||||
|
||||
def get_size(self, child_type: Optional[SDModelType] = None):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in textual inversion")
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SDModelType] = None,
|
||||
):
|
||||
if child_type is not None:
|
||||
raise Exception("There is no child models in textual inversion")
|
||||
|
||||
model = TextualInversionModel.from_checkpoint(
|
||||
file_path=self.model_path,
|
||||
dtype=torch_dtype,
|
||||
)
|
||||
|
||||
self.model_size = model.embedding.nelement() * model.embedding.element_size()
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def convert_if_required(model_path: Union[str, Path], cache_path: str, config: Optional[dict]) -> Path:
|
||||
if not isinstance(model_path, Path):
|
||||
model_path = Path(model_path)
|
||||
return model_path
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def calc_model_size_by_fs(
|
||||
model_path: str,
|
||||
subfolder: Optional[str] = None,
|
||||
variant: Optional[str] = None
|
||||
):
|
||||
if subfolder is not None:
|
||||
model_path = os.path.join(model_path, subfolder)
|
||||
|
||||
# this can happen when, for example, the safety checker
|
||||
# is not downloaded.
|
||||
if not os.path.exists(model_path):
|
||||
return 0
|
||||
|
||||
all_files = os.listdir(model_path)
|
||||
all_files = [f for f in all_files if os.path.isfile(os.path.join(model_path, f))]
|
||||
|
||||
fp16_files = set([f for f in all_files if ".fp16." in f or ".fp16-" in f])
|
||||
bit8_files = set([f for f in all_files if ".8bit." in f or ".8bit-" in f])
|
||||
other_files = set(all_files) - fp16_files - bit8_files
|
||||
|
||||
if variant is None:
|
||||
files = other_files
|
||||
elif variant == "fp16":
|
||||
files = fp16_files
|
||||
elif variant == "8bit":
|
||||
files = bit8_files
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown variant: {variant}")
|
||||
|
||||
# try read from index if exists
|
||||
index_postfix = ".index.json"
|
||||
if variant is not None:
|
||||
index_postfix = f".index.{variant}.json"
|
||||
|
||||
for file in files:
|
||||
if not file.endswith(index_postfix):
|
||||
continue
|
||||
try:
|
||||
with open(os.path.join(model_path, file), "r") as f:
|
||||
index_data = json.loads(f.read())
|
||||
return int(index_data["metadata"]["total_size"])
|
||||
except:
|
||||
pass
|
||||
|
||||
# calculate files size if there is no index file
|
||||
formats = [
|
||||
(".safetensors",), # safetensors
|
||||
(".bin",), # torch
|
||||
(".onnx", ".pb"), # onnx
|
||||
(".msgpack",), # flax
|
||||
(".ckpt",), # tf
|
||||
(".h5",), # tf2
|
||||
]
|
||||
|
||||
for file_format in formats:
|
||||
model_files = [f for f in files if f.endswith(file_format)]
|
||||
if len(model_files) == 0:
|
||||
continue
|
||||
|
||||
model_size = 0
|
||||
for model_file in model_files:
|
||||
file_stats = os.stat(os.path.join(model_path, model_file))
|
||||
model_size += file_stats.st_size
|
||||
return model_size
|
||||
|
||||
#raise NotImplementedError(f"Unknown model structure! Files: {all_files}")
|
||||
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
|
||||
|
||||
|
||||
def calc_model_size_by_data(model) -> int:
|
||||
if isinstance(model, DiffusionPipeline):
|
||||
return _calc_pipeline_by_data(model)
|
||||
elif isinstance(model, torch.nn.Module):
|
||||
return _calc_model_by_data(model)
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def _calc_pipeline_by_data(pipeline) -> int:
|
||||
res = 0
|
||||
for submodel_key in pipeline.components.keys():
|
||||
submodel = getattr(pipeline, submodel_key)
|
||||
if submodel is not None and isinstance(submodel, torch.nn.Module):
|
||||
res += _calc_model_by_data(submodel)
|
||||
return res
|
||||
|
||||
|
||||
def _calc_model_by_data(model) -> int:
|
||||
mem_params = sum([param.nelement()*param.element_size() for param in model.parameters()])
|
||||
mem_bufs = sum([buf.nelement()*buf.element_size() for buf in model.buffers()])
|
||||
mem = mem_params + mem_bufs # in bytes
|
||||
return mem
|
||||
|
||||
|
||||
def _convert_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
||||
"""
|
||||
Convert the checkpoint model indicated in mconfig into a
|
||||
diffusers, cache it to disk, and return Path to converted
|
||||
file. If already on disk then just returns Path.
|
||||
"""
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
weights = app_config.root_dir / mconfig.path
|
||||
config_file = app_config.root_dir / mconfig.config
|
||||
diffusers_path = app_config.converted_ckpts_dir / weights.stem
|
||||
|
||||
# return cached version if it exists
|
||||
if diffusers_path.exists():
|
||||
return diffusers_path
|
||||
|
||||
# TODO: I think that it more correctly to convert with embedded vae
|
||||
# as if user will delete custom vae he will got not embedded but also custom vae
|
||||
#vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
||||
vae_ckpt_path, vae_model = None, None
|
||||
|
||||
# to avoid circular import errors
|
||||
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
||||
with SilenceWarnings():
|
||||
convert_ckpt_to_diffusers(
|
||||
weights,
|
||||
diffusers_path,
|
||||
extract_ema=True,
|
||||
original_config_file=config_file,
|
||||
vae=vae_model,
|
||||
vae_path=str(app_config.root_dir / vae_ckpt_path) if vae_ckpt_path else None,
|
||||
scan_needed=True,
|
||||
)
|
||||
return diffusers_path
|
||||
|
||||
def _convert_vae_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
||||
"""
|
||||
Convert the VAE indicated in mconfig into a diffusers AutoencoderKL
|
||||
object, cache it to disk, and return Path to converted
|
||||
file. If already on disk then just returns Path.
|
||||
"""
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
root = app_config.root_dir
|
||||
weights_file = root / mconfig.path
|
||||
config_file = root / mconfig.config
|
||||
diffusers_path = app_config.converted_ckpts_dir / weights_file.stem
|
||||
image_size = mconfig.get('width') or mconfig.get('height') or 512
|
||||
|
||||
# return cached version if it exists
|
||||
if diffusers_path.exists():
|
||||
return diffusers_path
|
||||
|
||||
# this avoids circular import error
|
||||
from .convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
||||
if weights_file.suffix == '.safetensors':
|
||||
checkpoint = safetensors.torch.load_file(weights_file)
|
||||
else:
|
||||
checkpoint = torch.load(weights_file, map_location="cpu")
|
||||
|
||||
# sometimes weights are hidden under "state_dict", and sometimes not
|
||||
if "state_dict" in checkpoint:
|
||||
checkpoint = checkpoint["state_dict"]
|
||||
|
||||
config = OmegaConf.load(config_file)
|
||||
|
||||
vae_model = convert_ldm_vae_to_diffusers(
|
||||
checkpoint = checkpoint,
|
||||
vae_config = config,
|
||||
image_size = image_size
|
||||
)
|
||||
vae_model.save_pretrained(
|
||||
diffusers_path,
|
||||
safe_serialization=is_safetensors_available()
|
||||
)
|
||||
return diffusers_path
|
Loading…
Reference in New Issue
Block a user