Squashed commit of the following:

commit 9bb0b5d0036c4dffbb72ce11e097fae4ab63defd
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Sat Oct 15 23:43:41 2022 +0200

    undo local_files_only stuff

commit eed93f5d30c34cfccaf7497618ae9af17a5ecfbb
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Sat Oct 15 23:40:37 2022 +0200

    Revert "Merge branch 'development-invoke' into fix-prompts"

    This reverts commit 7c40892a9f184f7e216f14d14feb0411c5a90e24, reversing
    changes made to e3f2dd62b0548ca6988818ef058093a4f5b022f2.

commit f06d6024e345c69e6d5a91ab5423925a68ee95a7
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 13 23:30:16 2022 +0200

    more efficiently handle multiple conditioning

commit 5efdfcbcd980ce6202ab74e7f90e7415ce7260da
Merge: b9c0dc5 ac08bb6
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 13 14:51:01 2022 +0200

    Merge branch 'optional-disable-karras-schedule' into fix-prompts

commit ac08bb6fd25e19a9d35cf6c199e66500fb604af1
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 13 14:50:43 2022 +0200

    append '*use_model_sigmas*' to prompt string to use model sigmas

commit 70d8c05a3ff329409f76204f4af94e55d468ab8b
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 13 12:12:17 2022 +0200

    make karras scheduling switchable

    commit d60df54f69 replaced the model's
    own scheduling with karras scheduling. this has changed image generation
    (seems worse now?)

    this commit wraps the change in a bool.

commit b9c0dc5f1a658a0e6c3936000e9ae559e1c7a1db
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 20:16:00 2022 +0200

    add test of more complex conjunction

commit 9ac0c15cc0d7b5f6df3289d3ad474260972a17be
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 17:18:25 2022 +0200

    improve comments

commit ad33bce60590b87b2a93e90f16dc9d3e935d04a5
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 17:04:46 2022 +0200

    put back thresholding stuff

commit 4852c698a325049834ba0d4b358f07210bc7171a
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 14:25:02 2022 +0200

    notes on improving conjunction efficiency

commit a53bb1e5b68025d09642b935ae6a9a015cfaf2d6
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 14:14:33 2022 +0200

    optional weights support for Conjunction

commit fec79ab15e4f0c84dd61cb1b45a5e6a72ae4aaeb
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 12:07:27 2022 +0200

    fix blend error and log parsing output

commit 1f751c2a039f9c97af57b18e0f019512631d5a25
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 10:33:33 2022 +0200

    fix broken euler sampler

commit 02f8148d17efe4b6bde8d29b827092a0626363ee
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 10:24:20 2022 +0200

    cleanup prompt parser

commit 8028d49ae6c16c0d6ec9c9de9c12d56c32201421
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Wed Oct 12 10:14:18 2022 +0200

    explicit conjunction, improve flattening logic

commit 8a1710892185f07eb77483f7edae0fc4d6bbb250
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 22:59:30 2022 +0200

    adapt multi-conditioning to also work with ddim

commit 53802a839850d0d1ff017c6bafe457c4bed750b0
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 22:31:42 2022 +0200

    unconditioning is also fancy-prompt-syntaxable

commit 7c40892a9f184f7e216f14d14feb0411c5a90e24
Merge: e3f2dd6 dbe0da4
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 21:39:54 2022 +0200

    Merge branch 'development-invoke' into fix-prompts

commit e3f2dd62b0548ca6988818ef058093a4f5b022f2
Merge: eef0e48 06f542e
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 21:38:09 2022 +0200

    Merge remote-tracking branch 'upstream/development' into fix-prompts

commit eef0e484c2eaa1bd4e0e0b1d3f8d7bba38478144
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 21:26:25 2022 +0200

    fix run-on paren-less attention, add some comments

commit fd29afdf0e9f5e0cdc60239e22480c36ca0aaeca
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 21:03:02 2022 +0200

    python 3.9 compatibility

commit 26f7646eef7f39bc8f7ce805e747df0f723464da
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 20:58:42 2022 +0200

    first pass connecting PromptParser to conditioning

commit ae53dff3796d7b9a5e7ed30fa1edb0374af6cd8d
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 20:51:15 2022 +0200

    update frontend dist

commit 9be4a59a2d76f49e635474b5984bfca826a5dab4
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 19:01:39 2022 +0200

    fix issues with correctness checking FlattenedPrompt

commit 3be212323eab68e72a363a654124edd9809e4cf0
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 18:43:16 2022 +0200

    parsing nested seems to work pretty ok

commit acd73eb08cf67c27cac8a22934754321256f56a9
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 18:26:17 2022 +0200

    wip introducing FlattenedPrompt class

commit 71698d5c7c2ac855b690d8ef67e8830148c59eda
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 15:59:42 2022 +0200

    recursive attention weighting seems to actually work

commit a4e1ec6b20deb7cc0cd12737bdbd266e56144709
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 15:06:24 2022 +0200

    now apparently almost supported nested attention

commit da76fd1ddf22a3888cdc08fd4fed38d8b178e524
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 11 13:23:37 2022 +0200

    wip prompt parsing

commit dbe0da4572c2ac22f26a7afd722349a5680a9e47
Author: Kyle Schouviller <kyle0654@hotmail.com>
Date:   Mon Oct 10 22:32:35 2022 -0700

    Adding node-based invocation apps

commit 8f2a2ffc083366de74d7dae471b50b6f98a7c5f8
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Mon Oct 10 19:03:18 2022 +0200

    fix merge issues

commit 73118dee2a8f4891700756e014caf1c9ca629267
Merge: fd00844 12413b0
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Mon Oct 10 12:42:48 2022 +0200

    Merge remote-tracking branch 'upstream/development' into fix-prompts

commit fd0084413541013c2cf71e006af0392719bef53d
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Mon Oct 10 12:39:38 2022 +0200

    wip prompt parsing

commit 0be9363db9307859d2b65cffc6af01f57d7873a4
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Mon Oct 10 03:20:06 2022 +0200

    better +/- attention parsing

commit 5383f691874a58ab01cda1e4fac6cf330146526a
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Mon Oct 10 02:27:47 2022 +0200

    prompt parser seems to work

commit 591d098a33ce35462428d8c169501d8ed73615ab
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Sun Oct 9 20:25:37 2022 +0200

    supports weighting unconditioning, cross-attention with |

commit 7a7220563aa05a2980235b5b908362f66b728309
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Sun Oct 9 18:15:56 2022 +0200

    i think cross attention might be working?

commit 951ed391e7126bff228c18b2db304ad28d59644a
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Sun Oct 9 16:04:54 2022 +0200

    weighted CFG denoiser working with a single item

commit ee532a0c2827368c9e45a6a5f3975666402873da
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Sun Oct 9 06:33:40 2022 +0200

    wip probably doesn't work or compile

commit 14654bcbd207b9ca28a6cbd37dbd967d699b062d
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Fri Oct 7 18:11:48 2022 +0200

    use tan() to calculate embedding weight for <1 attentions

commit 1a8e76b31aa5abf5150419ebf3b29d4658d07f2b
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Fri Oct 7 16:14:54 2022 +0200

    fix bad math.max reference

commit f697ff896875876ccaa1e5527405bdaa7ed27cde
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Fri Oct 7 15:55:57 2022 +0200

    respect http[s]x protocol when making socket.io middleware

commit 41d3dd4eeae8d4efb05dfb44fc6d8aac5dc468ab
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Fri Oct 7 13:29:54 2022 +0200

    fractional weighting works, by blending with prompts excluding the word

commit 087fb6dfb3e8f5e84de8c911f75faa3e3fa3553c
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Fri Oct 7 10:52:03 2022 +0200

    wip doing weights <1 by averaging with conditioning absent the lower-weighted fragment

commit 3c49e3f3ec7c18dc60f3e18ed2f7f0d97aad3a47
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Fri Oct 7 10:36:15 2022 +0200

    notate CFGDenoiser, perhaps

commit d2bcf1bb522026ebf209ad0103f6b370383e5070
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 6 05:04:47 2022 +0200

    hack blending syntax to test attention weighting more extensively

commit 94904ef2cf917f74ec23ef7a570e12ff8255b048
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 6 04:56:37 2022 +0200

    conditioning works, apparently

commit 7c6663ddd70f665fd1308b6dd74f92ca393a8df5
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Thu Oct 6 02:20:24 2022 +0200

    attention weighting, definitely works in positive direction

commit 5856d453a9b020bc1a28ff643ae1f58c12c9be73
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 4 19:02:14 2022 +0200

    wip bubbling weights down

commit a2ed14fd9b7d3cb36b6c5348018b364c76d1e892
Author: Damian at mba <damian@frey.NOSPAMco.nz>
Date:   Tue Oct 4 17:35:39 2022 +0200

    bring in changes from PC
This commit is contained in:
Damian at mba 2022-10-15 23:44:54 +02:00
parent 92d4dfaabf
commit c3b992db96
11 changed files with 823 additions and 43 deletions

View File

@ -527,7 +527,7 @@ def parameters_to_generated_image_metadata(parameters):
rfc_dict["sampler"] = parameters["sampler_name"]
# display weighted subprompts (liable to change)
subprompts = split_weighted_subprompts(parameters["prompt"])
subprompts = split_weighted_subprompts(parameters["prompt"], skip_normalize=True)
subprompts = [{"prompt": x[0], "weight": x[1]} for x in subprompts]
rfc_dict["prompt"] = subprompts

View File

@ -76,4 +76,4 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@ -438,7 +438,7 @@ class Generate:
sampler=self.sampler,
steps=steps,
cfg_scale=cfg_scale,
conditioning=(uc, c),
conditioning=(uc, c), # here change to arrays
ddim_eta=ddim_eta,
image_callback=image_callback, # called after the final image is generated
step_callback=step_callback, # called after each intermediate image is generated
@ -477,6 +477,10 @@ class Generate:
print('**Interrupted** Partial results will be returned.')
else:
raise KeyboardInterrupt
# brute-force fallback
except Exception as e:
print(traceback.format_exc(), file=sys.stderr)
print('>> Could not generate image.')
toc = time.time()
print('>> Usage stats:')

View File

@ -12,42 +12,76 @@ log_tokenization() print out colour-coded tokens and warn if trunca
import re
import torch
def get_uc_and_c(prompt, model, log_tokens=False, skip_normalize=False):
from .prompt_parser import PromptParser, Fragment, Attention, Blend, Conjunction, FlattenedPrompt
from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder
def get_uc_and_c(prompt_string_uncleaned, model, log_tokens=False, skip_normalize=False):
# Extract Unconditioned Words From Prompt
unconditioned_words = ''
unconditional_regex = r'\[(.*?)\]'
unconditionals = re.findall(unconditional_regex, prompt)
unconditionals = re.findall(unconditional_regex, prompt_string_uncleaned)
if len(unconditionals) > 0:
unconditioned_words = ' '.join(unconditionals)
# Remove Unconditioned Words From Prompt
unconditional_regex_compile = re.compile(unconditional_regex)
clean_prompt = unconditional_regex_compile.sub(' ', prompt)
prompt = re.sub(' +', ' ', clean_prompt)
clean_prompt = unconditional_regex_compile.sub(' ', prompt_string_uncleaned)
prompt_string_cleaned = re.sub(' +', ' ', clean_prompt)
else:
prompt_string_cleaned = prompt_string_uncleaned
uc = model.get_learned_conditioning([unconditioned_words])
pp = PromptParser()
# get weighted sub-prompts
weighted_subprompts = split_weighted_subprompts(
prompt, skip_normalize
)
def build_conditioning_list(prompt_string:str):
parsed_conjunction: Conjunction = pp.parse(prompt_string)
print(f"parsed '{prompt_string}' to {parsed_conjunction}")
assert (type(parsed_conjunction) is Conjunction)
conditioning_list = []
def make_embeddings_for_flattened_prompt(flattened_prompt: FlattenedPrompt):
if type(flattened_prompt) is not FlattenedPrompt:
raise f"embeddings can only be made from FlattenedPrompts, got {type(flattened_prompt)} instead"
fragments = [x[0] for x in flattened_prompt.children]
attention_weights = [x[1] for x in flattened_prompt.children]
print(fragments, attention_weights)
return model.get_learned_conditioning([fragments], attention_weights=[attention_weights])
for part,weight in zip(parsed_conjunction.prompts, parsed_conjunction.weights):
if type(part) is Blend:
blend:Blend = part
embeddings_to_blend = None
for flattened_prompt in blend.prompts:
this_embedding = make_embeddings_for_flattened_prompt(flattened_prompt)
embeddings_to_blend = this_embedding if embeddings_to_blend is None else torch.cat((embeddings_to_blend, this_embedding))
blended_embeddings = WeightedFrozenCLIPEmbedder.apply_embedding_weights(embeddings_to_blend.unsqueeze(0), blend.weights, normalize=blend.normalize_weights)
conditioning_list.append((blended_embeddings, weight))
else:
flattened_prompt: FlattenedPrompt = part
embeddings = make_embeddings_for_flattened_prompt(flattened_prompt)
conditioning_list.append((embeddings, weight))
return conditioning_list
positive_conditioning_list = build_conditioning_list(prompt_string_cleaned)
negative_conditioning_list = build_conditioning_list(unconditioned_words)
if len(negative_conditioning_list) == 0:
negative_conditioning = model.get_learned_conditioning([['']], attention_weights=[[1]])
else:
if len(negative_conditioning_list)>1:
print("cannot do conjunctions on unconditioning for now")
negative_conditioning = negative_conditioning_list[0][0]
#positive_conditioning_list.append((get_blend_prompts_and_weights(prompt), this_weight))
#print("got empty_conditionining with shape", empty_conditioning.shape, "c[0][0] with shape", positive_conditioning[0][0].shape)
# "unconditioned" means "the conditioning tensor is empty"
uc = negative_conditioning
c = positive_conditioning_list
if len(weighted_subprompts) > 1:
# i dont know if this is correct.. but it works
c = torch.zeros_like(uc)
# normalize each "sub prompt" and add it
for subprompt, weight in weighted_subprompts:
log_tokenization(subprompt, model, log_tokens, weight)
c = torch.add(
c,
model.get_learned_conditioning([subprompt]),
alpha=weight,
)
else: # just standard 1 prompt
log_tokenization(prompt, model, log_tokens, 1)
c = model.get_learned_conditioning([prompt])
uc = model.get_learned_conditioning([unconditioned_words])
return (uc, c)
def split_weighted_subprompts(text, skip_normalize=False)->list:

331
ldm/invoke/prompt_parser.py Normal file
View File

@ -0,0 +1,331 @@
import pyparsing
import pyparsing as pp
from pyparsing import original_text_for
class Prompt():
def __init__(self, parts: list):
for c in parts:
allowed_types = [Fragment, Attention, CFGScale]
if type(c) not in allowed_types:
raise PromptParser.ParsingException(f"Prompt cannot contain {type(c)}, only {allowed_types} are allowed")
self.children = parts
def __repr__(self):
return f"Prompt:{self.children}"
def __eq__(self, other):
return type(other) is Prompt and other.children == self.children
class FlattenedPrompt():
def __init__(self, parts: list):
# verify type correctness
for c in parts:
if type(c) is not tuple:
raise PromptParser.ParsingException(
f"FlattenedPrompt cannot contain {type(c)}, only ('text', weight) tuples are allowed")
text = c[0]
weight = c[1]
if type(text) is not str:
raise PromptParser.ParsingException(f"FlattenedPrompt cannot contain {type(c)}, only ('text', weight) tuples are allowed")
if type(weight) is not float and type(weight) is not int:
raise PromptParser.ParsingException(
f"FlattenedPrompt cannot contain {type(c)}, only ('text', weight) tuples are allowed")
# all looks good
self.children = parts
def __repr__(self):
return f"FlattenedPrompt:{self.children}"
def __eq__(self, other):
return type(other) is FlattenedPrompt and other.children == self.children
class Attention():
def __init__(self, weight: float, children: list):
self.weight = weight
self.children = children
#print(f"A: requested attention '{children}' to {weight}")
def __repr__(self):
return f"Attention:'{self.children}' @ {self.weight}"
def __eq__(self, other):
return type(other) is Attention and other.weight == self.weight and other.fragment == self.fragment
class CFGScale():
def __init__(self, scale_factor: float, fragment: str):
self.fragment = fragment
self.scale_factor = scale_factor
#print(f"S: requested CFGScale '{fragment}' x {scale_factor}")
def __repr__(self):
return f"CFGScale:'{self.fragment}' x {self.scale_factor}"
def __eq__(self, other):
return type(other) is CFGScale and other.scale_factor == self.scale_factor and other.fragment == self.fragment
class Fragment():
def __init__(self, text: str):
assert(type(text) is str)
self.text = text
def __repr__(self):
return "Fragment:'"+self.text+"'"
def __eq__(self, other):
return type(other) is Fragment and other.text == self.text
class Conjunction():
def __init__(self, prompts: list, weights: list = None):
# force everything to be a Prompt
#print("making conjunction with", parts)
self.prompts = [x if (type(x) is Prompt or type(x) is Blend or type(x) is FlattenedPrompt)
else Prompt(x) for x in prompts]
self.weights = [1.0]*len(self.prompts) if weights is None else list(weights)
if len(self.weights) != len(self.prompts):
raise PromptParser.ParsingException(f"while parsing Conjunction: mismatched parts/weights counts {prompts}, {weights}")
self.type = 'AND'
def __repr__(self):
return f"Conjunction:{self.prompts} | weights {self.weights}"
def __eq__(self, other):
return type(other) is Conjunction \
and other.prompts == self.prompts \
and other.weights == self.weights
class Blend():
def __init__(self, prompts: list, weights: list[float], normalize_weights: bool=True):
#print("making Blend with prompts", prompts, "and weights", weights)
if len(prompts) != len(weights):
raise PromptParser.ParsingException(f"while parsing Blend: mismatched prompts/weights counts {prompts}, {weights}")
for c in prompts:
if type(c) is not Prompt and type(c) is not FlattenedPrompt:
raise(PromptParser.ParsingException(f"{type(c)} cannot be added to a Blend, only Prompts or FlattenedPrompts"))
# upcast all lists to Prompt objects
self.prompts = [x if (type(x) is Prompt or type(x) is FlattenedPrompt)
else Prompt(x) for x in prompts]
self.prompts = prompts
self.weights = weights
self.normalize_weights = normalize_weights
def __repr__(self):
return f"Blend:{self.prompts} | weights {self.weights}"
def __eq__(self, other):
return other.__repr__() == self.__repr__()
class PromptParser():
class ParsingException(Exception):
pass
def __init__(self, attention_plus_base=1.1, attention_minus_base=0.9):
self.attention_plus_base = attention_plus_base
self.attention_minus_base = attention_minus_base
self.root = self.build_parser_logic()
def parse(self, prompt: str) -> [list]:
'''
:param prompt: The prompt string to parse
:return: a tuple
'''
#print(f"!!parsing '{prompt}'")
if len(prompt.strip()) == 0:
return Conjunction(prompts=[FlattenedPrompt([('', 1.0)])], weights=[1.0])
root = self.root.parse_string(prompt)
#print(f"'{prompt}' parsed to root", root)
#fused = fuse_fragments(parts)
#print("fused to", fused)
return self.flatten(root[0])
def flatten(self, root: Conjunction):
def fuse_fragments(items):
# print("fusing fragments in ", items)
result = []
for x in items:
last_weight = result[-1][1] if len(result) > 0 else None
this_text = x[0]
this_weight = x[1]
if last_weight is not None and last_weight == this_weight:
last_text = result[-1][0]
result[-1] = (last_text + ' ' + this_text, last_weight)
else:
result.append(x)
return result
def flatten_internal(node, weight_scale, results, prefix):
#print(prefix + "flattening", node, "...")
if type(node) is pp.ParseResults:
for x in node:
results = flatten_internal(x, weight_scale, results, prefix+'pr')
#print(prefix, " ParseResults expanded, results is now", results)
elif type(node) is Fragment:
results.append((node.text, float(weight_scale)))
elif type(node) is Attention:
#if node.weight < 1:
# todo: inject a blend when flattening attention with weight <1"
for c in node.children:
results = flatten_internal(c, weight_scale*node.weight, results, prefix+' ')
elif type(node) is Blend:
flattened_subprompts = []
#print(" flattening blend with prompts", node.prompts, "weights", node.weights)
for prompt in node.prompts:
# prompt is a list
flattened_subprompts = flatten_internal(prompt, weight_scale, flattened_subprompts, prefix+'B ')
results += [Blend(prompts=flattened_subprompts, weights=node.weights)]
elif type(node) is Prompt:
#print(prefix + "about to flatten Prompt with children", node.children)
flattened_prompt = []
for child in node.children:
flattened_prompt = flatten_internal(child, weight_scale, flattened_prompt, prefix+'P ')
results += [FlattenedPrompt(parts=fuse_fragments(flattened_prompt))]
#print(prefix + "after flattening Prompt, results is", results)
else:
raise PromptParser.ParsingException(f"unhandled node type {type(node)} when flattening {node}")
#print(prefix + "-> after flattening", type(node), "results is", results)
return results
#print("flattening", root)
flattened_parts = []
for part in root.prompts:
flattened_parts += flatten_internal(part, 1.0, [], ' C| ')
weights = root.weights
return Conjunction(flattened_parts, weights)
def build_parser_logic(self):
lparen = pp.Literal("(").suppress()
rparen = pp.Literal(")").suppress()
# accepts int or float notation, always maps to float
number = pyparsing.pyparsing_common.real | pp.Word(pp.nums).set_parse_action(pp.token_map(float))
SPACE_CHARS = ' \t\n'
prompt_part = pp.Forward()
word = pp.Forward()
def make_fragment(x):
#print("### making fragment for", x)
if type(x) is str:
return Fragment(x)
elif type(x) is pp.ParseResults or type(x) is list:
return Fragment(' '.join([s for s in x]))
else:
raise PromptParser.ParsingException("Cannot make fragment from " + str(x))
# attention control of the form +(phrase) / -(phrase) / <weight>(phrase)
# phrase can be multiple words, can have multiple +/- signs to increase the effect or type a floating point or integer weight
attention = pp.Forward()
attention_head = (number | pp.Word('+') | pp.Word('-'))\
.set_name("attention_head")\
.set_debug(False)
fragment_inside_attention = pp.CharsNotIn(SPACE_CHARS+'()')\
.set_parse_action(make_fragment)\
.set_name("fragment_inside_attention")\
.set_debug(False)
attention_with_parens = pp.Forward()
attention_with_parens_body = pp.nested_expr(content=pp.delimited_list((attention_with_parens | fragment_inside_attention), delim=SPACE_CHARS))
attention_with_parens << (attention_head + attention_with_parens_body)
def make_attention(x):
# print("making Attention from parsing with args", x0, x1)
weight = 1
# number(str)
if type(x[0]) is float or type(x[0]) is int:
weight = float(x[0])
# +(str) or -(str) or +str or -str
elif type(x[0]) is str:
base = self.attention_plus_base if x[0][0] == '+' else self.attention_minus_base
weight = pow(base, len(x[0]))
# print("Making attention with children of type", [str(type(x)) for x in x1])
return Attention(weight=weight, children=x[1])
attention_with_parens.set_parse_action(make_attention)\
.set_name("attention_with_parens")\
.set_debug(False)
# attention control of the form ++word --word (no parens)
attention_without_parens = (
(pp.Word('+') | pp.Word('-')) +
pp.CharsNotIn(SPACE_CHARS+'()').set_parse_action(lambda x: [[make_fragment(x)]])
)\
.set_name("attention_without_parens")\
.set_debug(False)
attention_without_parens.set_parse_action(make_attention)
attention << (attention_with_parens | attention_without_parens)\
.set_name("attention")\
.set_debug(False)
# fragments of text with no attention control
word << pp.Word(pp.printables).set_parse_action(lambda x: Fragment(' '.join([s for s in x])))
word.set_name("word")
word.set_debug(False)
prompt_part << (attention | word)
prompt_part.set_debug(False)
prompt_part.set_name("prompt_part")
# root prompt definition
prompt = pp.Group(pp.OneOrMore(prompt_part))\
.set_parse_action(lambda x: Prompt(x[0]))
# weighted blend of prompts
# ("promptA", "promptB").blend(a, b) where "promptA" and "promptB" are valid prompts and a and b are float or
# int weights.
# can specify more terms eg ("promptA", "promptB", "promptC").blend(a,b,c)
def make_prompt_from_quoted_string(x):
#print(' got quoted prompt', x)
x_unquoted = x[0][1:-1]
if len(x_unquoted.strip()) == 0:
# print(' b : just an empty string')
return Prompt([Fragment('')])
# print(' b parsing ', c_unquoted)
x_parsed = prompt.parse_string(x_unquoted)
#print(" quoted prompt was parsed to", type(x_parsed),":", x_parsed)
return x_parsed[0]
quoted_prompt = pp.dbl_quoted_string.set_parse_action(make_prompt_from_quoted_string)
quoted_prompt.set_name('quoted_prompt')
blend_terms = pp.delimited_list(quoted_prompt).set_name('blend_terms')
blend_weights = pp.delimited_list(number).set_name('blend_weights')
blend = pp.Group(lparen + pp.Group(blend_terms) + rparen
+ pp.Literal(".blend").suppress()
+ lparen + pp.Group(blend_weights) + rparen).set_name('blend')
blend.set_debug(False)
blend.set_parse_action(lambda x: Blend(prompts=x[0][0], weights=x[0][1]))
conjunction_terms = blend_terms.copy().set_name('conjunction_terms')
conjunction_weights = blend_weights.copy().set_name('conjunction_weights')
conjunction_with_parens_and_quotes = pp.Group(lparen + pp.Group(conjunction_terms) + rparen
+ pp.Literal(".and").suppress()
+ lparen + pp.Optional(pp.Group(conjunction_weights)) + rparen).set_name('conjunction')
def make_conjunction(x):
parts_raw = x[0][0]
weights = x[0][1] if len(x[0])>1 else [1.0]*len(parts_raw)
parts = [part for part in parts_raw]
return Conjunction(parts, weights)
conjunction_with_parens_and_quotes.set_parse_action(make_conjunction)
implicit_conjunction = pp.OneOrMore(blend | prompt)
implicit_conjunction.set_parse_action(lambda x: Conjunction(x))
conjunction = conjunction_with_parens_and_quotes | implicit_conjunction
conjunction.set_debug(False)
# top-level is a conjunction of one or more blends or prompts
return conjunction

View File

@ -34,23 +34,21 @@ class DDIMSampler(Sampler):
b, *_, device = *x.shape, x.device
if (
unconditional_conditioning is None
or unconditional_guidance_scale == 1.0
(unconditional_conditioning is None
or unconditional_guidance_scale == 1.0)
and c is not list
):
e_t = self.model.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (
e_t - e_t_uncond
)
e_t = self.apply_weighted_conditioning_list(x, t, self.model.apply_model, unconditional_conditioning, c, unconditional_guidance_scale)
if score_corrector is not None:
assert self.model.parameterization == 'eps'
if c is list and len(c)>1:
print("warning: ddim score modifier currently ignores all but the first part of the prompt conjunction, this is probably wrong")
corrector_c = [c[0][0] if c is list else c]
e_t = score_corrector.modify_score(
self.model, e_t, x, t, c, **corrector_kwargs
self.model, e_t, x, t, corrector_c, **corrector_kwargs
)
alphas = (

View File

@ -820,13 +820,13 @@ class LatentDiffusion(DDPM):
)
return self.scale_factor * z
def get_learned_conditioning(self, c):
def get_learned_conditioning(self, c, attention_weights=None):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(
self.cond_stage_model.encode
):
c = self.cond_stage_model.encode(
c, embedding_manager=self.embedding_manager
c, embedding_manager=self.embedding_manager, attention_weights=attention_weights
)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()

View File

@ -38,7 +38,8 @@ class CFGDenoiser(nn.Module):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
unconditioned_x, conditioned_x = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
if self.warmup < self.warmup_max:
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
self.warmup += 1
@ -46,7 +47,28 @@ class CFGDenoiser(nn.Module):
thresh = self.threshold
if thresh > self.threshold:
thresh = self.threshold
return cfg_apply_threshold(uncond + (cond - uncond) * cond_scale, thresh)
# damian0815 thinking out loud notes:
# b + (a - b)*scale
# starting at the output that emerges applying the negative prompt (by default ''),
# (-> this is why the unconditioning feels like hammer)
# move toward the positive prompt by an amount controlled by cond_scale.
return cfg_apply_threshold(unconditioned_x + (conditioned_x - unconditioned_x) * cond_scale, thresh)
class ProgrammableCFGDenoiser(CFGDenoiser):
def forward(self, x, sigma, uncond, cond, cond_scale):
forward_lambda = lambda x, t, c: self.inner_model(x, t, cond=c)
x_new = Sampler.apply_weighted_conditioning_list(x, sigma, forward_lambda, uncond, cond, cond_scale)
if self.warmup < self.warmup_max:
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
self.warmup += 1
else:
thresh = self.threshold
if thresh > self.threshold:
thresh = self.threshold
return cfg_apply_threshold(x_new, threshold=thresh)
class KSampler(Sampler):
@ -181,7 +203,6 @@ class KSampler(Sampler):
)
# sigmas are set up in make_schedule - we take the last steps items
total_steps = len(self.sigmas)
sigmas = self.sigmas[-S-1:]
# x_T is variation noise. When an init image is provided (in x0) we need to add
@ -194,7 +215,7 @@ class KSampler(Sampler):
else:
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0]
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10))
model_wrap_cfg = ProgrammableCFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10))
extra_args = {
'cond': conditioning,
'uncond': unconditional_conditioning,

View File

@ -4,6 +4,8 @@ ldm.models.diffusion.sampler
Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc
'''
from math import ceil
import torch
import numpy as np
from tqdm import tqdm
@ -411,3 +413,54 @@ class Sampler(object):
return self.model.inner_model.q_sample(x0,ts)
'''
return self.model.q_sample(x0,ts)
@classmethod
def apply_weighted_conditioning_list(cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale):
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2) # aka sigmas
deltas = None
uncond_latents = None
weighted_cond_list = c_or_weighted_c_list if type(c_or_weighted_c_list) is list else [(c_or_weighted_c_list, 1)]
# below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c,weight in weighted_cond_list]
weights = [1] + [weight for c,weight in weighted_cond_list]
chunk_count = ceil(len(conditionings)/2)
assert(len(conditionings)>=2, "need at least one uncond and one cond")
deltas = None
for chunk_index in range(chunk_count):
offset = chunk_index*2
chunk_size = min(2, len(conditionings)-offset)
if chunk_size == 1:
c_in = conditionings[offset]
latents_a = forward_func(x_in[:-1], t_in[:-1], c_in)
latents_b = None
else:
c_in = torch.cat(conditionings[offset:offset+2])
latents_a, latents_b = forward_func(x_in, t_in, c_in).chunk(2)
# first chunk is guaranteed to be 2 entries: uncond_latents + first conditioining
if chunk_index == 0:
uncond_latents = latents_a
deltas = latents_b - uncond_latents
else:
deltas = torch.cat((deltas, latents_a - uncond_latents))
if latents_b is not None:
deltas = torch.cat((deltas, latents_b - uncond_latents))
# merge the weighted deltas together into a single merged delta
per_delta_weights = torch.tensor(weights[1:], dtype=deltas.dtype, device=deltas.device)
normalize = False
if normalize:
per_delta_weights /= torch.sum(per_delta_weights)
reshaped_weights = per_delta_weights.reshape(per_delta_weights.shape + (1, 1, 1))
deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True)
# old_return_value = super().forward(x, sigma, uncond, cond, cond_scale)
# assert(0 == len(torch.nonzero(old_return_value - (uncond_latents + deltas_merged * cond_scale))))
return uncond_latents + deltas_merged * global_guidance_scale

View File

@ -1,3 +1,5 @@
import math
import torch
import torch.nn as nn
from functools import partial
@ -454,6 +456,207 @@ class FrozenCLIPEmbedder(AbstractEncoder):
def encode(self, text, **kwargs):
return self(text, **kwargs)
class WeightedFrozenCLIPEmbedder(FrozenCLIPEmbedder):
attention_weights_key = "attention_weights"
def build_token_list_fragment(self, fragment: str, weight: float) -> (torch.Tensor, torch.Tensor):
batch_encoding = self.tokenizer(
fragment,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding='none',
return_tensors='pt',
)
return batch_encoding, torch.ones_like(batch_encoding) * weight
def forward(self, text: list, **kwargs):
'''
:param text: A batch of prompt strings, or, a batch of lists of fragments of prompt strings to which different
weights shall be applied.
:param kwargs: If the keyword arg "attention_weights" is passed, it shall contain a batch of lists of weights
for the prompt fragments. In this case text must contain batches of lists of prompt fragments.
:return: A tensor of shape (B, 77, 768) containing weighted embeddings
'''
if self.attention_weights_key not in kwargs:
# fallback to base class implementation
return super().forward(text, **kwargs)
attention_weights = kwargs[self.attention_weights_key]
# self.transformer doesn't like receiving "attention_weights" as an argument
kwargs.pop(self.attention_weights_key)
batch_z = None
for fragments, weights in zip(text, attention_weights):
# First, weight tokens in individual fragments by scaling the feature vectors as requested (effectively
# applying a multiplier to the CFG scale on a per-token basis).
# For tokens weighted<1, intuitively we want SD to become not merely *less* interested in the concept
# captured by the fragment but actually *dis*interested in it (a 0.01 interest in "red" is still an active
# interest, however small, in redness; what the user probably intends when they attach the number 0.01 to
# "red" is to tell SD that it should almost completely *ignore* redness).
# To do this, the embedding is lerped away from base_embedding in the direction of an embedding for a prompt
# string from which the low-weighted fragment has been simply removed. The closer the weight is to zero, the
# closer the resulting embedding is to an embedding for a prompt that simply lacks this fragment.
# handle weights >=1
tokens, per_token_weights = self.get_tokens_and_weights(fragments, weights)
base_embedding = self.build_weighted_embedding_tensor(tokens, per_token_weights, **kwargs)
# this is our starting point
embeddings = base_embedding.unsqueeze(0)
per_embedding_weights = [1.0]
# now handle weights <1
# Do this by building extra embeddings tensors that lack the words being <1 weighted. These will be lerped
# with the embeddings tensors that have the words, such that if the weight of a word is 0.5, the resulting
# embedding will be exactly half-way between the unweighted prompt and the prompt with the <1 weighted words
# removed.
# eg for "mountain:1 man:0.5", intuitively the "man" should be "half-gone". therefore, append an embedding
# for "mountain" (i.e. without "man") to the already-produced embedding for "mountain man", and weight it
# such that the resulting lerped embedding is exactly half-way between "mountain man" and "mountain".
for index, fragment_weight in enumerate(weights):
if fragment_weight < 1:
fragments_without_this = fragments[:index] + fragments[index+1:]
weights_without_this = weights[:index] + weights[index+1:]
tokens, per_token_weights = self.get_tokens_and_weights(fragments_without_this, weights_without_this)
embedding_without_this = self.build_weighted_embedding_tensor(tokens, per_token_weights, **kwargs)
embeddings = torch.cat((embeddings, embedding_without_this.unsqueeze(0)), dim=1)
# weight of the embedding *without* this fragment gets *stronger* as its weight approaches 0
# if fragment_weight = 0, basically we want embedding_without_this to completely overwhelm base_embedding
# therefore:
# fragment_weight = 1: we are at base_z => lerp weight 0
# fragment_weight = 0.5: we are halfway between base_z and here => lerp weight 1
# fragment_weight = 0: we're now entirely overriding base_z ==> lerp weight inf
# so let's use tan(), because:
# tan is 0.0 at 0,
# 1.0 at PI/4, and
# inf at PI/2
# -> tan((1-weight)*PI/2) should give us ideal lerp weights
epsilon = 1e-9
fragment_weight = max(epsilon, fragment_weight) # inf is bad
embedding_lerp_weight = math.tan((1.0 - fragment_weight) * math.pi / 2)
# todo handle negative weight?
per_embedding_weights.append(embedding_lerp_weight)
lerped_embeddings = self.apply_embedding_weights(embeddings, per_embedding_weights, normalize=True).squeeze(0)
print(f"assembled tokens for '{fragments}' into tensor of shape {lerped_embeddings.shape}")
# append to batch
batch_z = lerped_embeddings.unsqueeze(0) if batch_z is None else torch.cat((batch_z, lerped_embeddings.unsqueeze(0)), dim=1)
# should have shape (B, 77, 768)
print(f"assembled all tokens into tensor of shape {batch_z.shape}")
return batch_z
@classmethod
def apply_embedding_weights(self, embeddings: torch.Tensor, per_embedding_weights: list[float], normalize:bool) -> torch.Tensor:
per_embedding_weights = torch.tensor(per_embedding_weights, dtype=embeddings.dtype, device=embeddings.device)
if normalize:
per_embedding_weights = per_embedding_weights / torch.sum(per_embedding_weights)
reshaped_weights = per_embedding_weights.reshape(per_embedding_weights.shape + (1, 1,))
#reshaped_weights = per_embedding_weights.reshape(per_embedding_weights.shape + (1,1,)).expand(embeddings.shape)
return torch.sum(embeddings * reshaped_weights, dim=1)
# lerped embeddings has shape (77, 768)
def get_tokens_and_weights(self, fragments: list[str], weights: list[float]) -> (torch.Tensor, torch.Tensor):
'''
:param fragments:
:param weights: Per-fragment weights (CFG scaling). No need for these to be normalized. They will not be normalized here and that's fine.
:return:
'''
# empty is meaningful
if len(fragments) == 0 and len(weights) == 0:
fragments = ['']
weights = [1]
item_encodings = self.tokenizer(
fragments,
truncation=True,
max_length=self.max_length,
return_overflowing_tokens=False,
padding='do_not_pad',
return_tensors=None, # just give me a list of ints
)['input_ids']
all_tokens = []
per_token_weights = []
print("all fragments:", fragments, weights)
for index, fragment in enumerate(item_encodings):
weight = weights[index]
print("processing fragment", fragment, weight)
fragment_tokens = item_encodings[index]
print("fragment", fragment, "processed to", fragment_tokens)
# trim bos and eos markers before appending
all_tokens.extend(fragment_tokens[1:-1])
per_token_weights.extend([weight] * (len(fragment_tokens) - 2))
if len(all_tokens) > self.max_length - 2:
print("prompt is too long and has been truncated")
all_tokens = all_tokens[:self.max_length - 2]
# pad out to a 77-entry array: [eos_token, <prompt tokens>, eos_token, ..., eos_token]
# (77 = self.max_length)
pad_length = self.max_length - 1 - len(all_tokens)
all_tokens.insert(0, self.tokenizer.bos_token_id)
all_tokens.extend([self.tokenizer.eos_token_id] * pad_length)
per_token_weights.insert(0, 1)
per_token_weights.extend([1] * pad_length)
all_tokens_tensor = torch.tensor(all_tokens, dtype=torch.long).to(self.device)
per_token_weights_tensor = torch.tensor(per_token_weights, dtype=torch.float32).to(self.device)
print(f"assembled all_tokens_tensor with shape {all_tokens_tensor.shape}")
return all_tokens_tensor, per_token_weights_tensor
def build_weighted_embedding_tensor(self, tokens: torch.Tensor, per_token_weights: torch.Tensor, weight_delta_from_empty=True, **kwargs) -> torch.Tensor:
'''
Build a tensor representing the passed-in tokens, each of which has a weight.
:param tokens: A tensor of shape (77) containing token ids (integers)
:param per_token_weights: A tensor of shape (77) containing weights (floats)
:param method: Whether to multiply the whole feature vector for each token or just its distance from an "empty" feature vector
:param kwargs: passed on to self.transformer()
:return: A tensor of shape (1, 77, 768) representing the requested weighted embeddings.
'''
#print(f"building weighted embedding tensor for {tokens} with weights {per_token_weights}")
z = self.transformer(input_ids=tokens.unsqueeze(0), **kwargs)
batch_weights_expanded = per_token_weights.reshape(per_token_weights.shape + (1,)).expand(z.shape)
if weight_delta_from_empty:
empty_tokens = self.tokenizer([''] * z.shape[0],
truncation=True,
max_length=self.max_length,
padding='max_length',
return_tensors='pt'
)['input_ids'].to(self.device)
empty_z = self.transformer(input_ids=empty_tokens, **kwargs)
z_delta_from_empty = z - empty_z
weighted_z = empty_z + (z_delta_from_empty * batch_weights_expanded)
weighted_z_delta_from_empty = (weighted_z-empty_z)
print("weighted z has delta from empty with sum", weighted_z_delta_from_empty.sum().item(), "mean", weighted_z_delta_from_empty.mean().item() )
#print("using empty-delta method, first 5 rows:")
#print(weighted_z[:5])
return weighted_z
else:
original_mean = z.mean()
z *= batch_weights_expanded
after_weighting_mean = z.mean()
# correct the mean. not sure if this is right but it's what the automatic1111 fork of SD does
mean_correction_factor = original_mean/after_weighting_mean
z *= mean_correction_factor
return z
class FrozenCLIPTextEmbedder(nn.Module):
"""

136
tests/test_prompt_parser.py Normal file
View File

@ -0,0 +1,136 @@
import unittest
from ldm.invoke.prompt_parser import PromptParser, Blend, Conjunction, FlattenedPrompt
def parse_prompt(prompt_string):
pp = PromptParser()
#print(f"parsing '{prompt_string}'")
parse_result = pp.parse(prompt_string)
#print(f"-> parsed '{prompt_string}' to {parse_result}")
return parse_result
class PromptParserTestCase(unittest.TestCase):
def test_empty(self):
self.assertEqual(Conjunction([FlattenedPrompt([('', 1)])]), parse_prompt(''))
def test_basic(self):
self.assertEqual(Conjunction([FlattenedPrompt([('fire (flames)', 1)])]), parse_prompt("fire (flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([("fire flames", 1)])]), parse_prompt("fire flames"))
self.assertEqual(Conjunction([FlattenedPrompt([("fire, flames", 1)])]), parse_prompt("fire, flames"))
self.assertEqual(Conjunction([FlattenedPrompt([("fire, flames , fire", 1)])]), parse_prompt("fire, flames , fire"))
def test_attention(self):
self.assertEqual(Conjunction([FlattenedPrompt([('flames', 0.5)])]), parse_prompt("0.5(flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('fire flames', 0.5)])]), parse_prompt("0.5(fire flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('flames', 1.1)])]), parse_prompt("+(flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('flames', 0.9)])]), parse_prompt("-(flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1), ('flames', 0.5)])]), parse_prompt("fire 0.5(flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('flames', pow(1.1, 2))])]), parse_prompt("++(flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('flames', pow(0.9, 2))])]), parse_prompt("--(flames)"))
self.assertEqual(Conjunction([FlattenedPrompt([('flowers', pow(0.9, 3)), ('flames', pow(1.1, 3))])]), parse_prompt("---(flowers) +++flames"))
self.assertEqual(Conjunction([FlattenedPrompt([('flowers', pow(0.9, 3)), ('flames', pow(1.1, 3))])]), parse_prompt("---(flowers) +++flames"))
self.assertEqual(Conjunction([FlattenedPrompt([('flowers', pow(0.9, 3)), ('flames+', pow(1.1, 3))])]),
parse_prompt("---(flowers) +++flames+"))
self.assertEqual(Conjunction([FlattenedPrompt([('pretty flowers', 1.1)])]),
parse_prompt("+(pretty flowers)"))
self.assertEqual(Conjunction([FlattenedPrompt([('pretty flowers', 1.1), (', the flames are too hot', 1)])]),
parse_prompt("+(pretty flowers), the flames are too hot"))
def test_no_parens_attention_runon(self):
self.assertEqual(Conjunction([FlattenedPrompt([('fire', pow(1.1, 2)), ('flames', 1.0)])]), parse_prompt("++fire flames"))
self.assertEqual(Conjunction([FlattenedPrompt([('fire', pow(0.9, 2)), ('flames', 1.0)])]), parse_prompt("--fire flames"))
self.assertEqual(Conjunction([FlattenedPrompt([('flowers', 1.0), ('fire', pow(1.1, 2)), ('flames', 1.0)])]), parse_prompt("flowers ++fire flames"))
self.assertEqual(Conjunction([FlattenedPrompt([('flowers', 1.0), ('fire', pow(0.9, 2)), ('flames', 1.0)])]), parse_prompt("flowers --fire flames"))
def test_explicit_conjunction(self):
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('flames', 1.0)])]), parse_prompt('("fire", "flames").and(1,1)'))
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('flames', 1.0)])]), parse_prompt('("fire", "flames").and()'))
self.assertEqual(
Conjunction([FlattenedPrompt([('fire flames', 1.0)]), FlattenedPrompt([('mountain man', 1.0)])]), parse_prompt('("fire flames", "mountain man").and()'))
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 2.0)]), FlattenedPrompt([('flames', 0.9)])]), parse_prompt('("2.0(fire)", "-flames").and()'))
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('flames', 1.0)]),
FlattenedPrompt([('mountain man', 1.0)])]), parse_prompt('("fire", "flames", "mountain man").and()'))
def test_conjunction_weights(self):
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('flames', 1.0)])], weights=[2.0,1.0]), parse_prompt('("fire", "flames").and(2,1)'))
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('flames', 1.0)])], weights=[1.0,2.0]), parse_prompt('("fire", "flames").and(1,2)'))
with self.assertRaises(PromptParser.ParsingException):
parse_prompt('("fire", "flames").and(2)')
parse_prompt('("fire", "flames").and(2,1,2)')
def test_complex_conjunction(self):
self.assertEqual(Conjunction([FlattenedPrompt([("mountain man", 1.0)]), FlattenedPrompt([("a person with a hat", 1.0), ("riding a bicycle", pow(1.1,2))])], weights=[0.5, 0.5]),
parse_prompt("(\"mountain man\", \"a person with a hat ++(riding a bicycle)\").and(0.5, 0.5)"))
def test_badly_formed(self):
def make_untouched_prompt(prompt):
return Conjunction([FlattenedPrompt([(prompt, 1.0)])])
def assert_if_prompt_string_not_untouched(prompt):
self.assertEqual(make_untouched_prompt(prompt), parse_prompt(prompt))
assert_if_prompt_string_not_untouched('a test prompt')
assert_if_prompt_string_not_untouched('a badly (formed test prompt')
assert_if_prompt_string_not_untouched('a badly formed test+ prompt')
assert_if_prompt_string_not_untouched('a badly (formed test+ prompt')
assert_if_prompt_string_not_untouched('a badly (formed test+ )prompt')
assert_if_prompt_string_not_untouched('a badly (formed test+ )prompt')
assert_if_prompt_string_not_untouched('(((a badly (formed test+ )prompt')
assert_if_prompt_string_not_untouched('(a (ba)dly (f)ormed test+ prompt')
self.assertEqual(Conjunction([FlattenedPrompt([('(a (ba)dly (f)ormed test+', 1.0), ('prompt', 1.1)])]),
parse_prompt('(a (ba)dly (f)ormed test+ +prompt'))
self.assertEqual(Conjunction([Blend([FlattenedPrompt([('((a badly (formed test+', 1.0)])], weights=[1.0])]),
parse_prompt('("((a badly (formed test+ ").blend(1.0)'))
def test_blend(self):
self.assertEqual(Conjunction(
[Blend([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('fire flames', 1.0)])], [0.7, 0.3])]),
parse_prompt("(\"fire\", \"fire flames\").blend(0.7, 0.3)")
)
self.assertEqual(Conjunction([Blend(
[FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('fire flames', 1.0)]), FlattenedPrompt([('hi', 1.0)])],
[0.7, 0.3, 1.0])]),
parse_prompt("(\"fire\", \"fire flames\", \"hi\").blend(0.7, 0.3, 1.0)")
)
self.assertEqual(Conjunction([Blend([FlattenedPrompt([('fire', 1.0)]),
FlattenedPrompt([('fire flames', 1.0), ('hot', pow(1.1, 2))]),
FlattenedPrompt([('hi', 1.0)])],
weights=[0.7, 0.3, 1.0])]),
parse_prompt("(\"fire\", \"fire flames ++(hot)\", \"hi\").blend(0.7, 0.3, 1.0)")
)
# blend a single entry is not a failure
self.assertEqual(Conjunction([Blend([FlattenedPrompt([('fire', 1.0)])], [0.7])]),
parse_prompt("(\"fire\").blend(0.7)")
)
# blend with empty
self.assertEqual(
Conjunction([Blend([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('', 1.0)])], [0.7, 1.0])]),
parse_prompt("(\"fire\", \"\").blend(0.7, 1)")
)
self.assertEqual(
Conjunction([Blend([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('', 1.0)])], [0.7, 1.0])]),
parse_prompt("(\"fire\", \" \").blend(0.7, 1)")
)
self.assertEqual(
Conjunction([Blend([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([('', 1.0)])], [0.7, 1.0])]),
parse_prompt("(\"fire\", \" \").blend(0.7, 1)")
)
self.assertEqual(
Conjunction([Blend([FlattenedPrompt([('fire', 1.0)]), FlattenedPrompt([(',', 1.0)])], [0.7, 1.0])]),
parse_prompt("(\"fire\", \" , \").blend(0.7, 1)")
)
def test_nested(self):
self.assertEqual(Conjunction([FlattenedPrompt([('fire', 1.0), ('flames', 2.0), ('trees', 3.0)])]),
parse_prompt('fire 2.0(flames 1.5(trees))'))
self.assertEqual(Conjunction([Blend(prompts=[FlattenedPrompt([('fire', 1.0), ('flames', 1.2100000000000002)]),
FlattenedPrompt([('mountain', 1.0), ('man', 2.0)])],
weights=[1.0, 1.0])]),
parse_prompt('("fire ++(flames)", "mountain 2(man)").blend(1,1)'))
if __name__ == '__main__':
unittest.main()