refactor(ui): update generation tab graphs

This commit is contained in:
psychedelicious 2024-06-16 09:48:20 +10:00
parent e55192ae2a
commit aa127b83a3
7 changed files with 532 additions and 638 deletions

View File

@ -0,0 +1,131 @@
import type {
ControlAdapterData,
ControlNetData,
ImageWithDims,
ProcessorConfig,
T2IAdapterData,
} from 'features/controlLayers/store/types';
import type { ImageField } from 'features/nodes/types/common';
import { CONTROL_NET_COLLECT, T2I_ADAPTER_COLLECT } from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { BaseModelType, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
export const addControlAdapters = (
controlAdapters: ControlAdapterData[],
g: Graph,
denoise: Invocation<'denoise_latents'>,
base: BaseModelType
): ControlAdapterData[] => {
const validControlAdapters = controlAdapters.filter((ca) => isValidControlAdapter(ca, base));
for (const ca of validControlAdapters) {
if (ca.adapterType === 'controlnet') {
addControlNetToGraph(ca, g, denoise);
} else {
addT2IAdapterToGraph(ca, g, denoise);
}
}
return validControlAdapters;
};
const addControlNetCollectorSafe = (g: Graph, denoise: Invocation<'denoise_latents'>): Invocation<'collect'> => {
try {
// Attempt to retrieve the collector
const controlNetCollect = g.getNode(CONTROL_NET_COLLECT);
assert(controlNetCollect.type === 'collect');
return controlNetCollect;
} catch {
// Add the ControlNet collector
const controlNetCollect = g.addNode({
id: CONTROL_NET_COLLECT,
type: 'collect',
});
g.addEdge(controlNetCollect, 'collection', denoise, 'control');
return controlNetCollect;
}
};
const addControlNetToGraph = (ca: ControlNetData, g: Graph, denoise: Invocation<'denoise_latents'>) => {
const { id, beginEndStepPct, controlMode, image, model, processedImage, processorConfig, weight } = ca;
assert(model, 'ControlNet model is required');
const controlImage = buildControlImage(image, processedImage, processorConfig);
const controlNetCollect = addControlNetCollectorSafe(g, denoise);
const controlNet = g.addNode({
id: `control_net_${id}`,
type: 'controlnet',
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
control_mode: controlMode,
resize_mode: 'just_resize',
control_model: model,
control_weight: weight,
image: controlImage,
});
g.addEdge(controlNet, 'control', controlNetCollect, 'item');
};
const addT2IAdapterCollectorSafe = (g: Graph, denoise: Invocation<'denoise_latents'>): Invocation<'collect'> => {
try {
// You see, we've already got one!
const t2iAdapterCollect = g.getNode(T2I_ADAPTER_COLLECT);
assert(t2iAdapterCollect.type === 'collect');
return t2iAdapterCollect;
} catch {
const t2iAdapterCollect = g.addNode({
id: T2I_ADAPTER_COLLECT,
type: 'collect',
});
g.addEdge(t2iAdapterCollect, 'collection', denoise, 't2i_adapter');
return t2iAdapterCollect;
}
};
const addT2IAdapterToGraph = (ca: T2IAdapterData, g: Graph, denoise: Invocation<'denoise_latents'>) => {
const { id, beginEndStepPct, image, model, processedImage, processorConfig, weight } = ca;
assert(model, 'T2I Adapter model is required');
const controlImage = buildControlImage(image, processedImage, processorConfig);
const t2iAdapterCollect = addT2IAdapterCollectorSafe(g, denoise);
const t2iAdapter = g.addNode({
id: `t2i_adapter_${id}`,
type: 't2i_adapter',
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
resize_mode: 'just_resize',
t2i_adapter_model: model,
weight: weight,
image: controlImage,
});
g.addEdge(t2iAdapter, 't2i_adapter', t2iAdapterCollect, 'item');
};
const buildControlImage = (
image: ImageWithDims | null,
processedImage: ImageWithDims | null,
processorConfig: ProcessorConfig | null
): ImageField => {
if (processedImage && processorConfig) {
// We've processed the image in the app - use it for the control image.
return {
image_name: processedImage.name,
};
} else if (image) {
// No processor selected, and we have an image - the user provided a processed image, use it for the control image.
return {
image_name: image.name,
};
}
assert(false, 'Attempted to add unprocessed control image');
};
const isValidControlAdapter = (ca: ControlAdapterData, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ca.model);
const modelMatchesBase = ca.model?.base === base;
const hasControlImage = Boolean(ca.image || (ca.processedImage && ca.processorConfig));
return hasModel && modelMatchesBase && hasControlImage;
};

View File

@ -1,617 +0,0 @@
import { getStore } from 'app/store/nanostores/store';
import type { RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_NAME } from 'features/controlLayers/konva/naming';
import { renderers } from 'features/controlLayers/konva/renderers/layers';
import { regionalGuidanceMaskImageUploaded } from 'features/controlLayers/store/canvasV2Slice';
import type { InitialImageLayer, LayerData, RegionalGuidanceLayer } from 'features/controlLayers/store/types';
import {
isControlAdapterLayer,
isInitialImageLayer,
isIPAdapterLayer,
isRegionalGuidanceLayer,
} from 'features/controlLayers/store/types';
import type {
ControlNetConfigV2,
ImageWithDims,
IPAdapterConfigV2,
ProcessorConfig,
T2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import type { ImageField } from 'features/nodes/types/common';
import {
CONTROL_NET_COLLECT,
IMAGE_TO_LATENTS,
IP_ADAPTER_COLLECT,
PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX,
PROMPT_REGION_MASK_TO_TENSOR_PREFIX,
PROMPT_REGION_NEGATIVE_COND_PREFIX,
PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX,
PROMPT_REGION_POSITIVE_COND_PREFIX,
RESIZE,
T2I_ADAPTER_COLLECT,
} from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import Konva from 'konva';
import { size } from 'lodash-es';
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
import type { BaseModelType, ImageDTO, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
//#region addControlLayers
/**
* Adds the control layers to the graph
* @param state The app root state
* @param g The graph to add the layers to
* @param base The base model type
* @param denoise The main denoise node
* @param posCond The positive conditioning node
* @param negCond The negative conditioning node
* @param posCondCollect The positive conditioning collector
* @param negCondCollect The negative conditioning collector
* @param noise The noise node
* @param vaeSource The VAE source (either seamless, vae_loader, main_model_loader, or sdxl_model_loader)
* @returns A promise that resolves to the layers that were added to the graph
*/
export const addControlLayers = async (
state: RootState,
g: Graph,
base: BaseModelType,
denoise: Invocation<'denoise_latents'>,
posCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
negCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
posCondCollect: Invocation<'collect'>,
negCondCollect: Invocation<'collect'>,
noise: Invocation<'noise'>,
vaeSource:
| Invocation<'seamless'>
| Invocation<'vae_loader'>
| Invocation<'main_model_loader'>
| Invocation<'sdxl_model_loader'>
): Promise<LayerData[]> => {
const isSDXL = base === 'sdxl';
const validLayers = state.canvasV2.layers.filter((l) => isValidLayer(l, base));
const validControlAdapters = validLayers.filter(isControlAdapterLayer).map((l) => l.controlAdapter);
for (const ca of validControlAdapters) {
addGlobalControlAdapterToGraph(ca, g, denoise);
}
const validIPAdapters = validLayers.filter(isIPAdapterLayer).map((l) => l.ipAdapter);
for (const ipAdapter of validIPAdapters) {
addGlobalIPAdapterToGraph(ipAdapter, g, denoise);
}
const initialImageLayers = validLayers.filter(isInitialImageLayer);
assert(initialImageLayers.length <= 1, 'Only one initial image layer allowed');
if (initialImageLayers[0]) {
addInitialImageLayerToGraph(state, g, base, denoise, noise, vaeSource, initialImageLayers[0]);
}
// TODO: We should probably just use conditioning collectors by default, and skip all this fanagling with re-routing
// the existing conditioning nodes.
const validRGLayers = validLayers.filter(isRegionalGuidanceLayer);
const layerIds = validRGLayers.map((l) => l.id);
const blobs = await getRGLayerBlobs(layerIds);
assert(size(blobs) === size(layerIds), 'Mismatch between layer IDs and blobs');
for (const layer of validRGLayers) {
const blob = blobs[layer.id];
assert(blob, `Blob for layer ${layer.id} not found`);
// Upload the mask image, or get the cached image if it exists
const { image_name } = await getMaskImage(layer, blob);
// The main mask-to-tensor node
const maskToTensor = g.addNode({
id: `${PROMPT_REGION_MASK_TO_TENSOR_PREFIX}_${layer.id}`,
type: 'alpha_mask_to_tensor',
image: {
image_name,
},
});
if (layer.positivePrompt) {
// The main positive conditioning node
const regionalPosCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
style: layer.positivePrompt, // TODO: Should we put the positive prompt in both fields?
}
: {
type: 'compel',
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
}
);
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalPosCond, 'mask');
// Connect the conditioning to the collector
g.addEdge(regionalPosCond, 'conditioning', posCondCollect, 'item');
// Copy the connections to the "global" positive conditioning node to the regional cond
if (posCond.type === 'compel') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
}
}
if (layer.negativePrompt) {
// The main negative conditioning node
const regionalNegCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.negativePrompt,
style: layer.negativePrompt,
}
: {
type: 'compel',
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${layer.id}`,
prompt: layer.negativePrompt,
}
);
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalNegCond, 'mask');
// Connect the conditioning to the collector
g.addEdge(regionalNegCond, 'conditioning', negCondCollect, 'item');
// Copy the connections to the "global" negative conditioning node to the regional cond
if (negCond.type === 'compel') {
for (const edge of g.getEdgesTo(negCond, ['clip', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(negCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
}
}
// If we are using the "invert" auto-negative setting, we need to add an additional negative conditioning node
if (layer.autoNegative === 'invert' && layer.positivePrompt) {
// We re-use the mask image, but invert it when converting to tensor
const invertTensorMask = g.addNode({
id: `${PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX}_${layer.id}`,
type: 'invert_tensor_mask',
});
// Connect the OG mask image to the inverted mask-to-tensor node
g.addEdge(maskToTensor, 'mask', invertTensorMask, 'mask');
// Create the conditioning node. It's going to be connected to the negative cond collector, but it uses the positive prompt
const regionalPosCondInverted = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
style: layer.positivePrompt,
}
: {
type: 'compel',
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${layer.id}`,
prompt: layer.positivePrompt,
}
);
// Connect the inverted mask to the conditioning
g.addEdge(invertTensorMask, 'mask', regionalPosCondInverted, 'mask');
// Connect the conditioning to the negative collector
g.addEdge(regionalPosCondInverted, 'conditioning', negCondCollect, 'item');
// Copy the connections to the "global" positive conditioning node to our regional node
if (posCond.type === 'compel') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
}
}
const validRegionalIPAdapters: IPAdapterConfigV2[] = layer.ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base));
for (const ipAdapterConfig of validRegionalIPAdapters) {
const ipAdapterCollect = addIPAdapterCollectorSafe(g, denoise);
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapterConfig;
assert(model, 'IP Adapter model is required');
assert(image, 'IP Adapter image is required');
const ipAdapter = g.addNode({
id: `ip_adapter_${id}`,
type: 'ip_adapter',
weight,
method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
image: {
image_name: image.name,
},
});
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', ipAdapter, 'mask');
g.addEdge(ipAdapter, 'ip_adapter', ipAdapterCollect, 'item');
}
}
g.upsertMetadata({ control_layers: { layers: validLayers, version: state.canvasV2._version } });
return validLayers;
};
//#endregion
//#region Control Adapters
const addGlobalControlAdapterToGraph = (
controlAdapterConfig: ControlNetConfigV2 | T2IAdapterConfigV2,
g: Graph,
denoise: Invocation<'denoise_latents'>
): void => {
if (controlAdapterConfig.type === 'controlnet') {
addGlobalControlNetToGraph(controlAdapterConfig, g, denoise);
}
if (controlAdapterConfig.type === 't2i_adapter') {
addGlobalT2IAdapterToGraph(controlAdapterConfig, g, denoise);
}
};
const addControlNetCollectorSafe = (g: Graph, denoise: Invocation<'denoise_latents'>): Invocation<'collect'> => {
try {
// Attempt to retrieve the collector
const controlNetCollect = g.getNode(CONTROL_NET_COLLECT);
assert(controlNetCollect.type === 'collect');
return controlNetCollect;
} catch {
// Add the ControlNet collector
const controlNetCollect = g.addNode({
id: CONTROL_NET_COLLECT,
type: 'collect',
});
g.addEdge(controlNetCollect, 'collection', denoise, 'control');
return controlNetCollect;
}
};
const addGlobalControlNetToGraph = (
controlNetConfig: ControlNetConfigV2,
g: Graph,
denoise: Invocation<'denoise_latents'>
) => {
const { id, beginEndStepPct, controlMode, image, model, processedImage, processorConfig, weight } = controlNetConfig;
assert(model, 'ControlNet model is required');
const controlImage = buildControlImage(image, processedImage, processorConfig);
const controlNetCollect = addControlNetCollectorSafe(g, denoise);
const controlNet = g.addNode({
id: `control_net_${id}`,
type: 'controlnet',
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
control_mode: controlMode,
resize_mode: 'just_resize',
control_model: model,
control_weight: weight,
image: controlImage,
});
g.addEdge(controlNet, 'control', controlNetCollect, 'item');
};
const addT2IAdapterCollectorSafe = (g: Graph, denoise: Invocation<'denoise_latents'>): Invocation<'collect'> => {
try {
// You see, we've already got one!
const t2iAdapterCollect = g.getNode(T2I_ADAPTER_COLLECT);
assert(t2iAdapterCollect.type === 'collect');
return t2iAdapterCollect;
} catch {
const t2iAdapterCollect = g.addNode({
id: T2I_ADAPTER_COLLECT,
type: 'collect',
});
g.addEdge(t2iAdapterCollect, 'collection', denoise, 't2i_adapter');
return t2iAdapterCollect;
}
};
const addGlobalT2IAdapterToGraph = (
t2iAdapterConfig: T2IAdapterConfigV2,
g: Graph,
denoise: Invocation<'denoise_latents'>
) => {
const { id, beginEndStepPct, image, model, processedImage, processorConfig, weight } = t2iAdapterConfig;
assert(model, 'T2I Adapter model is required');
const controlImage = buildControlImage(image, processedImage, processorConfig);
const t2iAdapterCollect = addT2IAdapterCollectorSafe(g, denoise);
const t2iAdapter = g.addNode({
id: `t2i_adapter_${id}`,
type: 't2i_adapter',
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
resize_mode: 'just_resize',
t2i_adapter_model: model,
weight: weight,
image: controlImage,
});
g.addEdge(t2iAdapter, 't2i_adapter', t2iAdapterCollect, 'item');
};
//#region IP Adapter
const addIPAdapterCollectorSafe = (g: Graph, denoise: Invocation<'denoise_latents'>): Invocation<'collect'> => {
try {
// You see, we've already got one!
const ipAdapterCollect = g.getNode(IP_ADAPTER_COLLECT);
assert(ipAdapterCollect.type === 'collect');
return ipAdapterCollect;
} catch {
const ipAdapterCollect = g.addNode({
id: IP_ADAPTER_COLLECT,
type: 'collect',
});
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
return ipAdapterCollect;
}
};
const addGlobalIPAdapterToGraph = (
ipAdapterConfig: IPAdapterConfigV2,
g: Graph,
denoise: Invocation<'denoise_latents'>
) => {
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapterConfig;
assert(image, 'IP Adapter image is required');
assert(model, 'IP Adapter model is required');
const ipAdapterCollect = addIPAdapterCollectorSafe(g, denoise);
const ipAdapter = g.addNode({
id: `ip_adapter_${id}`,
type: 'ip_adapter',
weight,
method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
image: {
image_name: image.name,
},
});
g.addEdge(ipAdapter, 'ip_adapter', ipAdapterCollect, 'item');
};
//#endregion
//#region Initial Image
const addInitialImageLayerToGraph = (
state: RootState,
g: Graph,
base: BaseModelType,
denoise: Invocation<'denoise_latents'>,
noise: Invocation<'noise'>,
vaeSource:
| Invocation<'seamless'>
| Invocation<'vae_loader'>
| Invocation<'main_model_loader'>
| Invocation<'sdxl_model_loader'>,
layer: InitialImageLayer
) => {
const { vaePrecision } = state.canvasV2.params;
const { refinerModel, refinerStart } = state.canvasV2.params;
const { width, height } = state.canvasV2.document;
assert(layer.isEnabled, 'Initial image layer is not enabled');
assert(layer.image, 'Initial image layer has no image');
const isSDXL = base === 'sdxl';
const useRefinerStartEnd = isSDXL && Boolean(refinerModel);
const { denoisingStrength } = layer;
denoise.denoising_start = useRefinerStartEnd ? Math.min(refinerStart, 1 - denoisingStrength) : 1 - denoisingStrength;
denoise.denoising_end = useRefinerStartEnd ? refinerStart : 1;
const i2l = g.addNode({
type: 'i2l',
id: IMAGE_TO_LATENTS,
fp32: vaePrecision === 'fp32',
});
g.addEdge(i2l, 'latents', denoise, 'latents');
g.addEdge(vaeSource, 'vae', i2l, 'vae');
if (layer.image.width !== width || layer.image.height !== height) {
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
// Create a resize node, explicitly setting its image
const resize = g.addNode({
id: RESIZE,
type: 'img_resize',
image: {
image_name: layer.image.name,
},
width,
height,
});
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
g.addEdge(resize, 'image', i2l, 'image');
// The `RESIZE` node also passes its width and height to `NOISE`
g.addEdge(resize, 'width', noise, 'width');
g.addEdge(resize, 'height', noise, 'height');
} else {
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
i2l.image = {
image_name: layer.image.name,
};
// Pass the image's dimensions to the `NOISE` node
g.addEdge(i2l, 'width', noise, 'width');
g.addEdge(i2l, 'height', noise, 'height');
}
g.upsertMetadata({ generation_mode: isSDXL ? 'sdxl_img2img' : 'img2img' });
};
//#endregion
//#region Layer validators
const isValidControlAdapter = (ca: ControlNetConfigV2 | T2IAdapterConfigV2, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ca.model);
const modelMatchesBase = ca.model?.base === base;
const hasControlImage = Boolean(ca.image || (ca.processedImage && ca.processorConfig));
return hasModel && modelMatchesBase && hasControlImage;
};
const isValidIPAdapter = (ipa: IPAdapterConfigV2, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipa.model);
const modelMatchesBase = ipa.model?.base === base;
const hasImage = Boolean(ipa.image);
return hasModel && modelMatchesBase && hasImage;
};
const isValidLayer = (layer: LayerData, base: BaseModelType) => {
if (!layer.isEnabled) {
return false;
}
if (isControlAdapterLayer(layer)) {
return isValidControlAdapter(layer.controlAdapter, base);
}
if (isIPAdapterLayer(layer)) {
return isValidIPAdapter(layer.ipAdapter, base);
}
if (isInitialImageLayer(layer)) {
const hasImage = Boolean(layer.image);
return hasImage;
}
if (isRegionalGuidanceLayer(layer)) {
const hasTextPrompt = Boolean(layer.positivePrompt || layer.negativePrompt);
const hasIPAdapter = layer.ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base)).length > 0;
return hasTextPrompt || hasIPAdapter;
}
return false;
};
//#endregion
//#region getMaskImage
const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<ImageDTO> => {
if (layer.uploadedMaskImage) {
const imageDTO = await getImageDTO(layer.uploadedMaskImage.name);
if (imageDTO) {
return imageDTO;
}
}
const { dispatch } = getStore();
// No cached mask, or the cached image no longer exists - we need to upload the mask image
const file = new File([blob], `${layer.id}_mask.png`, { type: 'image/png' });
const req = dispatch(
imagesApi.endpoints.uploadImage.initiate({ file, image_category: 'mask', is_intermediate: true })
);
req.reset();
const imageDTO = await req.unwrap();
dispatch(regionalGuidanceMaskImageUploaded({ layerId: layer.id, imageDTO }));
return imageDTO;
};
//#endregion
//#region buildControlImage
const buildControlImage = (
image: ImageWithDims | null,
processedImage: ImageWithDims | null,
processorConfig: ProcessorConfig | null
): ImageField => {
if (processedImage && processorConfig) {
// We've processed the image in the app - use it for the control image.
return {
image_name: processedImage.name,
};
} else if (image) {
// No processor selected, and we have an image - the user provided a processed image, use it for the control image.
return {
image_name: image.name,
};
}
assert(false, 'Attempted to add unprocessed control image');
};
//#endregion
//#region getRGLayerBlobs
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
const getRGLayerBlobs = async (layerIds?: string[], preview: boolean = false): Promise<Record<string, Blob>> => {
const state = getStore().getState();
const { layers } = state.canvasV2;
const { width, height } = state.canvasV2.document;
const reduxLayers = layers.filter(isRegionalGuidanceLayer);
const container = document.createElement('div');
const stage = new Konva.Stage({ container, width, height });
renderers.renderLayers(stage, reduxLayers, 1, 'brush', getImageDTO);
const konvaLayers = stage.find<Konva.Layer>(`.${RG_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
if (layerIds && !layerIds.includes(layer.id())) {
continue;
}
const reduxLayer = reduxLayers.find((l) => l.id === layer.id());
assert(reduxLayer, `Redux layer ${layer.id()} not found`);
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${reduxLayer.id}: ${reduxLayer.positivePrompt} / ${reduxLayer.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};
//#endregion

View File

@ -1,6 +1,7 @@
import type { RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
import {
DENOISE_LATENTS_HRF,
ESRGAN_HRF,
@ -12,7 +13,6 @@ import {
} from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
import type { Invocation } from 'services/api/types';
/**

View File

@ -0,0 +1,64 @@
import type { IPAdapterData } from 'features/controlLayers/store/types';
import { IP_ADAPTER_COLLECT } from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { BaseModelType, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
export const addIPAdapters = (
ipAdapters: IPAdapterData[],
g: Graph,
denoise: Invocation<'denoise_latents'>,
base: BaseModelType
): IPAdapterData[] => {
const validIPAdapters = ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base));
for (const ipa of validIPAdapters) {
addIPAdapter(ipa, g, denoise);
}
return validIPAdapters;
};
export const addIPAdapterCollectorSafe = (g: Graph, denoise: Invocation<'denoise_latents'>): Invocation<'collect'> => {
try {
// You see, we've already got one!
const ipAdapterCollect = g.getNode(IP_ADAPTER_COLLECT);
assert(ipAdapterCollect.type === 'collect');
return ipAdapterCollect;
} catch {
const ipAdapterCollect = g.addNode({
id: IP_ADAPTER_COLLECT,
type: 'collect',
});
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
return ipAdapterCollect;
}
};
const addIPAdapter = (ipa: IPAdapterData, g: Graph, denoise: Invocation<'denoise_latents'>) => {
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipa;
assert(image, 'IP Adapter image is required');
assert(model, 'IP Adapter model is required');
const ipAdapterCollect = addIPAdapterCollectorSafe(g, denoise);
const ipAdapter = g.addNode({
id: `ip_adapter_${id}`,
type: 'ip_adapter',
weight,
method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
image: {
image_name: image.name,
},
});
g.addEdge(ipAdapter, 'ip_adapter', ipAdapterCollect, 'item');
};
export const isValidIPAdapter = (ipa: IPAdapterData, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipa.model);
const modelMatchesBase = ipa.model?.base === base;
const hasImage = Boolean(ipa.image);
return hasModel && modelMatchesBase && hasImage;
};

View File

@ -0,0 +1,303 @@
import { getStore } from 'app/store/nanostores/store';
import { deepClone } from 'common/util/deepClone';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_NAME } from 'features/controlLayers/konva/naming';
import { renderers } from 'features/controlLayers/konva/renderers/layers';
import { rgMaskImageUploaded } from 'features/controlLayers/store/canvasV2Slice';
import type { Dimensions, IPAdapterData, RegionalGuidanceData } from 'features/controlLayers/store/types';
import {
PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX,
PROMPT_REGION_MASK_TO_TENSOR_PREFIX,
PROMPT_REGION_NEGATIVE_COND_PREFIX,
PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX,
PROMPT_REGION_POSITIVE_COND_PREFIX,
} from 'features/nodes/util/graph/constants';
import { addIPAdapterCollectorSafe, isValidIPAdapter } from 'features/nodes/util/graph/generation/addIPAdapters';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import Konva from 'konva';
import type { IRect } from 'konva/lib/types';
import { size } from 'lodash-es';
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
import type { BaseModelType, ImageDTO, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
/**
* Adds regional guidance to the graph
* @param regions Array of regions to add
* @param g The graph to add the layers to
* @param base The base model type
* @param denoise The main denoise node
* @param posCond The positive conditioning node
* @param negCond The negative conditioning node
* @param posCondCollect The positive conditioning collector
* @param negCondCollect The negative conditioning collector
* @returns A promise that resolves to the regions that were successfully added to the graph
*/
export const addRegions = async (
regions: RegionalGuidanceData[],
g: Graph,
documentSize: Dimensions,
bbox: IRect,
base: BaseModelType,
denoise: Invocation<'denoise_latents'>,
posCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
negCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
posCondCollect: Invocation<'collect'>,
negCondCollect: Invocation<'collect'>
): Promise<RegionalGuidanceData[]> => {
const isSDXL = base === 'sdxl';
const validRegions = regions.filter((rg) => isValidRegion(rg, base));
const blobs = await getRGMaskBlobs(validRegions, documentSize, bbox);
assert(size(blobs) === size(validRegions), 'Mismatch between layer IDs and blobs');
for (const rg of validRegions) {
const blob = blobs[rg.id];
assert(blob, `Blob for layer ${rg.id} not found`);
// Upload the mask image, or get the cached image if it exists
const { image_name } = await getMaskImage(rg, blob);
// The main mask-to-tensor node
const maskToTensor = g.addNode({
id: `${PROMPT_REGION_MASK_TO_TENSOR_PREFIX}_${rg.id}`,
type: 'alpha_mask_to_tensor',
image: {
image_name,
},
});
if (rg.positivePrompt) {
// The main positive conditioning node
const regionalPosCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${rg.id}`,
prompt: rg.positivePrompt,
style: rg.positivePrompt, // TODO: Should we put the positive prompt in both fields?
}
: {
type: 'compel',
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${rg.id}`,
prompt: rg.positivePrompt,
}
);
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalPosCond, 'mask');
// Connect the conditioning to the collector
g.addEdge(regionalPosCond, 'conditioning', posCondCollect, 'item');
// Copy the connections to the "global" positive conditioning node to the regional cond
if (posCond.type === 'compel') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
}
}
if (rg.negativePrompt) {
// The main negative conditioning node
const regionalNegCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${rg.id}`,
prompt: rg.negativePrompt,
style: rg.negativePrompt,
}
: {
type: 'compel',
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${rg.id}`,
prompt: rg.negativePrompt,
}
);
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalNegCond, 'mask');
// Connect the conditioning to the collector
g.addEdge(regionalNegCond, 'conditioning', negCondCollect, 'item');
// Copy the connections to the "global" negative conditioning node to the regional cond
if (negCond.type === 'compel') {
for (const edge of g.getEdgesTo(negCond, ['clip', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(negCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
}
}
// If we are using the "invert" auto-negative setting, we need to add an additional negative conditioning node
if (rg.autoNegative === 'invert' && rg.positivePrompt) {
// We re-use the mask image, but invert it when converting to tensor
const invertTensorMask = g.addNode({
id: `${PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX}_${rg.id}`,
type: 'invert_tensor_mask',
});
// Connect the OG mask image to the inverted mask-to-tensor node
g.addEdge(maskToTensor, 'mask', invertTensorMask, 'mask');
// Create the conditioning node. It's going to be connected to the negative cond collector, but it uses the positive prompt
const regionalPosCondInverted = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${rg.id}`,
prompt: rg.positivePrompt,
style: rg.positivePrompt,
}
: {
type: 'compel',
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${rg.id}`,
prompt: rg.positivePrompt,
}
);
// Connect the inverted mask to the conditioning
g.addEdge(invertTensorMask, 'mask', regionalPosCondInverted, 'mask');
// Connect the conditioning to the negative collector
g.addEdge(regionalPosCondInverted, 'conditioning', negCondCollect, 'item');
// Copy the connections to the "global" positive conditioning node to our regional node
if (posCond.type === 'compel') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
}
}
const validRGIPAdapters: IPAdapterData[] = rg.ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base));
for (const ipa of validRGIPAdapters) {
const ipAdapterCollect = addIPAdapterCollectorSafe(g, denoise);
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipa;
assert(model, 'IP Adapter model is required');
assert(image, 'IP Adapter image is required');
const ipAdapter = g.addNode({
id: `ip_adapter_${id}`,
type: 'ip_adapter',
weight,
method,
ip_adapter_model: model,
clip_vision_model: clipVisionModel,
begin_step_percent: beginEndStepPct[0],
end_step_percent: beginEndStepPct[1],
image: {
image_name: image.name,
},
});
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', ipAdapter, 'mask');
g.addEdge(ipAdapter, 'ip_adapter', ipAdapterCollect, 'item');
}
}
g.upsertMetadata({ regions: validRegions });
return validRegions;
};
export const isValidRegion = (rg: RegionalGuidanceData, base: BaseModelType) => {
const hasTextPrompt = Boolean(rg.positivePrompt || rg.negativePrompt);
const hasIPAdapter = rg.ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base)).length > 0;
return hasTextPrompt || hasIPAdapter;
};
export const getMaskImage = async (rg: RegionalGuidanceData, blob: Blob): Promise<ImageDTO> => {
const { id, imageCache } = rg;
if (imageCache) {
const imageDTO = await getImageDTO(imageCache.name);
if (imageDTO) {
return imageDTO;
}
}
const { dispatch } = getStore();
// No cached mask, or the cached image no longer exists - we need to upload the mask image
const file = new File([blob], `${rg.id}_mask.png`, { type: 'image/png' });
const req = dispatch(
imagesApi.endpoints.uploadImage.initiate({ file, image_category: 'mask', is_intermediate: true })
);
req.reset();
const imageDTO = await req.unwrap();
dispatch(rgMaskImageUploaded({ id, imageDTO }));
return imageDTO;
};
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
export const getRGMaskBlobs = async (
regions: RegionalGuidanceData[],
documentSize: Dimensions,
bbox: IRect,
preview: boolean = false
): Promise<Record<string, Blob>> => {
const container = document.createElement('div');
const stage = new Konva.Stage({ container, ...documentSize });
renderers.renderLayers(stage, [], [], regions, 1, 'brush', null, getImageDTO);
const konvaLayers = stage.find<Konva.Layer>(`.${RG_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
const rg = regions.find((l) => l.id === layer.id());
if (!rg) {
continue;
}
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
...bbox,
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${rg.id}: ${rg.positivePrompt} / ${rg.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};

View File

@ -1,5 +1,4 @@
import type { RootState } from 'app/store/store';
import { isInitialImageLayer, isRegionalGuidanceLayer } from 'features/controlLayers/store/types';
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
import {
CLIP_SKIP,
@ -14,8 +13,9 @@ import {
POSITIVE_CONDITIONING_COLLECT,
VAE_LOADER,
} from 'features/nodes/util/graph/constants';
import { addControlLayers } from 'features/nodes/util/graph/generation/addControlLayers';
import { addHRF } from 'features/nodes/util/graph/generation/addHRF';
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
// import { addHRF } from 'features/nodes/util/graph/generation/addHRF';
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
import { addLoRAs } from 'features/nodes/util/graph/generation/addLoRAs';
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
@ -27,6 +27,8 @@ import type { Invocation } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
import { addRegions } from './addRegions';
export const buildGenerationTabGraph = async (state: RootState): Promise<GraphType> => {
const {
model,
@ -39,6 +41,8 @@ export const buildGenerationTabGraph = async (state: RootState): Promise<GraphTy
vaePrecision,
seed,
vae,
positivePrompt,
negativePrompt,
} = state.canvasV2.params;
const { width, height } = state.canvasV2.document;
@ -152,23 +156,25 @@ export const buildGenerationTabGraph = async (state: RootState): Promise<GraphTy
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
g.addEdge(vaeSource, 'vae', l2i, 'vae');
const addedLayers = await addControlLayers(
state,
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters, g, denoise, modelConfig.base);
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters, g, denoise, modelConfig.base);
const _addedRegions = await addRegions(
state.canvasV2.regions,
g,
state.canvasV2.document,
state.canvasV2.bbox,
modelConfig.base,
denoise,
posCond,
negCond,
posCondCollect,
negCondCollect,
noise,
vaeSource
negCondCollect
);
const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
if (isHRFAllowed && state.hrf.hrfEnabled) {
imageOutput = addHRF(state, g, denoise, noise, l2i, vaeSource);
}
// const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
// if (isHRFAllowed && state.hrf.hrfEnabled) {
// imageOutput = addHRF(state, g, denoise, noise, l2i, vaeSource);
// }
if (state.system.shouldUseNSFWChecker) {
imageOutput = addNSFWChecker(g, imageOutput);

View File

@ -12,7 +12,8 @@ import {
SDXL_MODEL_LOADER,
VAE_LOADER,
} from 'features/nodes/util/graph/constants';
import { addControlLayers } from 'features/nodes/util/graph/generation/addControlLayers';
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
import { addSDXLLoRas } from 'features/nodes/util/graph/generation/addSDXLLoRAs';
import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefiner';
@ -24,6 +25,8 @@ import type { Invocation, NonNullableGraph } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
import { addRegions } from './addRegions';
export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<NonNullableGraph> => {
const {
model,
@ -35,11 +38,13 @@ export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<Non
shouldUseCpuNoise,
vaePrecision,
vae,
positivePrompt,
negativePrompt,
refinerModel,
refinerStart,
} = state.canvasV2.params;
const { width, height } = state.canvasV2.document;
const { refinerModel, refinerStart } = state.canvasV2.params;
assert(model, 'No model found in state');
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
@ -147,17 +152,19 @@ export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<Non
await addSDXLRefiner(state, g, denoise, seamless, posCond, negCond, l2i);
}
await addControlLayers(
state,
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters, g, denoise, modelConfig.base);
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters, g, denoise, modelConfig.base);
const _addedRegions = await addRegions(
state.canvasV2.regions,
g,
state.canvasV2.document,
state.canvasV2.bbox,
modelConfig.base,
denoise,
posCond,
negCond,
posCondCollect,
negCondCollect,
noise,
vaeSource
negCondCollect
);
if (state.system.shouldUseNSFWChecker) {