Initial (untested) implementation of MultiDiffusionPipeline.

This commit is contained in:
Ryan Dick 2024-06-17 14:36:33 -04:00 committed by Kent Keirsey
parent 051af802fe
commit b9964ecc4a

View File

@ -1,5 +1,6 @@
from __future__ import annotations
import copy
from contextlib import nullcontext
from typing import Any, Callable, Optional
@ -61,7 +62,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents
batch_size = latents.shape[0]
batch_size, _, latent_height, latent_width = latents.shape
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
@ -85,6 +86,16 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
unet_attention_patcher = UNetAttentionPatcher(ip_adapter_data=None)
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
# Populate a weighted mask that will be used to combine the results from each region after every step.
# For now, we assume that each regions has the same weight (1.0).
region_weight_mask = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
for region in regions:
region_weight_mask[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += 1.0
with attn_ctx:
callback(
PipelineIntermediateState(
@ -98,20 +109,41 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
step_output = self.step(
t=batched_t,
latents=latents,
conditioning_data=conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=control_data,
)
latents = step_output.prev_sample
predicted_original = getattr(step_output, "pred_original_sample", None)
prev_samples_by_region: list[torch.Tensor] = []
pred_original_by_region: list[torch.Tensor | None] = []
for region in regions:
# Run a denoising step on the region.
step_output = self._region_step(
region=region,
t=batched_t,
latents=latents,
conditioning_data=conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
control_data=control_data,
)
prev_samples_by_region.append(step_output.prev_sample)
pred_original_by_region.append(getattr(step_output, "pred_original_sample", None))
# Merge the prev_sample results from each region.
merged_latents = torch.zeros_like(latents)
for region_idx, region in enumerate(regions):
merged_latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += prev_samples_by_region[region_idx]
latents = merged_latents / region_weight_mask
# Merge the predicted_original results from each region.
predicted_original = None
if all(pred_original_by_region):
merged_pred_original = torch.zeros_like(latents)
for region_idx, region in enumerate(regions):
merged_pred_original[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += pred_original_by_region[region_idx]
predicted_original = merged_pred_original / region_weight_mask
callback(
PipelineIntermediateState(
@ -125,3 +157,48 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
)
return latents
@torch.inference_mode()
def _region_step(
self,
region: Tile,
t: torch.Tensor,
latents: torch.Tensor,
conditioning_data: TextConditioningData,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
control_data: list[ControlNetData] | None = None,
):
# Crop the inputs to the region.
region_latents = latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
]
region_control_data: list[ControlNetData] | None = None
if control_data is not None:
region_control_data = [self._crop_controlnet_data(c, region) for c in control_data]
# Run the denoising step on the region.
return self.step(
t=t,
latents=region_latents,
conditioning_data=conditioning_data,
step_index=step_index,
total_step_count=total_step_count,
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_control_data,
)
def _crop_controlnet_data(self, control_data: ControlNetData, region: Tile) -> ControlNetData:
"""Crop a ControlNetData object to a region."""
# Create a shallow copy of the control_data object.
control_data_copy = copy.copy(control_data)
# The ControlNet reference image is the only attribute that needs to be cropped.
control_data_copy.image_tensor = control_data.image_tensor[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
]
return control_data_copy