mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
chore: minor cleanup after merge & flake8
This commit is contained in:
parent
3c43594c26
commit
c49851e027
@ -22,18 +22,18 @@ from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.app.invocations.primitives import (
|
||||
ImageField,
|
||||
ImageOutput,
|
||||
LatentsField,
|
||||
LatentsOutput,
|
||||
InpaintMaskField,
|
||||
InpaintMaskOutput,
|
||||
LatentsField,
|
||||
LatentsOutput,
|
||||
build_latents_output,
|
||||
)
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
|
||||
|
||||
from ...backend.model_management.models import BaseModelType
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import BaseModelType
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
ConditioningData,
|
||||
@ -45,16 +45,7 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import Post
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import choose_precision, choose_torch_device
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
UIType,
|
||||
tags,
|
||||
title,
|
||||
)
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, UIType, tags, title
|
||||
from .compel import ConditioningField
|
||||
from .controlnet_image_processors import ControlField
|
||||
from .model import ModelInfo, UNetField, VaeField
|
||||
@ -65,7 +56,7 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
|
||||
|
||||
|
||||
@title("Create inpaint mask")
|
||||
@title("Create Inpaint Mask")
|
||||
@tags("mask", "inpaint")
|
||||
class CreateInpaintMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for inpaint model run."""
|
||||
@ -85,12 +76,11 @@ class CreateInpaintMaskInvocation(BaseInvocation):
|
||||
|
||||
def prep_mask_tensor(self, mask_image):
|
||||
if mask_image.mode != "L":
|
||||
# FIXME: why do we get passed an RGB image here? We can only use single-channel.
|
||||
mask_image = mask_image.convert("L")
|
||||
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
if mask_tensor.dim() == 3:
|
||||
mask_tensor = mask_tensor.unsqueeze(0)
|
||||
#if shape is not None:
|
||||
# if shape is not None:
|
||||
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
|
||||
return mask_tensor
|
||||
|
||||
@ -107,7 +97,7 @@ class CreateInpaintMaskInvocation(BaseInvocation):
|
||||
mask = self.prep_mask_tensor(
|
||||
context.services.images.get_pil_image(self.mask.image_name),
|
||||
)
|
||||
|
||||
|
||||
if image is not None:
|
||||
vae_info = context.services.model_manager.get_model(
|
||||
**self.vae.vae.dict(),
|
||||
@ -779,12 +769,8 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
# image = context.services.images.get(
|
||||
# self.image.image_type, self.image.image_name
|
||||
# )
|
||||
image = context.services.images.get_pil_image(self.image.image_name)
|
||||
|
||||
# vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
|
||||
vae_info = context.services.model_manager.get_model(
|
||||
**self.vae.vae.dict(),
|
||||
context=context,
|
||||
|
Loading…
Reference in New Issue
Block a user