Merge branch 'main' into mps-fp16-fixes

This commit is contained in:
gogurtenjoyer 2023-07-05 07:38:41 -04:00 committed by GitHub
commit ba7345deb4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
93 changed files with 2070 additions and 881 deletions

View File

@ -4,9 +4,10 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict, TYPE_CHECKING
from typing import (TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args,
get_type_hints)
from pydantic import BaseModel, Field
from pydantic import BaseConfig, BaseModel, Field
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
@ -65,8 +66,13 @@ class BaseInvocation(ABC, BaseModel):
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseInvocation.get_all_subclasses()))
return dict(
map(
lambda t: (get_args(get_type_hints(t)["type"])[0], t),
BaseInvocation.get_all_subclasses(),
)
)
@classmethod
def get_output_type(cls):
return signature(cls.invoke).return_annotation
@ -75,11 +81,11 @@ class BaseInvocation(ABC, BaseModel):
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
#fmt: off
# fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = Field(default=False, description="Whether or not this node is an intermediate node.")
#fmt: on
# fmt: on
# TODO: figure out a better way to provide these hints
@ -98,16 +104,19 @@ class UIConfig(TypedDict, total=False):
"model",
"control",
"image_collection",
"vae_model",
"lora_model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
class InvocationConfig(BaseConfig):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.

View File

@ -1,28 +1,27 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from contextlib import ExitStack
import re
from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import torch
from compel import Compel
from compel.prompt_parser import (Blend, Conjunction,
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
from pydantic import BaseModel, Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .model import ClipField
from ...backend.util.devices import torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from ...backend.model_management.lora import ModelPatcher
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment, Conjunction,
)
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.util.devices import torch_dtype
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .model import ClipField
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
conditioning_name: Optional[str] = Field(
default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
@ -52,84 +51,92 @@ class CompelInvocation(BaseInvocation):
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
with tokenizer_info as orig_tokenizer,\
text_encoder_info as text_encoder:
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except Exception:
#print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
with ModelPatcher.apply_lora_text_encoder(text_encoder, loras),\
ModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager):
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
except Exception:
# print(e)
#import traceback
# print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
text_encoder_info as text_encoder:
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support
#if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(
prompt)
# TODO: long prompt support
# if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(
tokenizer, conjunction),
cross_attention_control_args=options.get(
"cross_attention_control", None),)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
) -> int:
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
@ -148,13 +155,13 @@ def get_max_token_count(
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
@ -183,7 +190,7 @@ def log_tokenization_for_conjunction(
):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts)>1:
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
@ -238,7 +245,8 @@ def log_tokenization_for_prompt_object(
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
def log_tokenization_for_text(
text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '

View File

@ -4,18 +4,17 @@ from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import einops
from pydantic import BaseModel, Field, validator
import torch
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import BaseModel, Field, validator
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.image_util.seamless import configure_model_padding
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
@ -24,7 +23,7 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import torch_dtype
from ...backend.model_management.lora import ModelPatcher
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
@ -32,14 +31,17 @@ from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
@ -53,11 +55,11 @@ class LatentsOutput(BaseInvocationOutput):
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
@ -70,16 +72,19 @@ def get_scheduler(
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
orig_scheduler_info = context.services.model_manager.get_model(**scheduler_info.dict())
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim'])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict())
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler_config = {**scheduler_config, **
scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
@ -124,18 +129,18 @@ class TextToLatentsInvocation(BaseInvocation):
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
self, context: InvocationContext, source_node_id: str,
intermediate_state: PipelineIntermediateState) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
@ -143,9 +148,12 @@ class TextToLatentsInvocation(BaseInvocation):
source_node_id=source_node_id,
)
def get_conditioning_data(self, context: InvocationContext, scheduler) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
def get_conditioning_data(
self, context: InvocationContext, scheduler) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(
self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(
self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
@ -153,10 +161,10 @@ class TextToLatentsInvocation(BaseInvocation):
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
),
)
@ -164,31 +172,32 @@ class TextToLatentsInvocation(BaseInvocation):
scheduler,
# for ddim scheduler
eta=0.0, #ddim_eta
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=uc.device).manual_seed(0),
)
return conditioning_data
def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
def create_pipeline(
self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
# TODO:
#configure_model_padding(
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
#)
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self):
self.block_out_channels = [0]
def __init__(self):
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
@ -198,11 +207,12 @@ class TextToLatentsInvocation(BaseInvocation):
requires_safety_checker=False,
precision="float16" if unet.dtype == torch.float16 else "float32",
)
def prep_control_data(
self,
context: InvocationContext,
model: StableDiffusionGeneratorPipeline, # really only need model for dtype and device
# really only need model for dtype and device
model: StableDiffusionGeneratorPipeline,
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
@ -238,15 +248,17 @@ class TextToLatentsInvocation(BaseInvocation):
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(control_name,
subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(model.device)
control_model = ControlNetModel.from_pretrained(
control_name, subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(
model.device)
else:
control_model = ControlNetModel.from_pretrained(control_info.control_model,
torch_dtype=model.unet.dtype).to(model.device)
control_model = ControlNetModel.from_pretrained(
control_info.control_model, torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(control_image_field.image_name)
input_image = context.services.images.get_pil_image(
control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@ -263,41 +275,50 @@ class TextToLatentsInvocation(BaseInvocation):
dtype=control_model.dtype,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(
model=control_model, image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
with unet_info as unet:
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.unet.loras]
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
@ -305,16 +326,15 @@ class TextToLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=True,
)
with ModelPatcher.apply_lora_unet(pipeline.unet, loras):
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@ -323,14 +343,18 @@ class TextToLatentsInvocation(BaseInvocation):
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
@ -345,22 +369,31 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(),
)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
with unet_info as unet:
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
scheduler = get_scheduler(
context=context,
@ -370,7 +403,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
@ -380,8 +413,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype
)
latent, device=unet.device, dtype=latent.dtype)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
@ -389,18 +421,15 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
device=unet.device,
)
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.unet.loras]
with ModelPatcher.apply_lora_unet(pipeline.unet, loras):
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@ -417,9 +446,12 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
@ -450,7 +482,7 @@ class LatentsToImageInvocation(BaseInvocation):
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
@ -473,9 +505,9 @@ class LatentsToImageInvocation(BaseInvocation):
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation):
@ -484,21 +516,25 @@ class ResizeLatentsInvocation(BaseInvocation):
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: int = Field(
ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
latents, size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@ -515,21 +551,24 @@ class ScaleLatentsInvocation(BaseInvocation):
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
latents, scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@ -548,7 +587,9 @@ class ImageToLatentsInvocation(BaseInvocation):
# Inputs
image: Union[ImageField, None] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):

View File

@ -1,5 +1,5 @@
import copy
from typing import List, Literal, Optional
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
@ -12,35 +12,42 @@ class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(
default=None, description="Info to load submodel"
)
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
#fmt: off
# fmt: off
type: Literal["model_loader_output"] = "model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
#fmt: on
# fmt: on
class MainModelField(BaseModel):
@ -50,6 +57,13 @@ class MainModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model")
class LoRAModelField(BaseModel):
"""LoRA model field"""
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
@ -64,14 +78,11 @@ class MainModelLoaderInvocation(BaseInvocation):
"ui": {
"title": "Model Loader",
"tags": ["model", "loader"],
"type_hints": {
"model": "model"
}
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
@ -113,7 +124,6 @@ class MainModelLoaderInvocation(BaseInvocation):
)
"""
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
@ -152,25 +162,29 @@ class MainModelLoaderInvocation(BaseInvocation):
model_type=model_type,
submodel=SubModelType.Vae,
),
)
),
)
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
#fmt: off
# fmt: off
type: Literal["lora_loader_output"] = "lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
#fmt: on
# fmt: on
class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["lora_loader"] = "lora_loader"
lora_name: str = Field(description="Lora model name")
lora: Union[LoRAModelField, None] = Field(
default=None, description="Lora model name"
)
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
@ -181,26 +195,33 @@ class LoraLoaderInvocation(BaseInvocation):
"ui": {
"title": "Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
# TODO: ui rewrite
base_model = BaseModelType.StableDiffusion1
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=self.lora_name,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {self.lora_name}!")
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(lora.model_name == self.lora_name for lora in self.unet.loras):
raise Exception(f"Lora \"{self.lora_name}\" already applied to unet")
if self.unet is not None and any(
lora.model_name == lora_name for lora in self.unet.loras
):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.model_name == self.lora_name for lora in self.clip.loras):
raise Exception(f"Lora \"{self.lora_name}\" already applied to clip")
if self.clip is not None and any(
lora.model_name == lora_name for lora in self.clip.loras
):
raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput()
@ -209,7 +230,7 @@ class LoraLoaderInvocation(BaseInvocation):
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=self.lora_name,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
@ -221,7 +242,7 @@ class LoraLoaderInvocation(BaseInvocation):
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=self.lora_name,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
@ -230,25 +251,29 @@ class LoraLoaderInvocation(BaseInvocation):
return output
class VAEModelField(BaseModel):
"""Vae model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class VaeLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
#fmt: off
# fmt: off
type: Literal["vae_loader_output"] = "vae_loader_output"
vae: VaeField = Field(default=None, description="Vae model")
#fmt: on
# fmt: on
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
type: Literal["vae_loader"] = "vae_loader"
vae_model: VAEModelField = Field(description="The VAE to load")
# Schema customisation
@ -257,29 +282,27 @@ class VaeLoaderInvocation(BaseInvocation):
"ui": {
"title": "VAE Loader",
"tags": ["vae", "loader"],
"type_hints": {
"vae_model": "vae_model"
}
"type_hints": {"vae_model": "vae_model"},
},
}
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=model_name,
model_type=model_type,
base_model=base_model,
model_name=model_name,
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput(
vae=VaeField(
vae = ModelInfo(
model_name = model_name,
base_model = base_model,
model_type = model_type,
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
)

View File

@ -228,10 +228,10 @@ class InvokeAISettings(BaseSettings):
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
@ -348,7 +348,7 @@ setting environment variables INVOKEAI_<setting>.
'''
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
@ -367,7 +367,8 @@ setting environment variables INVOKEAI_<setting>.
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
@ -385,9 +386,9 @@ setting environment variables INVOKEAI_<setting>.
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
@ -396,7 +397,7 @@ setting environment variables INVOKEAI_<setting>.
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
'''
Update settings with contents of init file, environment, and
Update settings with contents of init file, environment, and
command-line settings.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
@ -411,7 +412,7 @@ setting environment variables INVOKEAI_<setting>.
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
@ -431,7 +432,7 @@ setting environment variables INVOKEAI_<setting>.
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
@property
def root_path(self)->Path:
'''

View File

@ -33,13 +33,13 @@ class ModelManagerServiceBase(ABC):
logger: types.ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
@ -50,8 +50,8 @@ class ModelManagerServiceBase(ABC):
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@ -115,8 +115,8 @@ class ModelManagerServiceBase(ABC):
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@ -129,8 +129,8 @@ class ModelManagerServiceBase(ABC):
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@ -176,7 +176,7 @@ class ModelManagerService(ModelManagerServiceBase):
logger: types.ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
@ -206,6 +206,8 @@ class ModelManagerService(ModelManagerServiceBase):
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
sequential_offload = config.sequential_guidance
self.mgr = ModelManager(
@ -261,7 +263,7 @@ class ModelManagerService(ModelManagerServiceBase):
submodel=submodel,
model_info=model_info
)
return model_info
def model_exists(
@ -314,8 +316,8 @@ class ModelManagerService(ModelManagerServiceBase):
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
@ -328,8 +330,8 @@ class ModelManagerService(ModelManagerServiceBase):
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
self.mgr.del_model(model_name, base_model, model_type)
@ -383,7 +385,7 @@ class ModelManagerService(ModelManagerServiceBase):
@property
def logger(self):
return self.mgr.logger
def heuristic_import(self,
items_to_import: Set[str],
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
@ -404,4 +406,4 @@ class ModelManagerService(ModelManagerServiceBase):
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)

View File

@ -76,6 +76,10 @@ class MigrateTo3(object):
Create a unique name for a model for use within models.yaml.
'''
done = False
# some model names have slashes in them, which really screws things up
name = name.replace('/','_')
key = ModelManager.create_key(name,info.base_type,info.model_type)
unique_name = key
counter = 1

View File

@ -223,7 +223,7 @@ class ModelInstall(object):
try:
model_result = None
info = info or ModelProbe().heuristic_probe(path,self.prediction_helper)
model_name = path.stem if info.format=='checkpoint' else path.name
model_name = path.stem if path.is_file() else path.name
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
raise ValueError(f'A model named "{model_name}" is already installed.')
attributes = self._make_attributes(path,info)

View File

@ -1,18 +1,17 @@
from __future__ import annotations
import copy
from pathlib import Path
from contextlib import contextmanager
from typing import Optional, Dict, Tuple, Any
from pathlib import Path
from typing import Any, Dict, Optional, Tuple
import torch
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from compel.embeddings_provider import BaseTextualInversionManager
class LoRALayerBase:
#rank: Optional[int]
@ -539,9 +538,10 @@ class ModelPatcher:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
# enable autocast to calc fp16 loras on cpu
with torch.autocast(device_type="cpu"):
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
layer_weight = layer.get_weight() * lora_weight * layer_scale
#with torch.autocast(device_type="cpu"):
layer.to(dtype=torch.float32)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
layer_weight = layer.get_weight() * lora_weight * layer_scale
if module.weight.shape != layer_weight.shape:
# TODO: debug on lycoris

View File

@ -731,12 +731,12 @@ class ModelManager(object):
if model_path.is_relative_to(self.app_config.root_path):
model_path = model_path.relative_to(self.app_config.root_path)
try:
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config
new_models_found = True
except NotImplementedError as e:
self.logger.warning(e)
try:
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config
new_models_found = True
except NotImplementedError as e:
self.logger.warning(e)
imported_models = self.autoimport()

View File

@ -1,4 +1,8 @@
import { Box, ChakraProps, Flex, Heading, Image } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { memo } from 'react';
import { TypesafeDraggableData } from './typesafeDnd';
@ -28,7 +32,24 @@ const STYLES: ChakraProps['sx'] = {
},
};
const selector = createSelector(
stateSelector,
(state) => {
const gallerySelectionCount = state.gallery.selection.length;
const batchSelectionCount = state.batch.selection.length;
return {
gallerySelectionCount,
batchSelectionCount,
};
},
defaultSelectorOptions
);
const DragPreview = (props: OverlayDragImageProps) => {
const { gallerySelectionCount, batchSelectionCount } =
useAppSelector(selector);
if (!props.dragData) {
return;
}
@ -57,7 +78,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
);
}
if (props.dragData.payloadType === 'IMAGE_NAMES') {
if (props.dragData.payloadType === 'BATCH_SELECTION') {
return (
<Flex
sx={{
@ -70,7 +91,26 @@ const DragPreview = (props: OverlayDragImageProps) => {
...STYLES,
}}
>
<Heading>{props.dragData.payload.imageNames.length}</Heading>
<Heading>{batchSelectionCount}</Heading>
<Heading size="sm">Images</Heading>
</Flex>
);
}
if (props.dragData.payloadType === 'GALLERY_SELECTION') {
return (
<Flex
sx={{
cursor: 'none',
userSelect: 'none',
position: 'relative',
alignItems: 'center',
justifyContent: 'center',
flexDir: 'column',
...STYLES,
}}
>
<Heading>{gallerySelectionCount}</Heading>
<Heading size="sm">Images</Heading>
</Flex>
);

View File

@ -77,14 +77,18 @@ export type ImageDraggableData = BaseDragData & {
payload: { imageDTO: ImageDTO };
};
export type ImageNamesDraggableData = BaseDragData & {
payloadType: 'IMAGE_NAMES';
payload: { imageNames: string[] };
export type GallerySelectionDraggableData = BaseDragData & {
payloadType: 'GALLERY_SELECTION';
};
export type BatchSelectionDraggableData = BaseDragData & {
payloadType: 'BATCH_SELECTION';
};
export type TypesafeDraggableData =
| ImageDraggableData
| ImageNamesDraggableData;
| GallerySelectionDraggableData
| BatchSelectionDraggableData;
interface UseDroppableTypesafeArguments
extends Omit<UseDroppableArguments, 'data'> {
@ -155,11 +159,13 @@ export const isValidDrop = (
case 'SET_NODES_IMAGE':
return payloadType === 'IMAGE_DTO';
case 'SET_MULTI_NODES_IMAGE':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
return payloadType === 'IMAGE_DTO' || 'GALLERY_SELECTION';
case 'ADD_TO_BATCH':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
return payloadType === 'IMAGE_DTO' || 'GALLERY_SELECTION';
case 'MOVE_BOARD':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
return (
payloadType === 'IMAGE_DTO' || 'GALLERY_SELECTION' || 'BATCH_SELECTION'
);
default:
return false;
}

View File

@ -20,10 +20,8 @@ const serializationDenylist: {
nodes: nodesPersistDenylist,
postprocessing: postprocessingPersistDenylist,
system: systemPersistDenylist,
// config: configPersistDenyList,
ui: uiPersistDenylist,
controlNet: controlNetDenylist,
// hotkeys: hotkeysPersistDenylist,
};
export const serialize: SerializeFunction = (data, key) => {

View File

@ -1,21 +1,21 @@
import { startAppListening } from '..';
import { imageDeleted } from 'services/api/thunks/image';
import { log } from 'app/logging/useLogger';
import { clamp } from 'lodash-es';
import {
imageSelected,
imageRemoved,
selectImagesIds,
} from 'features/gallery/store/gallerySlice';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { api } from 'services/api';
import {
imageRemoved,
imageSelected,
selectFilteredImages,
} from 'features/gallery/store/gallerySlice';
import {
imageDeletionConfirmed,
isModalOpenChanged,
} from 'features/imageDeletion/store/imageDeletionSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp } from 'lodash-es';
import { api } from 'services/api';
import { imageDeleted } from 'services/api/thunks/image';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'image' });
@ -37,7 +37,9 @@ export const addRequestedImageDeletionListener = () => {
state.gallery.selection[state.gallery.selection.length - 1];
if (lastSelectedImage === image_name) {
const ids = selectImagesIds(state);
const filteredImages = selectFilteredImages(state);
const ids = filteredImages.map((i) => i.image_name);
const deletedImageIndex = ids.findIndex(
(result) => result.toString() === image_name

View File

@ -1,24 +1,23 @@
import { createAction } from '@reduxjs/toolkit';
import { startAppListening } from '../';
import { log } from 'app/logging/useLogger';
import {
TypesafeDraggableData,
TypesafeDroppableData,
} from 'app/components/ImageDnd/typesafeDnd';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { log } from 'app/logging/useLogger';
import {
imageAddedToBatch,
imagesAddedToBatch,
} from 'features/batch/store/batchSlice';
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import {
fieldValueChanged,
imageCollectionFieldValueChanged,
} from 'features/nodes/store/nodesSlice';
import { boardsApi } from 'services/api/endpoints/boards';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { boardImagesApi } from 'services/api/endpoints/boardImages';
import { startAppListening } from '../';
const moduleLog = log.child({ namespace: 'dnd' });
@ -33,6 +32,7 @@ export const addImageDroppedListener = () => {
effect: (action, { dispatch, getState }) => {
const { activeData, overData } = action.payload;
const { actionType } = overData;
const state = getState();
// set current image
if (
@ -64,9 +64,9 @@ export const addImageDroppedListener = () => {
// add multiple images to batch
if (
actionType === 'ADD_TO_BATCH' &&
activeData.payloadType === 'IMAGE_NAMES'
activeData.payloadType === 'GALLERY_SELECTION'
) {
dispatch(imagesAddedToBatch(activeData.payload.imageNames));
dispatch(imagesAddedToBatch(state.gallery.selection));
}
// set control image
@ -128,14 +128,14 @@ export const addImageDroppedListener = () => {
// set multiple nodes images (multiple images handler)
if (
actionType === 'SET_MULTI_NODES_IMAGE' &&
activeData.payloadType === 'IMAGE_NAMES'
activeData.payloadType === 'GALLERY_SELECTION'
) {
const { fieldName, nodeId } = overData.context;
dispatch(
imageCollectionFieldValueChanged({
nodeId,
fieldName,
value: activeData.payload.imageNames.map((image_name) => ({
value: state.gallery.selection.map((image_name) => ({
image_name,
})),
})

View File

@ -8,31 +8,32 @@ import {
import dynamicMiddlewares from 'redux-dynamic-middlewares';
import { rememberEnhancer, rememberReducer } from 'redux-remember';
import batchReducer from 'features/batch/store/batchSlice';
import canvasReducer from 'features/canvas/store/canvasSlice';
import controlNetReducer from 'features/controlNet/store/controlNetSlice';
import dynamicPromptsReducer from 'features/dynamicPrompts/store/slice';
import boardsReducer from 'features/gallery/store/boardSlice';
import galleryReducer from 'features/gallery/store/gallerySlice';
import imageDeletionReducer from 'features/imageDeletion/store/imageDeletionSlice';
import lightboxReducer from 'features/lightbox/store/lightboxSlice';
import loraReducer from 'features/lora/store/loraSlice';
import nodesReducer from 'features/nodes/store/nodesSlice';
import generationReducer from 'features/parameters/store/generationSlice';
import postprocessingReducer from 'features/parameters/store/postprocessingSlice';
import systemReducer from 'features/system/store/systemSlice';
import nodesReducer from 'features/nodes/store/nodesSlice';
import boardsReducer from 'features/gallery/store/boardSlice';
import configReducer from 'features/system/store/configSlice';
import systemReducer from 'features/system/store/systemSlice';
import hotkeysReducer from 'features/ui/store/hotkeysSlice';
import uiReducer from 'features/ui/store/uiSlice';
import dynamicPromptsReducer from 'features/dynamicPrompts/store/slice';
import batchReducer from 'features/batch/store/batchSlice';
import imageDeletionReducer from 'features/imageDeletion/store/imageDeletionSlice';
import { listenerMiddleware } from './middleware/listenerMiddleware';
import { actionSanitizer } from './middleware/devtools/actionSanitizer';
import { actionsDenylist } from './middleware/devtools/actionsDenylist';
import { stateSanitizer } from './middleware/devtools/stateSanitizer';
import { api } from 'services/api';
import { LOCALSTORAGE_PREFIX } from './constants';
import { serialize } from './enhancers/reduxRemember/serialize';
import { unserialize } from './enhancers/reduxRemember/unserialize';
import { api } from 'services/api';
import { actionSanitizer } from './middleware/devtools/actionSanitizer';
import { actionsDenylist } from './middleware/devtools/actionsDenylist';
import { stateSanitizer } from './middleware/devtools/stateSanitizer';
const allReducers = {
canvas: canvasReducer,
@ -50,6 +51,7 @@ const allReducers = {
dynamicPrompts: dynamicPromptsReducer,
batch: batchReducer,
imageDeletion: imageDeletionReducer,
lora: loraReducer,
[api.reducerPath]: api.reducer,
};
@ -69,6 +71,7 @@ const rememberedKeys: (keyof typeof allReducers)[] = [
'controlNet',
'dynamicPrompts',
'batch',
'lora',
// 'boards',
// 'hotkeys',
// 'config',

View File

@ -4,22 +4,25 @@ import {
Collapse,
Flex,
Spacer,
Switch,
Text,
useColorMode,
useDisclosure,
} from '@chakra-ui/react';
import { AnimatePresence, motion } from 'framer-motion';
import { PropsWithChildren, memo } from 'react';
import { mode } from 'theme/util/mode';
export type IAIToggleCollapseProps = PropsWithChildren & {
label: string;
isOpen: boolean;
onToggle: () => void;
withSwitch?: boolean;
activeLabel?: string;
defaultIsOpen?: boolean;
};
const IAICollapse = (props: IAIToggleCollapseProps) => {
const { label, isOpen, onToggle, children, withSwitch = false } = props;
const { label, activeLabel, children, defaultIsOpen = false } = props;
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen });
const { colorMode } = useColorMode();
return (
<Box>
<Flex
@ -28,6 +31,7 @@ const IAICollapse = (props: IAIToggleCollapseProps) => {
alignItems: 'center',
p: 2,
px: 4,
gap: 2,
borderTopRadius: 'base',
borderBottomRadius: isOpen ? 0 : 'base',
bg: isOpen
@ -48,19 +52,40 @@ const IAICollapse = (props: IAIToggleCollapseProps) => {
}}
>
{label}
<AnimatePresence>
{activeLabel && (
<motion.div
key="statusText"
initial={{
opacity: 0,
}}
animate={{
opacity: 1,
transition: { duration: 0.1 },
}}
exit={{
opacity: 0,
transition: { duration: 0.1 },
}}
>
<Text
sx={{ color: 'accent.500', _dark: { color: 'accent.300' } }}
>
{activeLabel}
</Text>
</motion.div>
)}
</AnimatePresence>
<Spacer />
{withSwitch && <Switch isChecked={isOpen} pointerEvents="none" />}
{!withSwitch && (
<ChevronUpIcon
sx={{
w: '1rem',
h: '1rem',
transform: isOpen ? 'rotate(0deg)' : 'rotate(180deg)',
transitionProperty: 'common',
transitionDuration: 'normal',
}}
/>
)}
<ChevronUpIcon
sx={{
w: '1rem',
h: '1rem',
transform: isOpen ? 'rotate(0deg)' : 'rotate(180deg)',
transitionProperty: 'common',
transitionDuration: 'normal',
}}
/>
</Flex>
<Collapse in={isOpen} animateOpacity style={{ overflow: 'unset' }}>
<Box

View File

@ -61,7 +61,7 @@ const IAIMantineMultiSelect = (props: IAIMultiSelectProps) => {
'&:focus-within': {
borderColor: mode(accent200, accent600)(colorMode),
},
'&:disabled': {
'&[data-disabled]': {
backgroundColor: mode(base300, base700)(colorMode),
color: mode(base600, base400)(colorMode),
},

View File

@ -64,7 +64,7 @@ const IAIMantineSelect = (props: IAISelectProps) => {
'&:focus-within': {
borderColor: mode(accent200, accent600)(colorMode),
},
'&:disabled': {
'&[data-disabled]': {
backgroundColor: mode(base300, base700)(colorMode),
color: mode(base600, base400)(colorMode),
},

View File

@ -36,7 +36,6 @@ const IAISwitch = (props: Props) => {
isDisabled={isDisabled}
width={width}
display="flex"
gap={4}
alignItems="center"
{...formControlProps}
>
@ -47,6 +46,7 @@ const IAISwitch = (props: Props) => {
sx={{
cursor: isDisabled ? 'not-allowed' : 'pointer',
...formLabelProps?.sx,
pe: 4,
}}
{...formLabelProps}
>

View File

@ -1,28 +1,29 @@
import { Box, Icon, Skeleton } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { TypesafeDraggableData } from 'app/components/ImageDnd/typesafeDnd';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { FaExclamationCircle } from 'react-icons/fa';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { MouseEvent, memo, useCallback, useMemo } from 'react';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAIDndImage from 'common/components/IAIDndImage';
import {
batchImageRangeEndSelected,
batchImageSelected,
batchImageSelectionToggled,
imageRemovedFromBatch,
} from 'features/batch/store/batchSlice';
import IAIDndImage from 'common/components/IAIDndImage';
import { createSelector } from '@reduxjs/toolkit';
import { RootState, stateSelector } from 'app/store/store';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { TypesafeDraggableData } from 'app/components/ImageDnd/typesafeDnd';
import { MouseEvent, memo, useCallback, useMemo } from 'react';
import { FaExclamationCircle } from 'react-icons/fa';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
const isSelectedSelector = createSelector(
[stateSelector, (state: RootState, imageName: string) => imageName],
(state, imageName) => ({
selection: state.batch.selection,
isSelected: state.batch.selection.includes(imageName),
}),
defaultSelectorOptions
);
const makeSelector = (image_name: string) =>
createSelector(
[stateSelector],
(state) => ({
selectionCount: state.batch.selection.length,
isSelected: state.batch.selection.includes(image_name),
}),
defaultSelectorOptions
);
type BatchImageProps = {
imageName: string;
@ -37,10 +38,13 @@ const BatchImage = (props: BatchImageProps) => {
} = useGetImageDTOQuery(props.imageName);
const dispatch = useAppDispatch();
const { isSelected, selection } = useAppSelector((state) =>
isSelectedSelector(state, props.imageName)
const selector = useMemo(
() => makeSelector(props.imageName),
[props.imageName]
);
const { isSelected, selectionCount } = useAppSelector(selector);
const handleClickRemove = useCallback(() => {
dispatch(imageRemovedFromBatch(props.imageName));
}, [dispatch, props.imageName]);
@ -59,13 +63,10 @@ const BatchImage = (props: BatchImageProps) => {
);
const draggableData = useMemo<TypesafeDraggableData | undefined>(() => {
if (selection.length > 1) {
if (selectionCount > 1) {
return {
id: 'batch',
payloadType: 'IMAGE_NAMES',
payload: {
imageNames: selection,
},
payloadType: 'BATCH_SELECTION',
};
}
@ -76,7 +77,7 @@ const BatchImage = (props: BatchImageProps) => {
payload: { imageDTO },
};
}
}, [imageDTO, selection]);
}, [imageDTO, selectionCount]);
if (isError) {
return <Icon as={FaExclamationCircle} />;

View File

@ -1,25 +1,22 @@
import { memo, useCallback, useMemo, useState } from 'react';
import { ImageDTO } from 'services/api/types';
import {
ControlNetConfig,
controlNetImageChanged,
controlNetSelector,
} from '../store/controlNetSlice';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { Box, Flex, SystemStyleObject } from '@chakra-ui/react';
import IAIDndImage from 'common/components/IAIDndImage';
import { createSelector } from '@reduxjs/toolkit';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { IAILoadingImageFallback } from 'common/components/IAIImageFallback';
import IAIIconButton from 'common/components/IAIIconButton';
import { FaUndo } from 'react-icons/fa';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { skipToken } from '@reduxjs/toolkit/dist/query';
import {
TypesafeDraggableData,
TypesafeDroppableData,
} from 'app/components/ImageDnd/typesafeDnd';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAIDndImage from 'common/components/IAIDndImage';
import { IAILoadingImageFallback } from 'common/components/IAIImageFallback';
import { memo, useCallback, useMemo, useState } from 'react';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { PostUploadAction } from 'services/api/thunks/image';
import {
ControlNetConfig,
controlNetImageChanged,
controlNetSelector,
} from '../store/controlNetSlice';
const selector = createSelector(
controlNetSelector,
@ -83,15 +80,14 @@ const ControlNetImagePreview = (props: Props) => {
}
}, [controlImage, controlNetId]);
const droppableData = useMemo<TypesafeDroppableData | undefined>(() => {
if (controlNetId) {
return {
id: controlNetId,
actionType: 'SET_CONTROLNET_IMAGE',
context: { controlNetId },
};
}
}, [controlNetId]);
const droppableData = useMemo<TypesafeDroppableData | undefined>(
() => ({
id: controlNetId,
actionType: 'SET_CONTROLNET_IMAGE',
context: { controlNetId },
}),
[controlNetId]
);
const postUploadAction = useMemo<PostUploadAction>(
() => ({ type: 'SET_CONTROLNET_IMAGE', controlNetId }),

View File

@ -0,0 +1,36 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISwitch from 'common/components/IAISwitch';
import { isControlNetEnabledToggled } from 'features/controlNet/store/controlNetSlice';
import { useCallback } from 'react';
const selector = createSelector(
stateSelector,
(state) => {
const { isEnabled } = state.controlNet;
return { isEnabled };
},
defaultSelectorOptions
);
const ParamControlNetFeatureToggle = () => {
const { isEnabled } = useAppSelector(selector);
const dispatch = useAppDispatch();
const handleChange = useCallback(() => {
dispatch(isControlNetEnabledToggled());
}, [dispatch]);
return (
<IAISwitch
label="Enable ControlNet"
isChecked={isEnabled}
onChange={handleChange}
/>
);
};
export default ParamControlNetFeatureToggle;

View File

@ -0,0 +1,15 @@
import { filter } from 'lodash-es';
import { ControlNetConfig } from '../store/controlNetSlice';
export const getValidControlNets = (
controlNets: Record<string, ControlNetConfig>
) => {
const validControlNets = filter(
controlNets,
(c) =>
c.isEnabled &&
(Boolean(c.processedControlImage) ||
(c.processorType === 'none' && Boolean(c.controlImage)))
);
return validControlNets;
};

View File

@ -1,40 +1,30 @@
import { Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { useCallback } from 'react';
import { isEnabledToggled } from '../store/slice';
import ParamDynamicPromptsMaxPrompts from './ParamDynamicPromptsMaxPrompts';
import ParamDynamicPromptsCombinatorial from './ParamDynamicPromptsCombinatorial';
import { Flex } from '@chakra-ui/react';
import ParamDynamicPromptsToggle from './ParamDynamicPromptsEnabled';
import ParamDynamicPromptsMaxPrompts from './ParamDynamicPromptsMaxPrompts';
const selector = createSelector(
stateSelector,
(state) => {
const { isEnabled } = state.dynamicPrompts;
return { isEnabled };
return { activeLabel: isEnabled ? 'Enabled' : undefined };
},
defaultSelectorOptions
);
const ParamDynamicPromptsCollapse = () => {
const dispatch = useAppDispatch();
const { isEnabled } = useAppSelector(selector);
const handleToggleIsEnabled = useCallback(() => {
dispatch(isEnabledToggled());
}, [dispatch]);
const { activeLabel } = useAppSelector(selector);
return (
<IAICollapse
isOpen={isEnabled}
onToggle={handleToggleIsEnabled}
label="Dynamic Prompts"
withSwitch
>
<IAICollapse label="Dynamic Prompts" activeLabel={activeLabel}>
<Flex sx={{ gap: 2, flexDir: 'column' }}>
<ParamDynamicPromptsToggle />
<ParamDynamicPromptsCombinatorial />
<ParamDynamicPromptsMaxPrompts />
</Flex>

View File

@ -1,23 +1,23 @@
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { combinatorialToggled } from '../store/slice';
import { createSelector } from '@reduxjs/toolkit';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { useCallback } from 'react';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISwitch from 'common/components/IAISwitch';
import { useCallback } from 'react';
import { combinatorialToggled } from '../store/slice';
const selector = createSelector(
stateSelector,
(state) => {
const { combinatorial } = state.dynamicPrompts;
const { combinatorial, isEnabled } = state.dynamicPrompts;
return { combinatorial };
return { combinatorial, isDisabled: !isEnabled };
},
defaultSelectorOptions
);
const ParamDynamicPromptsCombinatorial = () => {
const { combinatorial } = useAppSelector(selector);
const { combinatorial, isDisabled } = useAppSelector(selector);
const dispatch = useAppDispatch();
const handleChange = useCallback(() => {
@ -26,6 +26,7 @@ const ParamDynamicPromptsCombinatorial = () => {
return (
<IAISwitch
isDisabled={isDisabled}
label="Combinatorial Generation"
isChecked={combinatorial}
onChange={handleChange}

View File

@ -0,0 +1,36 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISwitch from 'common/components/IAISwitch';
import { useCallback } from 'react';
import { isEnabledToggled } from '../store/slice';
const selector = createSelector(
stateSelector,
(state) => {
const { isEnabled } = state.dynamicPrompts;
return { isEnabled };
},
defaultSelectorOptions
);
const ParamDynamicPromptsToggle = () => {
const dispatch = useAppDispatch();
const { isEnabled } = useAppSelector(selector);
const handleToggleIsEnabled = useCallback(() => {
dispatch(isEnabledToggled());
}, [dispatch]);
return (
<IAISwitch
label="Enable Dynamic Prompts"
isChecked={isEnabled}
onChange={handleToggleIsEnabled}
/>
);
};
export default ParamDynamicPromptsToggle;

View File

@ -1,25 +1,31 @@
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { maxPromptsChanged, maxPromptsReset } from '../store/slice';
import { createSelector } from '@reduxjs/toolkit';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { useCallback } from 'react';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider from 'common/components/IAISlider';
import { useCallback } from 'react';
import { maxPromptsChanged, maxPromptsReset } from '../store/slice';
const selector = createSelector(
stateSelector,
(state) => {
const { maxPrompts, combinatorial } = state.dynamicPrompts;
const { maxPrompts, combinatorial, isEnabled } = state.dynamicPrompts;
const { min, sliderMax, inputMax } =
state.config.sd.dynamicPrompts.maxPrompts;
return { maxPrompts, min, sliderMax, inputMax, combinatorial };
return {
maxPrompts,
min,
sliderMax,
inputMax,
isDisabled: !isEnabled || !combinatorial,
};
},
defaultSelectorOptions
);
const ParamDynamicPromptsMaxPrompts = () => {
const { maxPrompts, min, sliderMax, inputMax, combinatorial } =
const { maxPrompts, min, sliderMax, inputMax, isDisabled } =
useAppSelector(selector);
const dispatch = useAppDispatch();
@ -37,7 +43,7 @@ const ParamDynamicPromptsMaxPrompts = () => {
return (
<IAISlider
label="Max Prompts"
isDisabled={!combinatorial}
isDisabled={isDisabled}
min={min}
max={sliderMax}
value={maxPrompts}

View File

@ -1,19 +1,19 @@
import { Box, Flex, Image } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { isEqual } from 'lodash-es';
import ImageMetadataViewer from './ImageMetaDataViewer/ImageMetadataViewer';
import NextPrevImageButtons from './NextPrevImageButtons';
import { memo, useMemo } from 'react';
import IAIDndImage from 'common/components/IAIDndImage';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { skipToken } from '@reduxjs/toolkit/dist/query';
import { stateSelector } from 'app/store/store';
import { selectLastSelectedImage } from 'features/gallery/store/gallerySlice';
import {
TypesafeDraggableData,
TypesafeDroppableData,
} from 'app/components/ImageDnd/typesafeDnd';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import IAIDndImage from 'common/components/IAIDndImage';
import { selectLastSelectedImage } from 'features/gallery/store/gallerySlice';
import { isEqual } from 'lodash-es';
import { memo, useMemo } from 'react';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import ImageMetadataViewer from './ImageMetaDataViewer/ImageMetadataViewer';
import NextPrevImageButtons from './NextPrevImageButtons';
export const imagesSelector = createSelector(
[stateSelector, selectLastSelectedImage],

View File

@ -1,34 +1,35 @@
import { Box } from '@chakra-ui/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { MouseEvent, memo, useCallback, useMemo } from 'react';
import { FaTrash } from 'react-icons/fa';
import { useTranslation } from 'react-i18next';
import { createSelector } from '@reduxjs/toolkit';
import { ImageDTO } from 'services/api/types';
import { TypesafeDraggableData } from 'app/components/ImageDnd/typesafeDnd';
import { stateSelector } from 'app/store/store';
import ImageContextMenu from './ImageContextMenu';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAIDndImage from 'common/components/IAIDndImage';
import { imageToDeleteSelected } from 'features/imageDeletion/store/imageDeletionSlice';
import { MouseEvent, memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { FaTrash } from 'react-icons/fa';
import { ImageDTO } from 'services/api/types';
import {
imageRangeEndSelected,
imageSelected,
imageSelectionToggled,
} from '../store/gallerySlice';
import { imageToDeleteSelected } from 'features/imageDeletion/store/imageDeletionSlice';
import ImageContextMenu from './ImageContextMenu';
export const selector = createSelector(
[stateSelector, (state, { image_name }: ImageDTO) => image_name],
({ gallery }, image_name) => {
const isSelected = gallery.selection.includes(image_name);
const selection = gallery.selection;
return {
isSelected,
selection,
};
},
defaultSelectorOptions
);
export const makeSelector = (image_name: string) =>
createSelector(
[stateSelector],
({ gallery }) => {
const isSelected = gallery.selection.includes(image_name);
const selectionCount = gallery.selection.length;
return {
isSelected,
selectionCount,
};
},
defaultSelectorOptions
);
interface HoverableImageProps {
imageDTO: ImageDTO;
@ -38,13 +39,13 @@ interface HoverableImageProps {
* Gallery image component with delete/use all/use seed buttons on hover.
*/
const GalleryImage = (props: HoverableImageProps) => {
const { isSelected, selection } = useAppSelector((state) =>
selector(state, props.imageDTO)
);
const { imageDTO } = props;
const { image_url, thumbnail_url, image_name } = imageDTO;
const localSelector = useMemo(() => makeSelector(image_name), [image_name]);
const { isSelected, selectionCount } = useAppSelector(localSelector);
const dispatch = useAppDispatch();
const { t } = useTranslation();
@ -74,11 +75,10 @@ const GalleryImage = (props: HoverableImageProps) => {
);
const draggableData = useMemo<TypesafeDraggableData | undefined>(() => {
if (selection.length > 1) {
if (selectionCount > 1) {
return {
id: 'gallery-image',
payloadType: 'IMAGE_NAMES',
payload: { imageNames: selection },
payloadType: 'GALLERY_SELECTION',
};
}
@ -89,7 +89,7 @@ const GalleryImage = (props: HoverableImageProps) => {
payload: { imageDTO },
};
}
}, [imageDTO, selection]);
}, [imageDTO, selectionCount]);
return (
<Box sx={{ w: 'full', h: 'full', touchAction: 'none' }}>

View File

@ -7,7 +7,6 @@ import {
import { RootState } from 'app/store/store';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { dateComparator } from 'common/util/dateComparator';
import { imageDeletionConfirmed } from 'features/imageDeletion/store/imageDeletionSlice';
import { keyBy, uniq } from 'lodash-es';
import { boardsApi } from 'services/api/endpoints/boards';
import {
@ -174,11 +173,6 @@ export const gallerySlice = createSlice({
state.limit = limit;
state.total = total;
});
builder.addCase(imageDeletionConfirmed, (state, action) => {
// Image deleted
const { image_name } = action.payload.imageDTO;
imagesAdapter.removeOne(state, image_name);
});
builder.addCase(imageUrlsReceived.fulfilled, (state, action) => {
const { image_name, image_url, thumbnail_url } = action.payload;

View File

@ -0,0 +1,59 @@
import { Flex } from '@chakra-ui/react';
import { useAppDispatch } from 'app/store/storeHooks';
import IAIIconButton from 'common/components/IAIIconButton';
import IAISlider from 'common/components/IAISlider';
import { memo, useCallback } from 'react';
import { FaTrash } from 'react-icons/fa';
import { Lora, loraRemoved, loraWeightChanged } from '../store/loraSlice';
type Props = {
lora: Lora;
};
const ParamLora = (props: Props) => {
const dispatch = useAppDispatch();
const { lora } = props;
const handleChange = useCallback(
(v: number) => {
dispatch(loraWeightChanged({ id: lora.id, weight: v }));
},
[dispatch, lora.id]
);
const handleReset = useCallback(() => {
dispatch(loraWeightChanged({ id: lora.id, weight: 1 }));
}, [dispatch, lora.id]);
const handleRemoveLora = useCallback(() => {
dispatch(loraRemoved(lora.id));
}, [dispatch, lora.id]);
return (
<Flex sx={{ gap: 2.5, alignItems: 'flex-end' }}>
<IAISlider
label={lora.name}
value={lora.weight}
onChange={handleChange}
min={-1}
max={2}
step={0.01}
withInput
withReset
handleReset={handleReset}
withSliderMarks
sliderMarks={[-1, 0, 1, 2]}
/>
<IAIIconButton
size="sm"
onClick={handleRemoveLora}
tooltip="Remove LoRA"
aria-label="Remove LoRA"
icon={<FaTrash />}
colorScheme="error"
/>
</Flex>
);
};
export default memo(ParamLora);

View File

@ -0,0 +1,36 @@
import { Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { size } from 'lodash-es';
import { memo } from 'react';
import ParamLoraList from './ParamLoraList';
import ParamLoraSelect from './ParamLoraSelect';
const selector = createSelector(
stateSelector,
(state) => {
const loraCount = size(state.lora.loras);
return {
activeLabel: loraCount > 0 ? `${loraCount} Active` : undefined,
};
},
defaultSelectorOptions
);
const ParamLoraCollapse = () => {
const { activeLabel } = useAppSelector(selector);
return (
<IAICollapse label={'LoRA'} activeLabel={activeLabel}>
<Flex sx={{ flexDir: 'column', gap: 2 }}>
<ParamLoraSelect />
<ParamLoraList />
</Flex>
</IAICollapse>
);
};
export default memo(ParamLoraCollapse);

View File

@ -0,0 +1,24 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { map } from 'lodash-es';
import ParamLora from './ParamLora';
const selector = createSelector(
stateSelector,
({ lora }) => {
const { loras } = lora;
return { loras };
},
defaultSelectorOptions
);
const ParamLoraList = () => {
const { loras } = useAppSelector(selector);
return map(loras, (lora) => <ParamLora key={lora.name} lora={lora} />);
};
export default ParamLoraList;

View File

@ -0,0 +1,107 @@
import { Text } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAIMantineMultiSelect from 'common/components/IAIMantineMultiSelect';
import { forEach } from 'lodash-es';
import { forwardRef, useCallback, useMemo } from 'react';
import { useGetLoRAModelsQuery } from 'services/api/endpoints/models';
import { loraAdded } from '../store/loraSlice';
type LoraSelectItem = {
label: string;
value: string;
description?: string;
};
const selector = createSelector(
stateSelector,
({ lora }) => ({
loras: lora.loras,
}),
defaultSelectorOptions
);
const ParamLoraSelect = () => {
const dispatch = useAppDispatch();
const { loras } = useAppSelector(selector);
const { data: lorasQueryData } = useGetLoRAModelsQuery();
const data = useMemo(() => {
if (!lorasQueryData) {
return [];
}
const data: LoraSelectItem[] = [];
forEach(lorasQueryData.entities, (lora, id) => {
if (!lora || Boolean(id in loras)) {
return;
}
data.push({
value: id,
label: lora.name,
description: lora.description,
});
});
return data;
}, [loras, lorasQueryData]);
const handleChange = useCallback(
(v: string[]) => {
const loraEntity = lorasQueryData?.entities[v[0]];
if (!loraEntity) {
return;
}
v[0] && dispatch(loraAdded(loraEntity));
},
[dispatch, lorasQueryData?.entities]
);
return (
<IAIMantineMultiSelect
placeholder={data.length === 0 ? 'All LoRAs added' : 'Add LoRA'}
value={[]}
data={data}
maxDropdownHeight={400}
nothingFound="No matching LoRAs"
itemComponent={SelectItem}
disabled={data.length === 0}
filter={(value, selected, item: LoraSelectItem) =>
item.label.toLowerCase().includes(value.toLowerCase().trim()) ||
item.value.toLowerCase().includes(value.toLowerCase().trim())
}
onChange={handleChange}
/>
);
};
interface ItemProps extends React.ComponentPropsWithoutRef<'div'> {
value: string;
label: string;
description?: string;
}
const SelectItem = forwardRef<HTMLDivElement, ItemProps>(
({ label, description, ...others }: ItemProps, ref) => {
return (
<div ref={ref} {...others}>
<div>
<Text>{label}</Text>
{description && (
<Text size="xs" color="base.600">
{description}
</Text>
)}
</div>
</div>
);
}
);
SelectItem.displayName = 'SelectItem';
export default ParamLoraSelect;

View File

@ -0,0 +1,46 @@
import { PayloadAction, createSlice } from '@reduxjs/toolkit';
import { LoRAModelConfigEntity } from 'services/api/endpoints/models';
export type Lora = {
id: string;
name: string;
weight: number;
};
export const defaultLoRAConfig: Omit<Lora, 'id' | 'name'> = {
weight: 1,
};
export type LoraState = {
loras: Record<string, Lora>;
};
export const intialLoraState: LoraState = {
loras: {},
};
export const loraSlice = createSlice({
name: 'lora',
initialState: intialLoraState,
reducers: {
loraAdded: (state, action: PayloadAction<LoRAModelConfigEntity>) => {
const { name, id } = action.payload;
state.loras[id] = { id, name, ...defaultLoRAConfig };
},
loraRemoved: (state, action: PayloadAction<string>) => {
const id = action.payload;
delete state.loras[id];
},
loraWeightChanged: (
state,
action: PayloadAction<{ id: string; weight: number }>
) => {
const { id, weight } = action.payload;
state.loras[id].weight = weight;
},
},
});
export const { loraAdded, loraRemoved, loraWeightChanged } = loraSlice.actions;
export default loraSlice.reducer;

View File

@ -12,6 +12,7 @@ import ImageCollectionInputFieldComponent from './fields/ImageCollectionInputFie
import ImageInputFieldComponent from './fields/ImageInputFieldComponent';
import ItemInputFieldComponent from './fields/ItemInputFieldComponent';
import LatentsInputFieldComponent from './fields/LatentsInputFieldComponent';
import LoRAModelInputFieldComponent from './fields/LoRAModelInputFieldComponent';
import ModelInputFieldComponent from './fields/ModelInputFieldComponent';
import NumberInputFieldComponent from './fields/NumberInputFieldComponent';
import StringInputFieldComponent from './fields/StringInputFieldComponent';
@ -163,6 +164,16 @@ const InputFieldComponent = (props: InputFieldComponentProps) => {
);
}
if (type === 'lora_model' && template.type === 'lora_model') {
return (
<LoRAModelInputFieldComponent
nodeId={nodeId}
field={field}
template={template}
/>
);
}
if (type === 'array' && template.type === 'array') {
return (
<ArrayInputFieldComponent

View File

@ -7,18 +7,16 @@ import {
} from 'features/nodes/types/types';
import { memo, useCallback, useMemo } from 'react';
import { FieldComponentProps } from './types';
import IAIDndImage from 'common/components/IAIDndImage';
import { ImageDTO } from 'services/api/types';
import { Flex } from '@chakra-ui/react';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { skipToken } from '@reduxjs/toolkit/dist/query';
import {
NodesImageDropData,
TypesafeDraggableData,
TypesafeDroppableData,
} from 'app/components/ImageDnd/typesafeDnd';
import IAIDndImage from 'common/components/IAIDndImage';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import { PostUploadAction } from 'services/api/thunks/image';
import { FieldComponentProps } from './types';
const ImageInputFieldComponent = (
props: FieldComponentProps<ImageInputFieldValue, ImageInputFieldTemplate>
@ -34,23 +32,6 @@ const ImageInputFieldComponent = (
isSuccess,
} = useGetImageDTOQuery(field.value?.image_name ?? skipToken);
const handleDrop = useCallback(
({ image_name }: ImageDTO) => {
if (field.value?.image_name === image_name) {
return;
}
dispatch(
fieldValueChanged({
nodeId,
fieldName: field.name,
value: { image_name },
})
);
},
[dispatch, field.name, field.value, nodeId]
);
const handleReset = useCallback(() => {
dispatch(
fieldValueChanged({
@ -71,15 +52,14 @@ const ImageInputFieldComponent = (
}
}, [field.name, imageDTO, nodeId]);
const droppableData = useMemo<TypesafeDroppableData | undefined>(() => {
if (imageDTO) {
return {
id: `node-${nodeId}-${field.name}`,
actionType: 'SET_NODES_IMAGE',
context: { nodeId, fieldName: field.name },
};
}
}, [field.name, imageDTO, nodeId]);
const droppableData = useMemo<TypesafeDroppableData | undefined>(
() => ({
id: `node-${nodeId}-${field.name}`,
actionType: 'SET_NODES_IMAGE',
context: { nodeId, fieldName: field.name },
}),
[field.name, nodeId]
);
const postUploadAction = useMemo<PostUploadAction>(
() => ({

View File

@ -0,0 +1,102 @@
import { SelectItem } from '@mantine/core';
import { useAppDispatch } from 'app/store/storeHooks';
import IAIMantineSelect from 'common/components/IAIMantineSelect';
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
import {
VaeModelInputFieldTemplate,
VaeModelInputFieldValue,
} from 'features/nodes/types/types';
import { MODEL_TYPE_MAP as BASE_MODEL_NAME_MAP } from 'features/system/components/ModelSelect';
import { forEach, isString } from 'lodash-es';
import { memo, useCallback, useEffect, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useGetLoRAModelsQuery } from 'services/api/endpoints/models';
import { FieldComponentProps } from './types';
const LoRAModelInputFieldComponent = (
props: FieldComponentProps<
VaeModelInputFieldValue,
VaeModelInputFieldTemplate
>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const { t } = useTranslation();
const { data: loraModels } = useGetLoRAModelsQuery();
const selectedModel = useMemo(
() => loraModels?.entities[field.value ?? loraModels.ids[0]],
[loraModels?.entities, loraModels?.ids, field.value]
);
const data = useMemo(() => {
if (!loraModels) {
return [];
}
const data: SelectItem[] = [];
forEach(loraModels.entities, (model, id) => {
if (!model) {
return;
}
data.push({
value: id,
label: model.name,
group: BASE_MODEL_NAME_MAP[model.base_model],
});
});
return data;
}, [loraModels]);
const handleValueChanged = useCallback(
(v: string | null) => {
if (!v) {
return;
}
dispatch(
fieldValueChanged({
nodeId,
fieldName: field.name,
value: v,
})
);
},
[dispatch, field.name, nodeId]
);
useEffect(() => {
if (field.value && loraModels?.ids.includes(field.value)) {
return;
}
const firstLora = loraModels?.ids[0];
if (!isString(firstLora)) {
return;
}
handleValueChanged(firstLora);
}, [field.value, handleValueChanged, loraModels?.ids]);
return (
<IAIMantineSelect
tooltip={selectedModel?.description}
label={
selectedModel?.base_model &&
BASE_MODEL_NAME_MAP[selectedModel?.base_model]
}
value={field.value}
placeholder="Pick one"
data={data}
onChange={handleValueChanged}
/>
);
};
export default memo(LoRAModelInputFieldComponent);

View File

@ -11,7 +11,7 @@ import { MODEL_TYPE_MAP as BASE_MODEL_NAME_MAP } from 'features/system/component
import { forEach, isString } from 'lodash-es';
import { memo, useCallback, useEffect, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
import { FieldComponentProps } from './types';
const ModelInputFieldComponent = (
@ -22,9 +22,7 @@ const ModelInputFieldComponent = (
const dispatch = useAppDispatch();
const { t } = useTranslation();
const { data: mainModels } = useListModelsQuery({
model_type: 'main',
});
const { data: mainModels } = useGetMainModelsQuery();
const data = useMemo(() => {
if (!mainModels) {

View File

@ -10,7 +10,7 @@ import { MODEL_TYPE_MAP as BASE_MODEL_NAME_MAP } from 'features/system/component
import { forEach } from 'lodash-es';
import { memo, useCallback, useEffect, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetVaeModelsQuery } from 'services/api/endpoints/models';
import { FieldComponentProps } from './types';
const VaeModelInputFieldComponent = (
@ -24,9 +24,7 @@ const VaeModelInputFieldComponent = (
const dispatch = useAppDispatch();
const { t } = useTranslation();
const { data: vaeModels } = useListModelsQuery({
model_type: 'vae',
});
const { data: vaeModels } = useGetVaeModelsQuery();
const selectedModel = useMemo(
() => vaeModels?.entities[field.value ?? vaeModels.ids[0]],

View File

@ -1,5 +1,8 @@
import { createSlice, PayloadAction } from '@reduxjs/toolkit';
import { RootState } from 'app/store/store';
import { cloneDeep, uniqBy } from 'lodash-es';
import { OpenAPIV3 } from 'openapi-types';
import { RgbaColor } from 'react-colorful';
import {
addEdge,
applyEdgeChanges,
@ -11,12 +14,9 @@ import {
NodeChange,
OnConnectStartParams,
} from 'reactflow';
import { ImageField } from 'services/api/types';
import { receivedOpenAPISchema } from 'services/api/thunks/schema';
import { ImageField } from 'services/api/types';
import { InvocationTemplate, InvocationValue } from '../types/types';
import { RgbaColor } from 'react-colorful';
import { RootState } from 'app/store/store';
import { cloneDeep, isArray, uniq, uniqBy } from 'lodash-es';
export type NodesState = {
nodes: Node<InvocationValue>[];

View File

@ -18,6 +18,7 @@ export const FIELD_TYPE_MAP: Record<string, FieldType> = {
VaeField: 'vae',
model: 'model',
vae_model: 'vae_model',
lora_model: 'lora_model',
array: 'array',
item: 'item',
ColorField: 'color',
@ -120,7 +121,13 @@ export const FIELDS: Record<FieldType, FieldUIConfig> = {
vae_model: {
color: 'teal',
colorCssVar: getColorTokenCssVariable('teal'),
title: 'Model',
title: 'VAE',
description: 'Models are models.',
},
lora_model: {
color: 'teal',
colorCssVar: getColorTokenCssVariable('teal'),
title: 'LoRA',
description: 'Models are models.',
},
array: {

View File

@ -65,6 +65,7 @@ export type FieldType =
| 'control'
| 'model'
| 'vae_model'
| 'lora_model'
| 'array'
| 'item'
| 'color'
@ -93,6 +94,7 @@ export type InputFieldValue =
| EnumInputFieldValue
| ModelInputFieldValue
| VaeModelInputFieldValue
| LoRAModelInputFieldValue
| ArrayInputFieldValue
| ItemInputFieldValue
| ColorInputFieldValue
@ -119,6 +121,7 @@ export type InputFieldTemplate =
| EnumInputFieldTemplate
| ModelInputFieldTemplate
| VaeModelInputFieldTemplate
| LoRAModelInputFieldTemplate
| ArrayInputFieldTemplate
| ItemInputFieldTemplate
| ColorInputFieldTemplate
@ -236,6 +239,11 @@ export type VaeModelInputFieldValue = FieldValueBase & {
value?: string;
};
export type LoRAModelInputFieldValue = FieldValueBase & {
type: 'lora_model';
value?: string;
};
export type ArrayInputFieldValue = FieldValueBase & {
type: 'array';
value?: (string | number)[];
@ -350,6 +358,11 @@ export type VaeModelInputFieldTemplate = InputFieldTemplateBase & {
type: 'vae_model';
};
export type LoRAModelInputFieldTemplate = InputFieldTemplateBase & {
default: string;
type: 'lora_model';
};
export type ArrayInputFieldTemplate = InputFieldTemplateBase & {
default: [];
type: 'array';

View File

@ -1,5 +1,5 @@
import { RootState } from 'app/store/store';
import { filter } from 'lodash-es';
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
import { CollectInvocation, ControlNetInvocation } from 'services/api/types';
import { NonNullableGraph } from '../types/types';
import { CONTROL_NET_COLLECT } from './graphBuilders/constants';
@ -11,13 +11,7 @@ export const addControlNetToLinearGraph = (
): void => {
const { isEnabled: isControlNetEnabled, controlNets } = state.controlNet;
const validControlNets = filter(
controlNets,
(c) =>
c.isEnabled &&
(Boolean(c.processedControlImage) ||
(c.processorType === 'none' && Boolean(c.controlImage)))
);
const validControlNets = getValidControlNets(controlNets);
if (isControlNetEnabled && Boolean(validControlNets.length)) {
if (validControlNets.length > 1) {

View File

@ -18,6 +18,7 @@ import {
IntegerInputFieldTemplate,
ItemInputFieldTemplate,
LatentsInputFieldTemplate,
LoRAModelInputFieldTemplate,
ModelInputFieldTemplate,
OutputFieldTemplate,
StringInputFieldTemplate,
@ -191,6 +192,21 @@ const buildVaeModelInputFieldTemplate = ({
return template;
};
const buildLoRAModelInputFieldTemplate = ({
schemaObject,
baseField,
}: BuildInputFieldArg): LoRAModelInputFieldTemplate => {
const template: LoRAModelInputFieldTemplate = {
...baseField,
type: 'lora_model',
inputRequirement: 'always',
inputKind: 'direct',
default: schemaObject.default ?? undefined,
};
return template;
};
const buildImageInputFieldTemplate = ({
schemaObject,
baseField,
@ -460,6 +476,9 @@ export const buildInputFieldTemplate = (
if (['vae_model'].includes(fieldType)) {
return buildVaeModelInputFieldTemplate({ schemaObject, baseField });
}
if (['lora_model'].includes(fieldType)) {
return buildLoRAModelInputFieldTemplate({ schemaObject, baseField });
}
if (['enum'].includes(fieldType)) {
return buildEnumInputFieldTemplate({ schemaObject, baseField });
}

View File

@ -79,6 +79,10 @@ export const buildInputFieldValue = (
if (template.type === 'vae_model') {
fieldValue.value = undefined;
}
if (template.type === 'lora_model') {
fieldValue.value = undefined;
}
}
return fieldValue;

View File

@ -0,0 +1,148 @@
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { forEach, size } from 'lodash-es';
import { LoraLoaderInvocation } from 'services/api/types';
import { modelIdToLoRAModelField } from '../modelIdToLoRAName';
import {
LORA_LOADER,
MAIN_MODEL_LOADER,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
} from './constants';
export const addLoRAsToGraph = (
graph: NonNullableGraph,
state: RootState,
baseNodeId: string
): void => {
/**
* LoRA nodes get the UNet and CLIP models from the main model loader and apply the LoRA to them.
* They then output the UNet and CLIP models references on to either the next LoRA in the chain,
* or to the inference/conditioning nodes.
*
* So we need to inject a LoRA chain into the graph.
*/
const { loras } = state.lora;
const loraCount = size(loras);
if (loraCount > 0) {
// remove any existing connections from main model loader, we need to insert the lora nodes
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === MAIN_MODEL_LOADER &&
['unet', 'clip'].includes(e.source.field)
)
);
}
// we need to remember the last lora so we can chain from it
let lastLoraNodeId = '';
let currentLoraIndex = 0;
forEach(loras, (lora) => {
const { id, name, weight } = lora;
const loraField = modelIdToLoRAModelField(id);
const currentLoraNodeId = `${LORA_LOADER}_${loraField.model_name.replace(
'.',
'_'
)}`;
const loraLoaderNode: LoraLoaderInvocation = {
type: 'lora_loader',
id: currentLoraNodeId,
lora: loraField,
weight,
};
graph.nodes[currentLoraNodeId] = loraLoaderNode;
if (currentLoraIndex === 0) {
// first lora = start the lora chain, attach directly to model loader
graph.edges.push({
source: {
node_id: MAIN_MODEL_LOADER,
field: 'unet',
},
destination: {
node_id: currentLoraNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: MAIN_MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip',
},
});
} else {
// we are in the middle of the lora chain, instead connect to the previous lora
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'unet',
},
destination: {
node_id: currentLoraNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'clip',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip',
},
});
}
if (currentLoraIndex === loraCount - 1) {
// final lora, end the lora chain - we need to connect up to inference and conditioning nodes
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'unet',
},
destination: {
node_id: baseNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
});
}
// increment the lora for the next one in the chain
lastLoraNodeId = currentLoraNodeId;
currentLoraIndex += 1;
});
};

View File

@ -9,6 +9,7 @@ import {
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
import { modelIdToMainModelField } from '../modelIdToMainModelField';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addLoRAsToGraph } from './addLoRAsToGraph';
import { addVAEToGraph } from './addVAEToGraph';
import {
IMAGE_TO_IMAGE_GRAPH,
@ -252,6 +253,8 @@ export const buildCanvasImageToImageGraph = (
});
}
addLoRAsToGraph(graph, state, LATENTS_TO_LATENTS);
// Add VAE
addVAEToGraph(graph, state);

View File

@ -8,6 +8,7 @@ import {
RangeOfSizeInvocation,
} from 'services/api/types';
import { modelIdToMainModelField } from '../modelIdToMainModelField';
import { addLoRAsToGraph } from './addLoRAsToGraph';
import { addVAEToGraph } from './addVAEToGraph';
import {
INPAINT,
@ -194,6 +195,8 @@ export const buildCanvasInpaintGraph = (
],
};
addLoRAsToGraph(graph, state, INPAINT);
// Add VAE
addVAEToGraph(graph, state);

View File

@ -3,6 +3,7 @@ import { NonNullableGraph } from 'features/nodes/types/types';
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
import { modelIdToMainModelField } from '../modelIdToMainModelField';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addLoRAsToGraph } from './addLoRAsToGraph';
import { addVAEToGraph } from './addVAEToGraph';
import {
LATENTS_TO_IMAGE,
@ -157,6 +158,8 @@ export const buildCanvasTextToImageGraph = (
],
};
addLoRAsToGraph(graph, state, TEXT_TO_LATENTS);
// Add VAE
addVAEToGraph(graph, state);

View File

@ -10,6 +10,7 @@ import {
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
import { modelIdToMainModelField } from '../modelIdToMainModelField';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addLoRAsToGraph } from './addLoRAsToGraph';
import { addVAEToGraph } from './addVAEToGraph';
import {
IMAGE_COLLECTION,
@ -304,6 +305,9 @@ export const buildLinearImageToImageGraph = (
},
});
}
addLoRAsToGraph(graph, state, LATENTS_TO_LATENTS);
// Add VAE
addVAEToGraph(graph, state);

View File

@ -3,6 +3,7 @@ import { NonNullableGraph } from 'features/nodes/types/types';
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
import { modelIdToMainModelField } from '../modelIdToMainModelField';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addLoRAsToGraph } from './addLoRAsToGraph';
import { addVAEToGraph } from './addVAEToGraph';
import {
LATENTS_TO_IMAGE,
@ -150,6 +151,8 @@ export const buildLinearTextToImageGraph = (
],
};
addLoRAsToGraph(graph, state, TEXT_TO_LATENTS);
// Add Custom VAE Support
addVAEToGraph(graph, state);

View File

@ -4,6 +4,7 @@ import { cloneDeep, omit, reduce } from 'lodash-es';
import { Graph } from 'services/api/types';
import { AnyInvocation } from 'services/events/types';
import { v4 as uuidv4 } from 'uuid';
import { modelIdToLoRAModelField } from '../modelIdToLoRAName';
import { modelIdToMainModelField } from '../modelIdToMainModelField';
import { modelIdToVAEModelField } from '../modelIdToVAEModelField';
@ -38,6 +39,12 @@ export const parseFieldValue = (field: InputFieldValue) => {
}
}
if (field.type === 'lora_model') {
if (field.value) {
return modelIdToLoRAModelField(field.value);
}
}
return field.value;
};

View File

@ -9,6 +9,7 @@ export const RANGE_OF_SIZE = 'range_of_size';
export const ITERATE = 'iterate';
export const MAIN_MODEL_LOADER = 'main_model_loader';
export const VAE_LOADER = 'vae_loader';
export const LORA_LOADER = 'lora_loader';
export const IMAGE_TO_LATENTS = 'image_to_latents';
export const LATENTS_TO_LATENTS = 'latents_to_latents';
export const RESIZE = 'resize_image';

View File

@ -0,0 +1,12 @@
import { BaseModelType, LoRAModelField } from 'services/api/types';
export const modelIdToLoRAModelField = (loraId: string): LoRAModelField => {
const [base_model, model_type, model_name] = loraId.split('/');
const field: LoRAModelField = {
base_model: base_model as BaseModelType,
model_name,
};
return field;
};

View File

@ -1,20 +1,15 @@
import { Flex, useDisclosure } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
import { Flex } from '@chakra-ui/react';
import IAICollapse from 'common/components/IAICollapse';
import { memo } from 'react';
import ParamBoundingBoxWidth from './ParamBoundingBoxWidth';
import { useTranslation } from 'react-i18next';
import ParamBoundingBoxHeight from './ParamBoundingBoxHeight';
import ParamBoundingBoxWidth from './ParamBoundingBoxWidth';
const ParamBoundingBoxCollapse = () => {
const { t } = useTranslation();
const { isOpen, onToggle } = useDisclosure();
return (
<IAICollapse
label={t('parameters.boundingBoxHeader')}
isOpen={isOpen}
onToggle={onToggle}
>
<IAICollapse label={t('parameters.boundingBoxHeader')}>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamBoundingBoxWidth />
<ParamBoundingBoxHeight />

View File

@ -1,4 +1,4 @@
import { Flex, useDisclosure } from '@chakra-ui/react';
import { Flex } from '@chakra-ui/react';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
@ -6,19 +6,14 @@ import IAICollapse from 'common/components/IAICollapse';
import ParamInfillMethod from './ParamInfillMethod';
import ParamInfillTilesize from './ParamInfillTilesize';
import ParamScaleBeforeProcessing from './ParamScaleBeforeProcessing';
import ParamScaledWidth from './ParamScaledWidth';
import ParamScaledHeight from './ParamScaledHeight';
import ParamScaledWidth from './ParamScaledWidth';
const ParamInfillCollapse = () => {
const { t } = useTranslation();
const { isOpen, onToggle } = useDisclosure();
return (
<IAICollapse
label={t('parameters.infillScalingHeader')}
isOpen={isOpen}
onToggle={onToggle}
>
<IAICollapse label={t('parameters.infillScalingHeader')}>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamInfillMethod />
<ParamInfillTilesize />

View File

@ -1,22 +1,16 @@
import IAICollapse from 'common/components/IAICollapse';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import ParamSeamBlur from './ParamSeamBlur';
import ParamSeamSize from './ParamSeamSize';
import ParamSeamSteps from './ParamSeamSteps';
import ParamSeamStrength from './ParamSeamStrength';
import { useDisclosure } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
import IAICollapse from 'common/components/IAICollapse';
import { memo } from 'react';
const ParamSeamCorrectionCollapse = () => {
const { t } = useTranslation();
const { isOpen, onToggle } = useDisclosure();
return (
<IAICollapse
label={t('parameters.seamCorrectionHeader')}
isOpen={isOpen}
onToggle={onToggle}
>
<IAICollapse label={t('parameters.seamCorrectionHeader')}>
<ParamSeamSize />
<ParamSeamBlur />
<ParamSeamStrength />

View File

@ -1,41 +1,45 @@
import { Divider, Flex } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
import IAICollapse from 'common/components/IAICollapse';
import { Fragment, memo, useCallback } from 'react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAIButton from 'common/components/IAIButton';
import IAICollapse from 'common/components/IAICollapse';
import ControlNet from 'features/controlNet/components/ControlNet';
import ParamControlNetFeatureToggle from 'features/controlNet/components/parameters/ParamControlNetFeatureToggle';
import {
controlNetAdded,
controlNetSelector,
isControlNetEnabledToggled,
} from 'features/controlNet/store/controlNetSlice';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { map } from 'lodash-es';
import { v4 as uuidv4 } from 'uuid';
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import IAIButton from 'common/components/IAIButton';
import ControlNet from 'features/controlNet/components/ControlNet';
import { map } from 'lodash-es';
import { Fragment, memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { v4 as uuidv4 } from 'uuid';
const selector = createSelector(
controlNetSelector,
(controlNet) => {
const { controlNets, isEnabled } = controlNet;
return { controlNetsArray: map(controlNets), isEnabled };
const validControlNets = getValidControlNets(controlNets);
const activeLabel =
isEnabled && validControlNets.length > 0
? `${validControlNets.length} Active`
: undefined;
return { controlNetsArray: map(controlNets), activeLabel };
},
defaultSelectorOptions
);
const ParamControlNetCollapse = () => {
const { t } = useTranslation();
const { controlNetsArray, isEnabled } = useAppSelector(selector);
const { controlNetsArray, activeLabel } = useAppSelector(selector);
const isControlNetDisabled = useFeatureStatus('controlNet').isFeatureDisabled;
const dispatch = useAppDispatch();
const handleClickControlNetToggle = useCallback(() => {
dispatch(isControlNetEnabledToggled());
}, [dispatch]);
const handleClickedAddControlNet = useCallback(() => {
dispatch(controlNetAdded({ controlNetId: uuidv4() }));
}, [dispatch]);
@ -45,13 +49,9 @@ const ParamControlNetCollapse = () => {
}
return (
<IAICollapse
label={'ControlNet'}
isOpen={isEnabled}
onToggle={handleClickControlNetToggle}
withSwitch
>
<IAICollapse label="ControlNet" activeLabel={activeLabel}>
<Flex sx={{ flexDir: 'column', gap: 3 }}>
<ParamControlNetFeatureToggle />
{controlNetsArray.map((c, i) => (
<Fragment key={c.controlNetId}>
{i > 0 && <Divider />}

View File

@ -1,5 +1,6 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAINumberInput from 'common/components/IAINumberInput';
import IAISlider from 'common/components/IAISlider';
import { generationSelector } from 'features/parameters/store/generationSelectors';
@ -27,7 +28,8 @@ const selector = createSelector(
shouldUseSliders,
shift,
};
}
},
defaultSelectorOptions
);
const ParamCFGScale = () => {

View File

@ -1,5 +1,6 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider, { IAIFullSliderProps } from 'common/components/IAISlider';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { setHeight } from 'features/parameters/store/generationSlice';
@ -25,7 +26,8 @@ const selector = createSelector(
inputMax,
step,
};
}
},
defaultSelectorOptions
);
type ParamHeightProps = Omit<

View File

@ -1,37 +1,38 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAINumberInput from 'common/components/IAINumberInput';
import IAISlider from 'common/components/IAISlider';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { setIterations } from 'features/parameters/store/generationSlice';
import { configSelector } from 'features/system/store/configSelectors';
import { hotkeysSelector } from 'features/ui/store/hotkeysSlice';
import { uiSelector } from 'features/ui/store/uiSelectors';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const selector = createSelector([stateSelector], (state) => {
const { initial, min, sliderMax, inputMax, fineStep, coarseStep } =
state.config.sd.iterations;
const { iterations } = state.generation;
const { shouldUseSliders } = state.ui;
const isDisabled =
state.dynamicPrompts.isEnabled && state.dynamicPrompts.combinatorial;
const selector = createSelector(
[stateSelector],
(state) => {
const { initial, min, sliderMax, inputMax, fineStep, coarseStep } =
state.config.sd.iterations;
const { iterations } = state.generation;
const { shouldUseSliders } = state.ui;
const isDisabled =
state.dynamicPrompts.isEnabled && state.dynamicPrompts.combinatorial;
const step = state.hotkeys.shift ? fineStep : coarseStep;
const step = state.hotkeys.shift ? fineStep : coarseStep;
return {
iterations,
initial,
min,
sliderMax,
inputMax,
step,
shouldUseSliders,
isDisabled,
};
});
return {
iterations,
initial,
min,
sliderMax,
inputMax,
step,
shouldUseSliders,
isDisabled,
};
},
defaultSelectorOptions
);
const ParamIterations = () => {
const {

View File

@ -1,5 +1,6 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAINumberInput from 'common/components/IAINumberInput';
import IAISlider from 'common/components/IAISlider';
@ -33,7 +34,8 @@ const selector = createSelector(
step,
shouldUseSliders,
};
}
},
defaultSelectorOptions
);
const ParamSteps = () => {

View File

@ -1,7 +1,7 @@
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISlider from 'common/components/IAISlider';
import { IAIFullSliderProps } from 'common/components/IAISlider';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider, { IAIFullSliderProps } from 'common/components/IAISlider';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { setWidth } from 'features/parameters/store/generationSlice';
import { configSelector } from 'features/system/store/configSelectors';
@ -26,7 +26,8 @@ const selector = createSelector(
inputMax,
step,
};
}
},
defaultSelectorOptions
);
type ParamWidthProps = Omit<IAIFullSliderProps, 'label' | 'value' | 'onChange'>;

View File

@ -1,37 +1,39 @@
import { Flex } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { RootState } from 'app/store/store';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { memo } from 'react';
import { ParamHiresStrength } from './ParamHiresStrength';
import { setHiresFix } from 'features/parameters/store/postprocessingSlice';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { ParamHiresStrength } from './ParamHiresStrength';
import { ParamHiresToggle } from './ParamHiresToggle';
const selector = createSelector(
stateSelector,
(state) => {
const activeLabel = state.postprocessing.hiresFix ? 'Enabled' : undefined;
return { activeLabel };
},
defaultSelectorOptions
);
const ParamHiresCollapse = () => {
const { t } = useTranslation();
const hiresFix = useAppSelector(
(state: RootState) => state.postprocessing.hiresFix
);
const { activeLabel } = useAppSelector(selector);
const isHiresEnabled = useFeatureStatus('hires').isFeatureEnabled;
const dispatch = useAppDispatch();
const handleToggle = () => dispatch(setHiresFix(!hiresFix));
if (!isHiresEnabled) {
return null;
}
return (
<IAICollapse
label={t('parameters.hiresOptim')}
isOpen={hiresFix}
onToggle={handleToggle}
withSwitch
>
<IAICollapse label={t('parameters.hiresOptim')} activeLabel={activeLabel}>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamHiresToggle />
<ParamHiresStrength />
</Flex>
</IAICollapse>

View File

@ -23,7 +23,6 @@ export const ParamHiresToggle = () => {
return (
<IAISwitch
label={t('parameters.hiresOptim')}
fontSize="md"
isChecked={hiresFix}
onChange={handleChangeHiresFix}
/>

View File

@ -1,27 +1,33 @@
import { useTranslation } from 'react-i18next';
import { Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import ParamPerlinNoise from './ParamPerlinNoise';
import ParamNoiseThreshold from './ParamNoiseThreshold';
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { setShouldUseNoiseSettings } from 'features/parameters/store/generationSlice';
import { memo } from 'react';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import ParamNoiseThreshold from './ParamNoiseThreshold';
import { ParamNoiseToggle } from './ParamNoiseToggle';
import ParamPerlinNoise from './ParamPerlinNoise';
const selector = createSelector(
stateSelector,
(state) => {
const { shouldUseNoiseSettings } = state.generation;
return {
activeLabel: shouldUseNoiseSettings ? 'Enabled' : undefined,
};
},
defaultSelectorOptions
);
const ParamNoiseCollapse = () => {
const { t } = useTranslation();
const isNoiseEnabled = useFeatureStatus('noise').isFeatureEnabled;
const shouldUseNoiseSettings = useAppSelector(
(state: RootState) => state.generation.shouldUseNoiseSettings
);
const dispatch = useAppDispatch();
const handleToggle = () =>
dispatch(setShouldUseNoiseSettings(!shouldUseNoiseSettings));
const { activeLabel } = useAppSelector(selector);
if (!isNoiseEnabled) {
return null;
@ -30,11 +36,10 @@ const ParamNoiseCollapse = () => {
return (
<IAICollapse
label={t('parameters.noiseSettings')}
isOpen={shouldUseNoiseSettings}
onToggle={handleToggle}
withSwitch
activeLabel={activeLabel}
>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamNoiseToggle />
<ParamPerlinNoise />
<ParamNoiseThreshold />
</Flex>

View File

@ -1,18 +1,31 @@
import { RootState } from 'app/store/store';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider from 'common/components/IAISlider';
import { setThreshold } from 'features/parameters/store/generationSlice';
import { useTranslation } from 'react-i18next';
const selector = createSelector(
stateSelector,
(state) => {
const { shouldUseNoiseSettings, threshold } = state.generation;
return {
isDisabled: !shouldUseNoiseSettings,
threshold,
};
},
defaultSelectorOptions
);
export default function ParamNoiseThreshold() {
const dispatch = useAppDispatch();
const threshold = useAppSelector(
(state: RootState) => state.generation.threshold
);
const { threshold, isDisabled } = useAppSelector(selector);
const { t } = useTranslation();
return (
<IAISlider
isDisabled={isDisabled}
label={t('parameters.noiseThreshold')}
min={0}
max={20}

View File

@ -0,0 +1,27 @@
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISwitch from 'common/components/IAISwitch';
import { setShouldUseNoiseSettings } from 'features/parameters/store/generationSlice';
import { ChangeEvent } from 'react';
import { useTranslation } from 'react-i18next';
export const ParamNoiseToggle = () => {
const dispatch = useAppDispatch();
const shouldUseNoiseSettings = useAppSelector(
(state: RootState) => state.generation.shouldUseNoiseSettings
);
const { t } = useTranslation();
const handleChange = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setShouldUseNoiseSettings(e.target.checked));
return (
<IAISwitch
label="Enable Noise Settings"
isChecked={shouldUseNoiseSettings}
onChange={handleChange}
/>
);
};

View File

@ -1,16 +1,31 @@
import { RootState } from 'app/store/store';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider from 'common/components/IAISlider';
import { setPerlin } from 'features/parameters/store/generationSlice';
import { useTranslation } from 'react-i18next';
const selector = createSelector(
stateSelector,
(state) => {
const { shouldUseNoiseSettings, perlin } = state.generation;
return {
isDisabled: !shouldUseNoiseSettings,
perlin,
};
},
defaultSelectorOptions
);
export default function ParamPerlinNoise() {
const dispatch = useAppDispatch();
const perlin = useAppSelector((state: RootState) => state.generation.perlin);
const { perlin, isDisabled } = useAppSelector(selector);
const { t } = useTranslation();
return (
<IAISlider
isDisabled={isDisabled}
label={t('parameters.perlinNoise')}
min={0}
max={1}

View File

@ -1,36 +1,46 @@
import { useTranslation } from 'react-i18next';
import { Box, Flex } from '@chakra-ui/react';
import IAICollapse from 'common/components/IAICollapse';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { setSeamless } from 'features/parameters/store/generationSlice';
import { memo } from 'react';
import { createSelector } from '@reduxjs/toolkit';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import ParamSeamlessXAxis from './ParamSeamlessXAxis';
import ParamSeamlessYAxis from './ParamSeamlessYAxis';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
const getActiveLabel = (seamlessXAxis: boolean, seamlessYAxis: boolean) => {
if (seamlessXAxis && seamlessYAxis) {
return 'X & Y';
}
if (seamlessXAxis) {
return 'X';
}
if (seamlessYAxis) {
return 'Y';
}
};
const selector = createSelector(
generationSelector,
(generation) => {
const { shouldUseSeamless, seamlessXAxis, seamlessYAxis } = generation;
const { seamlessXAxis, seamlessYAxis } = generation;
return { shouldUseSeamless, seamlessXAxis, seamlessYAxis };
const activeLabel = getActiveLabel(seamlessXAxis, seamlessYAxis);
return { activeLabel };
},
defaultSelectorOptions
);
const ParamSeamlessCollapse = () => {
const { t } = useTranslation();
const { shouldUseSeamless } = useAppSelector(selector);
const { activeLabel } = useAppSelector(selector);
const isSeamlessEnabled = useFeatureStatus('seamless').isFeatureEnabled;
const dispatch = useAppDispatch();
const handleToggle = () => dispatch(setSeamless(!shouldUseSeamless));
if (!isSeamlessEnabled) {
return null;
}
@ -38,9 +48,7 @@ const ParamSeamlessCollapse = () => {
return (
<IAICollapse
label={t('parameters.seamlessTiling')}
isOpen={shouldUseSeamless}
onToggle={handleToggle}
withSwitch
activeLabel={activeLabel}
>
<Flex sx={{ gap: 5 }}>
<Box flexGrow={1}>

View File

@ -1,39 +1,39 @@
import { memo } from 'react';
import { Flex } from '@chakra-ui/react';
import { memo } from 'react';
import ParamSymmetryHorizontal from './ParamSymmetryHorizontal';
import ParamSymmetryVertical from './ParamSymmetryVertical';
import { useTranslation } from 'react-i18next';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { setShouldUseSymmetry } from 'features/parameters/store/generationSlice';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { useTranslation } from 'react-i18next';
import ParamSymmetryToggle from './ParamSymmetryToggle';
const selector = createSelector(
stateSelector,
(state) => ({
activeLabel: state.generation.shouldUseSymmetry ? 'Enabled' : undefined,
}),
defaultSelectorOptions
);
const ParamSymmetryCollapse = () => {
const { t } = useTranslation();
const shouldUseSymmetry = useAppSelector(
(state: RootState) => state.generation.shouldUseSymmetry
);
const { activeLabel } = useAppSelector(selector);
const isSymmetryEnabled = useFeatureStatus('symmetry').isFeatureEnabled;
const dispatch = useAppDispatch();
const handleToggle = () => dispatch(setShouldUseSymmetry(!shouldUseSymmetry));
if (!isSymmetryEnabled) {
return null;
}
return (
<IAICollapse
label={t('parameters.symmetry')}
isOpen={shouldUseSymmetry}
onToggle={handleToggle}
withSwitch
>
<IAICollapse label={t('parameters.symmetry')} activeLabel={activeLabel}>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamSymmetryToggle />
<ParamSymmetryHorizontal />
<ParamSymmetryVertical />
</Flex>

View File

@ -12,6 +12,7 @@ export default function ParamSymmetryToggle() {
return (
<IAISwitch
label="Enable Symmetry"
isChecked={shouldUseSymmetry}
onChange={(e) => dispatch(setShouldUseSymmetry(e.target.checked))}
/>

View File

@ -1,39 +1,42 @@
import ParamVariationWeights from './ParamVariationWeights';
import ParamVariationAmount from './ParamVariationAmount';
import { useTranslation } from 'react-i18next';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { RootState } from 'app/store/store';
import { setShouldGenerateVariations } from 'features/parameters/store/generationSlice';
import { Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
import { memo } from 'react';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import ParamVariationAmount from './ParamVariationAmount';
import { ParamVariationToggle } from './ParamVariationToggle';
import ParamVariationWeights from './ParamVariationWeights';
const selector = createSelector(
stateSelector,
(state) => {
const activeLabel = state.generation.shouldGenerateVariations
? 'Enabled'
: undefined;
return { activeLabel };
},
defaultSelectorOptions
);
const ParamVariationCollapse = () => {
const { t } = useTranslation();
const shouldGenerateVariations = useAppSelector(
(state: RootState) => state.generation.shouldGenerateVariations
);
const { activeLabel } = useAppSelector(selector);
const isVariationEnabled = useFeatureStatus('variation').isFeatureEnabled;
const dispatch = useAppDispatch();
const handleToggle = () =>
dispatch(setShouldGenerateVariations(!shouldGenerateVariations));
if (!isVariationEnabled) {
return null;
}
return (
<IAICollapse
label={t('parameters.variations')}
isOpen={shouldGenerateVariations}
onToggle={handleToggle}
withSwitch
>
<IAICollapse label={t('parameters.variations')} activeLabel={activeLabel}>
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamVariationToggle />
<ParamVariationAmount />
<ParamVariationWeights />
</Flex>

View File

@ -0,0 +1,27 @@
import type { RootState } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISwitch from 'common/components/IAISwitch';
import { setShouldGenerateVariations } from 'features/parameters/store/generationSlice';
import { ChangeEvent } from 'react';
import { useTranslation } from 'react-i18next';
export const ParamVariationToggle = () => {
const dispatch = useAppDispatch();
const shouldGenerateVariations = useAppSelector(
(state: RootState) => state.generation.shouldGenerateVariations
);
const { t } = useTranslation();
const handleChange = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setShouldGenerateVariations(e.target.checked));
return (
<IAISwitch
label="Enable Variations"
isChecked={shouldGenerateVariations}
onChange={handleChange}
/>
);
};

View File

@ -49,7 +49,6 @@ export interface GenerationState {
verticalSymmetrySteps: number;
model: ModelParam;
vae: VAEParam;
shouldUseSeamless: boolean;
seamlessXAxis: boolean;
seamlessYAxis: boolean;
}
@ -84,9 +83,8 @@ export const initialGenerationState: GenerationState = {
verticalSymmetrySteps: 0,
model: '',
vae: '',
shouldUseSeamless: false,
seamlessXAxis: true,
seamlessYAxis: true,
seamlessXAxis: false,
seamlessYAxis: false,
};
const initialState: GenerationState = initialGenerationState;
@ -144,9 +142,6 @@ export const generationSlice = createSlice({
setImg2imgStrength: (state, action: PayloadAction<number>) => {
state.img2imgStrength = action.payload;
},
setSeamless: (state, action: PayloadAction<boolean>) => {
state.shouldUseSeamless = action.payload;
},
setSeamlessXAxis: (state, action: PayloadAction<boolean>) => {
state.seamlessXAxis = action.payload;
},
@ -268,7 +263,6 @@ export const {
modelSelected,
vaeSelected,
setShouldUseNoiseSettings,
setSeamless,
setSeamlessXAxis,
setSeamlessYAxis,
} = generationSlice.actions;

View File

@ -8,7 +8,7 @@ import { modelSelected } from 'features/parameters/store/generationSlice';
import { SelectItem } from '@mantine/core';
import { RootState } from 'app/store/store';
import { forEach, isString } from 'lodash-es';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
export const MODEL_TYPE_MAP = {
'sd-1': 'Stable Diffusion 1.x',
@ -23,9 +23,7 @@ const ModelSelect = () => {
(state: RootState) => state.generation.model
);
const { data: mainModels, isLoading } = useListModelsQuery({
model_type: 'main',
});
const { data: mainModels, isLoading } = useGetMainModelsQuery();
const data = useMemo(() => {
if (!mainModels) {

View File

@ -6,7 +6,7 @@ import IAIMantineSelect from 'common/components/IAIMantineSelect';
import { SelectItem } from '@mantine/core';
import { forEach } from 'lodash-es';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetVaeModelsQuery } from 'services/api/endpoints/models';
import { RootState } from 'app/store/store';
import { vaeSelected } from 'features/parameters/store/generationSlice';
@ -16,9 +16,7 @@ const VAESelect = () => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const { data: vaeModels } = useListModelsQuery({
model_type: 'vae',
});
const { data: vaeModels } = useGetVaeModelsQuery();
const selectedModelId = useAppSelector(
(state: RootState) => state.generation.vae

View File

@ -66,16 +66,16 @@ const tabs: InvokeTabInfo[] = [
icon: <Icon as={MdDeviceHub} sx={{ boxSize: 6, pointerEvents: 'none' }} />,
content: <NodesTab />,
},
// {
// id: 'batch',
// icon: <Icon as={FaLayerGroup} sx={{ boxSize: 6, pointerEvents: 'none' }} />,
// content: <BatchTab />,
// },
{
id: 'modelManager',
icon: <Icon as={FaCube} sx={{ boxSize: 6, pointerEvents: 'none' }} />,
content: <ModelManagerTab />,
},
// {
// id: 'batch',
// icon: <Icon as={FaLayerGroup} sx={{ boxSize: 6, pointerEvents: 'none' }} />,
// content: <BatchTab />,
// },
];
const enabledTabsSelector = createSelector(

View File

@ -1,4 +1,4 @@
import { Box, Flex, useDisclosure } from '@chakra-ui/react';
import { Box, Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
@ -21,19 +21,25 @@ const selector = createSelector(
[uiSelector, generationSelector],
(ui, generation) => {
const { shouldUseSliders } = ui;
const { shouldFitToWidthHeight } = generation;
const { shouldFitToWidthHeight, shouldRandomizeSeed } = generation;
return { shouldUseSliders, shouldFitToWidthHeight };
const activeLabel = !shouldRandomizeSeed ? 'Manual Seed' : undefined;
return { shouldUseSliders, shouldFitToWidthHeight, activeLabel };
},
defaultSelectorOptions
);
const ImageToImageTabCoreParameters = () => {
const { shouldUseSliders, shouldFitToWidthHeight } = useAppSelector(selector);
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
const { shouldUseSliders, shouldFitToWidthHeight, activeLabel } =
useAppSelector(selector);
return (
<IAICollapse label={'General'} isOpen={isOpen} onToggle={onToggle}>
<IAICollapse
label={'General'}
activeLabel={activeLabel}
defaultIsOpen={true}
>
<Flex
sx={{
flexDirection: 'column',

View File

@ -1,14 +1,15 @@
import { memo } from 'react';
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
import ImageToImageTabCoreParameters from './ImageToImageTabCoreParameters';
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
import { memo } from 'react';
import ImageToImageTabCoreParameters from './ImageToImageTabCoreParameters';
const ImageToImageTabParameters = () => {
return (
@ -17,6 +18,7 @@ const ImageToImageTabParameters = () => {
<ParamNegativeConditioning />
<ProcessButtons />
<ImageToImageTabCoreParameters />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamControlNetCollapse />
<ParamVariationCollapse />

View File

@ -9,16 +9,14 @@ import IAISlider from 'common/components/IAISlider';
import { pickBy } from 'lodash-es';
import { useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
export default function MergeModelsPanel() {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const { data } = useListModelsQuery({
model_type: 'main',
});
const { data } = useGetMainModelsQuery();
const diffusersModels = pickBy(
data?.entities,

View File

@ -2,15 +2,13 @@ import { Flex } from '@chakra-ui/react';
import { RootState } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
import CheckpointModelEdit from './ModelManagerPanel/CheckpointModelEdit';
import DiffusersModelEdit from './ModelManagerPanel/DiffusersModelEdit';
import ModelList from './ModelManagerPanel/ModelList';
export default function ModelManagerPanel() {
const { data: mainModels } = useListModelsQuery({
model_type: 'main',
});
const { data: mainModels } = useGetMainModelsQuery();
const openModel = useAppSelector(
(state: RootState) => state.system.openModel

View File

@ -8,7 +8,7 @@ import { useTranslation } from 'react-i18next';
import type { ChangeEvent, ReactNode } from 'react';
import React, { useMemo, useState, useTransition } from 'react';
import { useListModelsQuery } from 'services/api/endpoints/models';
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
function ModelFilterButton({
label,
@ -36,9 +36,7 @@ function ModelFilterButton({
}
const ModelList = () => {
const { data: mainModels } = useListModelsQuery({
model_type: 'main',
});
const { data: mainModels } = useGetMainModelsQuery();
const [renderModelList, setRenderModelList] = React.useState<boolean>(false);

View File

@ -1,5 +1,6 @@
import { Box, Flex, useDisclosure } from '@chakra-ui/react';
import { Box, Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
@ -11,25 +12,30 @@ import ParamScheduler from 'features/parameters/components/Parameters/Core/Param
import ParamSteps from 'features/parameters/components/Parameters/Core/ParamSteps';
import ParamWidth from 'features/parameters/components/Parameters/Core/ParamWidth';
import ParamSeedFull from 'features/parameters/components/Parameters/Seed/ParamSeedFull';
import { uiSelector } from 'features/ui/store/uiSelectors';
import { memo } from 'react';
const selector = createSelector(
uiSelector,
(ui) => {
stateSelector,
({ ui, generation }) => {
const { shouldUseSliders } = ui;
const { shouldRandomizeSeed } = generation;
return { shouldUseSliders };
const activeLabel = !shouldRandomizeSeed ? 'Manual Seed' : undefined;
return { shouldUseSliders, activeLabel };
},
defaultSelectorOptions
);
const TextToImageTabCoreParameters = () => {
const { shouldUseSliders } = useAppSelector(selector);
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
const { shouldUseSliders, activeLabel } = useAppSelector(selector);
return (
<IAICollapse label={'General'} isOpen={isOpen} onToggle={onToggle}>
<IAICollapse
label={'General'}
activeLabel={activeLabel}
defaultIsOpen={true}
>
<Flex
sx={{
flexDirection: 'column',

View File

@ -1,15 +1,16 @@
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamHiresCollapse from 'features/parameters/components/Parameters/Hires/ParamHiresCollapse';
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
import { memo } from 'react';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
import ParamHiresCollapse from 'features/parameters/components/Parameters/Hires/ParamHiresCollapse';
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
import TextToImageTabCoreParameters from './TextToImageTabCoreParameters';
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
const TextToImageTabParameters = () => {
return (
@ -18,6 +19,7 @@ const TextToImageTabParameters = () => {
<ParamNegativeConditioning />
<ProcessButtons />
<TextToImageTabCoreParameters />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamControlNetCollapse />
<ParamVariationCollapse />

View File

@ -1,5 +1,6 @@
import { Box, Flex, useDisclosure } from '@chakra-ui/react';
import { Box, Flex } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAICollapse from 'common/components/IAICollapse';
@ -12,25 +13,30 @@ import ParamScheduler from 'features/parameters/components/Parameters/Core/Param
import ParamSteps from 'features/parameters/components/Parameters/Core/ParamSteps';
import ImageToImageStrength from 'features/parameters/components/Parameters/ImageToImage/ImageToImageStrength';
import ParamSeedFull from 'features/parameters/components/Parameters/Seed/ParamSeedFull';
import { uiSelector } from 'features/ui/store/uiSelectors';
import { memo } from 'react';
const selector = createSelector(
uiSelector,
(ui) => {
stateSelector,
({ ui, generation }) => {
const { shouldUseSliders } = ui;
const { shouldRandomizeSeed } = generation;
return { shouldUseSliders };
const activeLabel = !shouldRandomizeSeed ? 'Manual Seed' : undefined;
return { shouldUseSliders, activeLabel };
},
defaultSelectorOptions
);
const UnifiedCanvasCoreParameters = () => {
const { shouldUseSliders } = useAppSelector(selector);
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
const { shouldUseSliders, activeLabel } = useAppSelector(selector);
return (
<IAICollapse label={'General'} isOpen={isOpen} onToggle={onToggle}>
<IAICollapse
label={'General'}
activeLabel={activeLabel}
defaultIsOpen={true}
>
<Flex
sx={{
flexDirection: 'column',

View File

@ -1,14 +1,15 @@
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
import ParamInfillAndScalingCollapse from 'features/parameters/components/Parameters/Canvas/InfillAndScaling/ParamInfillAndScalingCollapse';
import ParamSeamCorrectionCollapse from 'features/parameters/components/Parameters/Canvas/SeamCorrection/ParamSeamCorrectionCollapse';
import UnifiedCanvasCoreParameters from './UnifiedCanvasCoreParameters';
import { memo } from 'react';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
import ParamDynamicPromptsCollapse from 'features/dynamicPrompts/components/ParamDynamicPromptsCollapse';
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
import ParamVariationCollapse from 'features/parameters/components/Parameters/Variations/ParamVariationCollapse';
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
import { memo } from 'react';
import UnifiedCanvasCoreParameters from './UnifiedCanvasCoreParameters';
const UnifiedCanvasParameters = () => {
return (
@ -17,6 +18,7 @@ const UnifiedCanvasParameters = () => {
<ParamNegativeConditioning />
<ProcessButtons />
<UnifiedCanvasCoreParameters />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamControlNetCollapse />
<ParamVariationCollapse />

View File

@ -1,13 +1,10 @@
export const tabMap = [
'txt2img',
'img2img',
// 'generate',
'unifiedCanvas',
'nodes',
'batch',
// 'postprocessing',
// 'training',
'modelManager',
'batch',
] as const;
export type InvokeTabName = (typeof tabMap)[number];

View File

@ -1,37 +1,85 @@
import { ModelsList } from 'services/api/types';
import { EntityState, createEntityAdapter } from '@reduxjs/toolkit';
import { keyBy } from 'lodash-es';
import { cloneDeep } from 'lodash-es';
import {
AnyModelConfig,
ControlNetModelConfig,
LoRAModelConfig,
MainModelConfig,
TextualInversionModelConfig,
VaeModelConfig,
} from 'services/api/types';
import { ApiFullTagDescription, LIST_TAG, api } from '..';
import { paths } from '../schema';
type ModelConfig = ModelsList['models'][number];
export type MainModelConfigEntity = MainModelConfig & { id: string };
type ListModelsArg = NonNullable<
paths['/api/v1/models/']['get']['parameters']['query']
>;
export type LoRAModelConfigEntity = LoRAModelConfig & { id: string };
const modelsAdapter = createEntityAdapter<ModelConfig>({
selectId: (model) => getModelId(model),
export type ControlNetModelConfigEntity = ControlNetModelConfig & {
id: string;
};
export type TextualInversionModelConfigEntity = TextualInversionModelConfig & {
id: string;
};
export type VaeModelConfigEntity = VaeModelConfig & { id: string };
type AnyModelConfigEntity =
| MainModelConfigEntity
| LoRAModelConfigEntity
| ControlNetModelConfigEntity
| TextualInversionModelConfigEntity
| VaeModelConfigEntity;
const mainModelsAdapter = createEntityAdapter<MainModelConfigEntity>({
sortComparer: (a, b) => a.name.localeCompare(b.name),
});
const loraModelsAdapter = createEntityAdapter<LoRAModelConfigEntity>({
sortComparer: (a, b) => a.name.localeCompare(b.name),
});
const controlNetModelsAdapter =
createEntityAdapter<ControlNetModelConfigEntity>({
sortComparer: (a, b) => a.name.localeCompare(b.name),
});
const textualInversionModelsAdapter =
createEntityAdapter<TextualInversionModelConfigEntity>({
sortComparer: (a, b) => a.name.localeCompare(b.name),
});
const vaeModelsAdapter = createEntityAdapter<VaeModelConfigEntity>({
sortComparer: (a, b) => a.name.localeCompare(b.name),
});
const getModelId = ({ base_model, type, name }: ModelConfig) =>
export const getModelId = ({ base_model, type, name }: AnyModelConfig) =>
`${base_model}/${type}/${name}`;
const createModelEntities = <T extends AnyModelConfigEntity>(
models: AnyModelConfig[]
): T[] => {
const entityArray: T[] = [];
models.forEach((model) => {
const entity = {
...cloneDeep(model),
id: getModelId(model),
} as T;
entityArray.push(entity);
});
return entityArray;
};
export const modelsApi = api.injectEndpoints({
endpoints: (build) => ({
listModels: build.query<EntityState<ModelConfig>, ListModelsArg>({
query: (arg) => ({ url: 'models/', params: arg }),
getMainModels: build.query<EntityState<MainModelConfigEntity>, void>({
query: () => ({ url: 'models/', params: { model_type: 'main' } }),
providesTags: (result, error, arg) => {
// any list of boards
const tags: ApiFullTagDescription[] = [{ id: 'Model', type: LIST_TAG }];
const tags: ApiFullTagDescription[] = [
{ id: 'MainModel', type: LIST_TAG },
];
if (result) {
// and individual tags for each board
tags.push(
...result.ids.map((id) => ({
type: 'Model' as const,
type: 'MainModel' as const,
id,
}))
);
@ -39,14 +87,161 @@ export const modelsApi = api.injectEndpoints({
return tags;
},
transformResponse: (response: ModelsList, meta, arg) => {
return modelsAdapter.setAll(
modelsAdapter.getInitialState(),
keyBy(response.models, getModelId)
transformResponse: (
response: { models: MainModelConfig[] },
meta,
arg
) => {
const entities = createModelEntities<MainModelConfigEntity>(
response.models
);
return mainModelsAdapter.setAll(
mainModelsAdapter.getInitialState(),
entities
);
},
}),
getLoRAModels: build.query<EntityState<LoRAModelConfigEntity>, void>({
query: () => ({ url: 'models/', params: { model_type: 'lora' } }),
providesTags: (result, error, arg) => {
const tags: ApiFullTagDescription[] = [
{ id: 'LoRAModel', type: LIST_TAG },
];
if (result) {
tags.push(
...result.ids.map((id) => ({
type: 'LoRAModel' as const,
id,
}))
);
}
return tags;
},
transformResponse: (
response: { models: LoRAModelConfig[] },
meta,
arg
) => {
const entities = createModelEntities<LoRAModelConfigEntity>(
response.models
);
return loraModelsAdapter.setAll(
loraModelsAdapter.getInitialState(),
entities
);
},
}),
getControlNetModels: build.query<
EntityState<ControlNetModelConfigEntity>,
void
>({
query: () => ({ url: 'models/', params: { model_type: 'controlnet' } }),
providesTags: (result, error, arg) => {
const tags: ApiFullTagDescription[] = [
{ id: 'ControlNetModel', type: LIST_TAG },
];
if (result) {
tags.push(
...result.ids.map((id) => ({
type: 'ControlNetModel' as const,
id,
}))
);
}
return tags;
},
transformResponse: (
response: { models: ControlNetModelConfig[] },
meta,
arg
) => {
const entities = createModelEntities<ControlNetModelConfigEntity>(
response.models
);
return controlNetModelsAdapter.setAll(
controlNetModelsAdapter.getInitialState(),
entities
);
},
}),
getVaeModels: build.query<EntityState<VaeModelConfigEntity>, void>({
query: () => ({ url: 'models/', params: { model_type: 'vae' } }),
providesTags: (result, error, arg) => {
const tags: ApiFullTagDescription[] = [
{ id: 'VaeModel', type: LIST_TAG },
];
if (result) {
tags.push(
...result.ids.map((id) => ({
type: 'VaeModel' as const,
id,
}))
);
}
return tags;
},
transformResponse: (
response: { models: VaeModelConfig[] },
meta,
arg
) => {
const entities = createModelEntities<VaeModelConfigEntity>(
response.models
);
return vaeModelsAdapter.setAll(
vaeModelsAdapter.getInitialState(),
entities
);
},
}),
getTextualInversionModels: build.query<
EntityState<TextualInversionModelConfigEntity>,
void
>({
query: () => ({ url: 'models/', params: { model_type: 'embedding' } }),
providesTags: (result, error, arg) => {
const tags: ApiFullTagDescription[] = [
{ id: 'TextualInversionModel', type: LIST_TAG },
];
if (result) {
tags.push(
...result.ids.map((id) => ({
type: 'TextualInversionModel' as const,
id,
}))
);
}
return tags;
},
transformResponse: (
response: { models: TextualInversionModelConfig[] },
meta,
arg
) => {
const entities = createModelEntities<TextualInversionModelConfigEntity>(
response.models
);
return textualInversionModelsAdapter.setAll(
textualInversionModelsAdapter.getInitialState(),
entities
);
},
}),
}),
});
export const { useListModelsQuery } = modelsApi;
export const {
useGetMainModelsQuery,
useGetControlNetModelsQuery,
useGetLoRAModelsQuery,
useGetTextualInversionModelsQuery,
useGetVaeModelsQuery,
} = modelsApi;

View File

@ -2690,6 +2690,19 @@ export type components = {
model_format: components["schemas"]["LoRAModelFormat"];
error?: components["schemas"]["ModelError"];
};
/**
* LoRAModelField
* @description LoRA model field
*/
LoRAModelField: {
/**
* Model Name
* @description Name of the LoRA model
*/
model_name: string;
/** @description Base model */
base_model: components["schemas"]["BaseModelType"];
};
/**
* LoRAModelFormat
* @description An enumeration.
@ -2766,10 +2779,10 @@ export type components = {
*/
type?: "lora_loader";
/**
* Lora Name
* Lora
* @description Lora model name
*/
lora_name: string;
lora?: components["schemas"]["LoRAModelField"];
/**
* Weight
* @description With what weight to apply lora
@ -3115,7 +3128,7 @@ export type components = {
/** ModelsList */
ModelsList: {
/** Models */
models: (components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"])[];
models: (components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"])[];
};
/**
* MultiplyInvocation
@ -4448,18 +4461,18 @@ export type components = {
*/
image?: components["schemas"]["ImageField"];
};
/**
* StableDiffusion2ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusion1ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusion2ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
};
responses: never;
parameters: never;

View File

@ -4,91 +4,156 @@ import { components } from './schema';
type schemas = components['schemas'];
/**
* Extracts the schema type from the schema.
* Marks the `type` property as required. Use for nodes.
*/
type S<T extends keyof components['schemas']> = components['schemas'][T];
/**
* Extracts the node type from the schema.
* Also flags the `type` property as required.
*/
type N<T extends keyof components['schemas']> = O.Required<
components['schemas'][T],
'type'
>;
type TypeReq<T> = O.Required<T, 'type'>;
// Images
export type ImageDTO = S<'ImageDTO'>;
export type BoardDTO = S<'BoardDTO'>;
export type BoardChanges = S<'BoardChanges'>;
export type ImageChanges = S<'ImageRecordChanges'>;
export type ImageCategory = S<'ImageCategory'>;
export type ResourceOrigin = S<'ResourceOrigin'>;
export type ImageField = S<'ImageField'>;
export type ImageDTO = components['schemas']['ImageDTO'];
export type BoardDTO = components['schemas']['BoardDTO'];
export type BoardChanges = components['schemas']['BoardChanges'];
export type ImageChanges = components['schemas']['ImageRecordChanges'];
export type ImageCategory = components['schemas']['ImageCategory'];
export type ResourceOrigin = components['schemas']['ResourceOrigin'];
export type ImageField = components['schemas']['ImageField'];
export type OffsetPaginatedResults_BoardDTO_ =
S<'OffsetPaginatedResults_BoardDTO_'>;
components['schemas']['OffsetPaginatedResults_BoardDTO_'];
export type OffsetPaginatedResults_ImageDTO_ =
S<'OffsetPaginatedResults_ImageDTO_'>;
components['schemas']['OffsetPaginatedResults_ImageDTO_'];
// Models
export type ModelType = S<'ModelType'>;
export type BaseModelType = S<'BaseModelType'>;
export type MainModelField = S<'MainModelField'>;
export type VAEModelField = S<'VAEModelField'>;
export type ModelsList = S<'ModelsList'>;
export type ModelType = components['schemas']['ModelType'];
export type BaseModelType = components['schemas']['BaseModelType'];
export type MainModelField = components['schemas']['MainModelField'];
export type VAEModelField = components['schemas']['VAEModelField'];
export type LoRAModelField = components['schemas']['LoRAModelField'];
export type ModelsList = components['schemas']['ModelsList'];
// Model Configs
export type LoRAModelConfig = components['schemas']['LoRAModelConfig'];
export type VaeModelConfig = components['schemas']['VaeModelConfig'];
export type ControlNetModelConfig =
components['schemas']['ControlNetModelConfig'];
export type TextualInversionModelConfig =
components['schemas']['TextualInversionModelConfig'];
export type MainModelConfig =
| components['schemas']['StableDiffusion1ModelCheckpointConfig']
| components['schemas']['StableDiffusion1ModelDiffusersConfig']
| components['schemas']['StableDiffusion2ModelCheckpointConfig']
| components['schemas']['StableDiffusion2ModelDiffusersConfig'];
export type AnyModelConfig =
| LoRAModelConfig
| VaeModelConfig
| ControlNetModelConfig
| TextualInversionModelConfig
| MainModelConfig;
// Graphs
export type Graph = S<'Graph'>;
export type Edge = S<'Edge'>;
export type GraphExecutionState = S<'GraphExecutionState'>;
export type Graph = components['schemas']['Graph'];
export type Edge = components['schemas']['Edge'];
export type GraphExecutionState = components['schemas']['GraphExecutionState'];
// General nodes
export type CollectInvocation = N<'CollectInvocation'>;
export type IterateInvocation = N<'IterateInvocation'>;
export type RangeInvocation = N<'RangeInvocation'>;
export type RandomRangeInvocation = N<'RandomRangeInvocation'>;
export type RangeOfSizeInvocation = N<'RangeOfSizeInvocation'>;
export type InpaintInvocation = N<'InpaintInvocation'>;
export type ImageResizeInvocation = N<'ImageResizeInvocation'>;
export type RandomIntInvocation = N<'RandomIntInvocation'>;
export type CompelInvocation = N<'CompelInvocation'>;
export type DynamicPromptInvocation = N<'DynamicPromptInvocation'>;
export type NoiseInvocation = N<'NoiseInvocation'>;
export type TextToLatentsInvocation = N<'TextToLatentsInvocation'>;
export type LatentsToLatentsInvocation = N<'LatentsToLatentsInvocation'>;
export type ImageToLatentsInvocation = N<'ImageToLatentsInvocation'>;
export type LatentsToImageInvocation = N<'LatentsToImageInvocation'>;
export type ImageCollectionInvocation = N<'ImageCollectionInvocation'>;
export type MainModelLoaderInvocation = N<'MainModelLoaderInvocation'>;
export type CollectInvocation = TypeReq<
components['schemas']['CollectInvocation']
>;
export type IterateInvocation = TypeReq<
components['schemas']['IterateInvocation']
>;
export type RangeInvocation = TypeReq<components['schemas']['RangeInvocation']>;
export type RandomRangeInvocation = TypeReq<
components['schemas']['RandomRangeInvocation']
>;
export type RangeOfSizeInvocation = TypeReq<
components['schemas']['RangeOfSizeInvocation']
>;
export type InpaintInvocation = TypeReq<
components['schemas']['InpaintInvocation']
>;
export type ImageResizeInvocation = TypeReq<
components['schemas']['ImageResizeInvocation']
>;
export type RandomIntInvocation = TypeReq<
components['schemas']['RandomIntInvocation']
>;
export type CompelInvocation = TypeReq<
components['schemas']['CompelInvocation']
>;
export type DynamicPromptInvocation = TypeReq<
components['schemas']['DynamicPromptInvocation']
>;
export type NoiseInvocation = TypeReq<components['schemas']['NoiseInvocation']>;
export type TextToLatentsInvocation = TypeReq<
components['schemas']['TextToLatentsInvocation']
>;
export type LatentsToLatentsInvocation = TypeReq<
components['schemas']['LatentsToLatentsInvocation']
>;
export type ImageToLatentsInvocation = TypeReq<
components['schemas']['ImageToLatentsInvocation']
>;
export type LatentsToImageInvocation = TypeReq<
components['schemas']['LatentsToImageInvocation']
>;
export type ImageCollectionInvocation = TypeReq<
components['schemas']['ImageCollectionInvocation']
>;
export type MainModelLoaderInvocation = TypeReq<
components['schemas']['MainModelLoaderInvocation']
>;
export type LoraLoaderInvocation = TypeReq<
components['schemas']['LoraLoaderInvocation']
>;
// ControlNet Nodes
export type ControlNetInvocation = N<'ControlNetInvocation'>;
export type CannyImageProcessorInvocation = N<'CannyImageProcessorInvocation'>;
export type ContentShuffleImageProcessorInvocation =
N<'ContentShuffleImageProcessorInvocation'>;
export type HedImageProcessorInvocation = N<'HedImageProcessorInvocation'>;
export type LineartAnimeImageProcessorInvocation =
N<'LineartAnimeImageProcessorInvocation'>;
export type LineartImageProcessorInvocation =
N<'LineartImageProcessorInvocation'>;
export type MediapipeFaceProcessorInvocation =
N<'MediapipeFaceProcessorInvocation'>;
export type MidasDepthImageProcessorInvocation =
N<'MidasDepthImageProcessorInvocation'>;
export type MlsdImageProcessorInvocation = N<'MlsdImageProcessorInvocation'>;
export type NormalbaeImageProcessorInvocation =
N<'NormalbaeImageProcessorInvocation'>;
export type OpenposeImageProcessorInvocation =
N<'OpenposeImageProcessorInvocation'>;
export type PidiImageProcessorInvocation = N<'PidiImageProcessorInvocation'>;
export type ZoeDepthImageProcessorInvocation =
N<'ZoeDepthImageProcessorInvocation'>;
export type ControlNetInvocation = TypeReq<
components['schemas']['ControlNetInvocation']
>;
export type CannyImageProcessorInvocation = TypeReq<
components['schemas']['CannyImageProcessorInvocation']
>;
export type ContentShuffleImageProcessorInvocation = TypeReq<
components['schemas']['ContentShuffleImageProcessorInvocation']
>;
export type HedImageProcessorInvocation = TypeReq<
components['schemas']['HedImageProcessorInvocation']
>;
export type LineartAnimeImageProcessorInvocation = TypeReq<
components['schemas']['LineartAnimeImageProcessorInvocation']
>;
export type LineartImageProcessorInvocation = TypeReq<
components['schemas']['LineartImageProcessorInvocation']
>;
export type MediapipeFaceProcessorInvocation = TypeReq<
components['schemas']['MediapipeFaceProcessorInvocation']
>;
export type MidasDepthImageProcessorInvocation = TypeReq<
components['schemas']['MidasDepthImageProcessorInvocation']
>;
export type MlsdImageProcessorInvocation = TypeReq<
components['schemas']['MlsdImageProcessorInvocation']
>;
export type NormalbaeImageProcessorInvocation = TypeReq<
components['schemas']['NormalbaeImageProcessorInvocation']
>;
export type OpenposeImageProcessorInvocation = TypeReq<
components['schemas']['OpenposeImageProcessorInvocation']
>;
export type PidiImageProcessorInvocation = TypeReq<
components['schemas']['PidiImageProcessorInvocation']
>;
export type ZoeDepthImageProcessorInvocation = TypeReq<
components['schemas']['ZoeDepthImageProcessorInvocation']
>;
// Node Outputs
export type ImageOutput = S<'ImageOutput'>;
export type MaskOutput = S<'MaskOutput'>;
export type PromptOutput = S<'PromptOutput'>;
export type IterateInvocationOutput = S<'IterateInvocationOutput'>;
export type CollectInvocationOutput = S<'CollectInvocationOutput'>;
export type LatentsOutput = S<'LatentsOutput'>;
export type GraphInvocationOutput = S<'GraphInvocationOutput'>;
export type ImageOutput = components['schemas']['ImageOutput'];
export type MaskOutput = components['schemas']['MaskOutput'];
export type PromptOutput = components['schemas']['PromptOutput'];
export type IterateInvocationOutput =
components['schemas']['IterateInvocationOutput'];
export type CollectInvocationOutput =
components['schemas']['CollectInvocationOutput'];
export type LatentsOutput = components['schemas']['LatentsOutput'];
export type GraphInvocationOutput =
components['schemas']['GraphInvocationOutput'];