mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add MaskEdge and ColorCorrect nodes
Co-Authored-By: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
This commit is contained in:
parent
f7aec3b934
commit
b4a74f6523
@ -2,6 +2,7 @@
|
||||
|
||||
from typing import Literal, Optional
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
||||
from pydantic import Field
|
||||
@ -142,9 +143,10 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
base_image = context.services.images.get_pil_image(self.base_image.image_name)
|
||||
image = context.services.images.get_pil_image(self.image.image_name)
|
||||
mask = (
|
||||
None if self.mask is None else ImageOps.invert(context.services.images.get_pil_image(self.mask.image_name))
|
||||
)
|
||||
mask = None
|
||||
if self.mask is not None:
|
||||
mask = context.services.images.get_pil_image(self.mask.image_name)
|
||||
mask = ImageOps.invert(mask.convert("L"))
|
||||
# TODO: probably shouldn't invert mask here... should user be required to do it?
|
||||
|
||||
min_x = min(0, self.x)
|
||||
@ -650,3 +652,168 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
class MaskEdgeInvocation(BaseInvocation, PILInvocationConfig):
|
||||
"""Applies an edge mask to an image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["mask_edge"] = "mask_edge"
|
||||
|
||||
# Inputs
|
||||
image: Optional[ImageField] = Field(default=None, description="The image to apply the mask to")
|
||||
edge_size: int = Field(description="The size of the edge")
|
||||
edge_blur: int = Field(description="The amount of blur on the edge")
|
||||
low_threshold: int = Field(description="First threshold for the hysteresis procedure in Canny edge detection")
|
||||
high_threshold: int = Field(description="Second threshold for the hysteresis procedure in Canny edge detection")
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
mask = context.services.images.get_pil_image(self.image.image_name)
|
||||
|
||||
npimg = numpy.asarray(mask, dtype=numpy.uint8)
|
||||
npgradient = numpy.uint8(
|
||||
255 * (1.0 - numpy.floor(numpy.abs(0.5 - numpy.float32(npimg) / 255.0) * 2.0))
|
||||
)
|
||||
npedge = cv2.Canny(npimg, threshold1=self.low_threshold, threshold2=self.high_threshold)
|
||||
npmask = npgradient + npedge
|
||||
npmask = cv2.dilate(
|
||||
npmask, numpy.ones((3, 3), numpy.uint8), iterations=int(self.edge_size / 2)
|
||||
)
|
||||
|
||||
new_mask = Image.fromarray(npmask)
|
||||
|
||||
if self.edge_blur > 0:
|
||||
new_mask = new_mask.filter(ImageFilter.BoxBlur(self.edge_blur))
|
||||
|
||||
new_mask = ImageOps.invert(new_mask)
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=new_mask,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.MASK,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
return MaskOutput(
|
||||
mask=ImageField(image_name=image_dto.image_name),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
class ColorCorrectInvocation(BaseInvocation, PILInvocationConfig):
|
||||
|
||||
type: Literal["color_correct"] = "color_correct"
|
||||
|
||||
init: Optional[ImageField] = Field(default=None, description="Initial image")
|
||||
result: Optional[ImageField] = Field(default=None, description="Resulted image")
|
||||
mask: Optional[ImageField] = Field(default=None, description="Mask image")
|
||||
mask_blur_radius: float = Field(default=8, description="Mask blur radius")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pil_init_mask = None
|
||||
if self.mask is not None:
|
||||
pil_init_mask = context.services.images.get_pil_image(
|
||||
self.mask.image_name
|
||||
).convert("L")
|
||||
|
||||
init_image = context.services.images.get_pil_image(
|
||||
self.init.image_name
|
||||
)
|
||||
|
||||
result = context.services.images.get_pil_image(
|
||||
self.result.image_name
|
||||
).convert("RGBA")
|
||||
|
||||
|
||||
#if init_image is None or init_mask is None:
|
||||
# return result
|
||||
|
||||
# Get the original alpha channel of the mask if there is one.
|
||||
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
||||
#pil_init_mask = (
|
||||
# init_mask.getchannel("A")
|
||||
# if init_mask.mode == "RGBA"
|
||||
# else init_mask.convert("L")
|
||||
#)
|
||||
pil_init_image = init_image.convert(
|
||||
"RGBA"
|
||||
) # Add an alpha channel if one doesn't exist
|
||||
|
||||
# Build an image with only visible pixels from source to use as reference for color-matching.
|
||||
init_rgb_pixels = numpy.asarray(init_image.convert("RGB"), dtype=numpy.uint8)
|
||||
init_a_pixels = numpy.asarray(pil_init_image.getchannel("A"), dtype=numpy.uint8)
|
||||
init_mask_pixels = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
|
||||
|
||||
# Get numpy version of result
|
||||
np_image = numpy.asarray(result.convert("RGB"), dtype=numpy.uint8)
|
||||
|
||||
# Mask and calculate mean and standard deviation
|
||||
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
||||
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
||||
np_image_masked = np_image[mask_pixels, :]
|
||||
|
||||
if np_init_rgb_pixels_masked.size > 0:
|
||||
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
||||
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
||||
gen_means = np_image_masked.mean(axis=0)
|
||||
gen_std = np_image_masked.std(axis=0)
|
||||
|
||||
# Color correct
|
||||
np_matched_result = np_image.copy()
|
||||
np_matched_result[:, :, :] = (
|
||||
(
|
||||
(
|
||||
(
|
||||
np_matched_result[:, :, :].astype(numpy.float32)
|
||||
- gen_means[None, None, :]
|
||||
)
|
||||
/ gen_std[None, None, :]
|
||||
)
|
||||
* init_std[None, None, :]
|
||||
+ init_means[None, None, :]
|
||||
)
|
||||
.clip(0, 255)
|
||||
.astype(numpy.uint8)
|
||||
)
|
||||
matched_result = Image.fromarray(np_matched_result, mode="RGB")
|
||||
else:
|
||||
matched_result = Image.fromarray(np_image, mode="RGB")
|
||||
|
||||
# Blur the mask out (into init image) by specified amount
|
||||
if self.mask_blur_radius > 0:
|
||||
nm = numpy.asarray(pil_init_mask, dtype=numpy.uint8)
|
||||
nmd = cv2.erode(
|
||||
nm,
|
||||
kernel=numpy.ones((3, 3), dtype=numpy.uint8),
|
||||
iterations=int(self.mask_blur_radius / 2),
|
||||
)
|
||||
pmd = Image.fromarray(nmd, mode="L")
|
||||
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(self.mask_blur_radius))
|
||||
else:
|
||||
blurred_init_mask = pil_init_mask
|
||||
|
||||
|
||||
multiplied_blurred_init_mask = ImageChops.multiply(
|
||||
blurred_init_mask, result.split()[-1]
|
||||
)
|
||||
|
||||
# Paste original on color-corrected generation (using blurred mask)
|
||||
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=matched_result,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(image_name=image_dto.image_name),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user