mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Initial (untested) implementation of MultiDiffusionPipeline.
This commit is contained in:
parent
051af802fe
commit
b9964ecc4a
@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
from contextlib import nullcontext
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
@ -61,7 +62,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
|
||||
return latents
|
||||
|
||||
batch_size = latents.shape[0]
|
||||
batch_size, _, latent_height, latent_width = latents.shape
|
||||
batched_init_timestep = init_timestep.expand(batch_size)
|
||||
|
||||
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
|
||||
@ -85,6 +86,16 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
unet_attention_patcher = UNetAttentionPatcher(ip_adapter_data=None)
|
||||
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
|
||||
|
||||
# Populate a weighted mask that will be used to combine the results from each region after every step.
|
||||
# For now, we assume that each regions has the same weight (1.0).
|
||||
region_weight_mask = torch.zeros(
|
||||
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
|
||||
)
|
||||
for region in regions:
|
||||
region_weight_mask[
|
||||
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
|
||||
] += 1.0
|
||||
|
||||
with attn_ctx:
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
@ -98,20 +109,41 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
batched_t = t.expand(batch_size)
|
||||
step_output = self.step(
|
||||
t=batched_t,
|
||||
latents=latents,
|
||||
conditioning_data=conditioning_data,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
mask_guidance=None,
|
||||
mask=None,
|
||||
masked_latents=None,
|
||||
control_data=control_data,
|
||||
)
|
||||
latents = step_output.prev_sample
|
||||
predicted_original = getattr(step_output, "pred_original_sample", None)
|
||||
|
||||
prev_samples_by_region: list[torch.Tensor] = []
|
||||
pred_original_by_region: list[torch.Tensor | None] = []
|
||||
for region in regions:
|
||||
# Run a denoising step on the region.
|
||||
step_output = self._region_step(
|
||||
region=region,
|
||||
t=batched_t,
|
||||
latents=latents,
|
||||
conditioning_data=conditioning_data,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
control_data=control_data,
|
||||
)
|
||||
prev_samples_by_region.append(step_output.prev_sample)
|
||||
pred_original_by_region.append(getattr(step_output, "pred_original_sample", None))
|
||||
|
||||
# Merge the prev_sample results from each region.
|
||||
merged_latents = torch.zeros_like(latents)
|
||||
for region_idx, region in enumerate(regions):
|
||||
merged_latents[
|
||||
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
|
||||
] += prev_samples_by_region[region_idx]
|
||||
latents = merged_latents / region_weight_mask
|
||||
|
||||
# Merge the predicted_original results from each region.
|
||||
predicted_original = None
|
||||
if all(pred_original_by_region):
|
||||
merged_pred_original = torch.zeros_like(latents)
|
||||
for region_idx, region in enumerate(regions):
|
||||
merged_pred_original[
|
||||
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
|
||||
] += pred_original_by_region[region_idx]
|
||||
predicted_original = merged_pred_original / region_weight_mask
|
||||
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
@ -125,3 +157,48 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
)
|
||||
|
||||
return latents
|
||||
|
||||
@torch.inference_mode()
|
||||
def _region_step(
|
||||
self,
|
||||
region: Tile,
|
||||
t: torch.Tensor,
|
||||
latents: torch.Tensor,
|
||||
conditioning_data: TextConditioningData,
|
||||
step_index: int,
|
||||
total_step_count: int,
|
||||
scheduler_step_kwargs: dict[str, Any],
|
||||
control_data: list[ControlNetData] | None = None,
|
||||
):
|
||||
# Crop the inputs to the region.
|
||||
region_latents = latents[
|
||||
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
|
||||
]
|
||||
|
||||
region_control_data: list[ControlNetData] | None = None
|
||||
if control_data is not None:
|
||||
region_control_data = [self._crop_controlnet_data(c, region) for c in control_data]
|
||||
|
||||
# Run the denoising step on the region.
|
||||
return self.step(
|
||||
t=t,
|
||||
latents=region_latents,
|
||||
conditioning_data=conditioning_data,
|
||||
step_index=step_index,
|
||||
total_step_count=total_step_count,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
mask_guidance=None,
|
||||
mask=None,
|
||||
masked_latents=None,
|
||||
control_data=region_control_data,
|
||||
)
|
||||
|
||||
def _crop_controlnet_data(self, control_data: ControlNetData, region: Tile) -> ControlNetData:
|
||||
"""Crop a ControlNetData object to a region."""
|
||||
# Create a shallow copy of the control_data object.
|
||||
control_data_copy = copy.copy(control_data)
|
||||
# The ControlNet reference image is the only attribute that needs to be cropped.
|
||||
control_data_copy.image_tensor = control_data.image_tensor[
|
||||
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
|
||||
]
|
||||
return control_data_copy
|
||||
|
Loading…
Reference in New Issue
Block a user