mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
remove legacy ldm code
This commit is contained in:
parent
c4e6d4b348
commit
c703b60986
@ -5,6 +5,7 @@
|
||||
|
||||
import gc
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
@ -19,24 +20,20 @@ import numpy as np
|
||||
import skimage
|
||||
import torch
|
||||
import transformers
|
||||
from PIL import Image, ImageOps
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image, ImageOps
|
||||
from pytorch_lightning import logging, seed_everything
|
||||
|
||||
from .model_management import ModelManager
|
||||
from .args import metadata_from_png
|
||||
from .generator import infill_methods
|
||||
from .globals import Globals, global_cache_dir
|
||||
from .image_util import InitImageResizer, PngWriter, Txt2Mask, configure_model_padding
|
||||
from .model_management import ModelManager
|
||||
from .prompting import get_uc_and_c_and_ec
|
||||
from .stable_diffusion import (
|
||||
DDIMSampler,
|
||||
HuggingFaceConceptsLibrary,
|
||||
KSampler,
|
||||
PLMSSampler,
|
||||
)
|
||||
from .prompting.conditioning import log_tokenization
|
||||
from .stable_diffusion import HuggingFaceConceptsLibrary
|
||||
from .util import choose_precision, choose_torch_device
|
||||
|
||||
|
||||
@ -484,7 +481,7 @@ class Generate:
|
||||
|
||||
if sampler_name and (sampler_name != self.sampler_name):
|
||||
self.sampler_name = sampler_name
|
||||
self._set_sampler()
|
||||
self._set_scheduler()
|
||||
|
||||
# apply the concepts library to the prompt
|
||||
prompt = self.huggingface_concepts_library.replace_concepts_with_triggers(
|
||||
@ -493,11 +490,6 @@ class Generate:
|
||||
self.model.textual_inversion_manager.get_all_trigger_strings(),
|
||||
)
|
||||
|
||||
# bit of a hack to change the cached sampler's karras threshold to
|
||||
# whatever the user asked for
|
||||
if karras_max is not None and isinstance(self.sampler, KSampler):
|
||||
self.sampler.adjust_settings(karras_max=karras_max)
|
||||
|
||||
tic = time.time()
|
||||
if self._has_cuda():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
@ -715,7 +707,7 @@ class Generate:
|
||||
prompt,
|
||||
model=self.model,
|
||||
skip_normalize_legacy_blend=opt.skip_normalize,
|
||||
log_tokens=invokeai.backend.prompting.conditioning.log_tokenization,
|
||||
log_tokens=log_tokenization,
|
||||
)
|
||||
|
||||
if tool in ("gfpgan", "codeformer", "upscale"):
|
||||
@ -959,7 +951,7 @@ class Generate:
|
||||
# uncache generators so they pick up new models
|
||||
self.generators = {}
|
||||
|
||||
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
|
||||
set_seed(random.randrange(0, np.iinfo(np.uint32).max))
|
||||
if self.embedding_path is not None:
|
||||
print(f">> Loading embeddings from {self.embedding_path}")
|
||||
for root, _, files in os.walk(self.embedding_path):
|
||||
@ -973,7 +965,7 @@ class Generate:
|
||||
)
|
||||
|
||||
self.model_name = model_name
|
||||
self._set_sampler() # requires self.model_name to be set first
|
||||
self._set_scheduler() # requires self.model_name to be set first
|
||||
return self.model
|
||||
|
||||
def load_huggingface_concepts(self, concepts: list[str]):
|
||||
@ -1105,44 +1097,6 @@ class Generate:
|
||||
def is_legacy_model(self, model_name) -> bool:
|
||||
return self.model_manager.is_legacy(model_name)
|
||||
|
||||
def _set_sampler(self):
|
||||
if isinstance(self.model, DiffusionPipeline):
|
||||
return self._set_scheduler()
|
||||
else:
|
||||
return self._set_sampler_legacy()
|
||||
|
||||
# very repetitive code - can this be simplified? The KSampler names are
|
||||
# consistent, at least
|
||||
def _set_sampler_legacy(self):
|
||||
msg = f">> Setting Sampler to {self.sampler_name}"
|
||||
if self.sampler_name == "plms":
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == "ddim":
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == "k_dpm_2_a":
|
||||
self.sampler = KSampler(self.model, "dpm_2_ancestral", device=self.device)
|
||||
elif self.sampler_name == "k_dpm_2":
|
||||
self.sampler = KSampler(self.model, "dpm_2", device=self.device)
|
||||
elif self.sampler_name == "k_dpmpp_2_a":
|
||||
self.sampler = KSampler(
|
||||
self.model, "dpmpp_2s_ancestral", device=self.device
|
||||
)
|
||||
elif self.sampler_name == "k_dpmpp_2":
|
||||
self.sampler = KSampler(self.model, "dpmpp_2m", device=self.device)
|
||||
elif self.sampler_name == "k_euler_a":
|
||||
self.sampler = KSampler(self.model, "euler_ancestral", device=self.device)
|
||||
elif self.sampler_name == "k_euler":
|
||||
self.sampler = KSampler(self.model, "euler", device=self.device)
|
||||
elif self.sampler_name == "k_heun":
|
||||
self.sampler = KSampler(self.model, "heun", device=self.device)
|
||||
elif self.sampler_name == "k_lms":
|
||||
self.sampler = KSampler(self.model, "lms", device=self.device)
|
||||
else:
|
||||
msg = f">> Unsupported Sampler: {self.sampler_name}, Defaulting to plms"
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
|
||||
print(msg)
|
||||
|
||||
def _set_scheduler(self):
|
||||
default = self.model.scheduler
|
||||
|
||||
|
@ -5,7 +5,6 @@ including img2img, txt2img, and inpaint
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import os.path as osp
|
||||
import random
|
||||
import traceback
|
||||
from contextlib import nullcontext
|
||||
@ -14,15 +13,12 @@ from pathlib import Path
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from einops import rearrange
|
||||
from PIL import Image, ImageChops, ImageFilter
|
||||
from pytorch_lightning import seed_everything
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import DiffusionPipeline
|
||||
from tqdm import trange
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
|
||||
from ..stable_diffusion.diffusion.ddpm import DiffusionWrapper
|
||||
from ..util.util import rand_perlin_2d
|
||||
|
||||
downsampling = 8
|
||||
@ -33,9 +29,9 @@ class Generator:
|
||||
downsampling_factor: int
|
||||
latent_channels: int
|
||||
precision: str
|
||||
model: DiffusionWrapper | DiffusionPipeline
|
||||
model: DiffusionPipeline
|
||||
|
||||
def __init__(self, model: DiffusionWrapper | DiffusionPipeline, precision: str):
|
||||
def __init__(self, model: DiffusionPipeline, precision: str):
|
||||
self.model = model
|
||||
self.precision = precision
|
||||
self.seed = None
|
||||
@ -116,14 +112,14 @@ class Generator:
|
||||
for n in trange(iterations, desc="Generating"):
|
||||
x_T = None
|
||||
if self.variation_amount > 0:
|
||||
seed_everything(seed)
|
||||
set_seed(seed)
|
||||
target_noise = self.get_noise(width, height)
|
||||
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
|
||||
elif initial_noise is not None:
|
||||
# i.e. we specified particular variations
|
||||
x_T = initial_noise
|
||||
else:
|
||||
seed_everything(seed)
|
||||
set_seed(seed)
|
||||
try:
|
||||
x_T = self.get_noise(width, height)
|
||||
except:
|
||||
@ -283,11 +279,11 @@ class Generator:
|
||||
initial_noise = None
|
||||
if self.variation_amount > 0 or len(self.with_variations) > 0:
|
||||
# use fixed initial noise plus random noise per iteration
|
||||
seed_everything(seed)
|
||||
set_seed(seed)
|
||||
initial_noise = self.get_noise(width, height)
|
||||
for v_seed, v_weight in self.with_variations:
|
||||
seed = v_seed
|
||||
seed_everything(seed)
|
||||
set_seed(seed)
|
||||
next_noise = self.get_noise(width, height)
|
||||
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
||||
if self.variation_amount > 0:
|
||||
|
@ -1,7 +1,6 @@
|
||||
import math
|
||||
import warnings
|
||||
|
||||
from PIL import Image, ImageFilter
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class Outcrop(object):
|
||||
@ -27,7 +26,7 @@ class Outcrop(object):
|
||||
# switch samplers temporarily
|
||||
curr_sampler = self.generate.sampler
|
||||
self.generate.sampler_name = opt.sampler_name
|
||||
self.generate._set_sampler()
|
||||
self.generate._set_scheduler()
|
||||
|
||||
def wrapped_callback(img, seed, **kwargs):
|
||||
preferred_seed = (
|
||||
|
@ -9,8 +9,5 @@ from .diffusers_pipeline import (
|
||||
)
|
||||
from .diffusion import InvokeAIDiffuserComponent
|
||||
from .diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
from .diffusion.ddim import DDIMSampler
|
||||
from .diffusion.ksampler import KSampler
|
||||
from .diffusion.plms import PLMSSampler
|
||||
from .diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
from .textual_inversion_manager import TextualInversionManager
|
||||
|
@ -1,290 +0,0 @@
|
||||
import math
|
||||
from inspect import isfunction
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from torch import einsum, nn
|
||||
|
||||
from .diffusion import InvokeAICrossAttentionMixin
|
||||
from .diffusionmodules.util import checkpoint
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return {el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def max_neg_value(t):
|
||||
return -torch.finfo(t.dtype).max
|
||||
|
||||
|
||||
def init_(tensor):
|
||||
dim = tensor.shape[-1]
|
||||
std = 1 / math.sqrt(dim)
|
||||
tensor.uniform_(-std, std)
|
||||
return tensor
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = (
|
||||
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
||||
if not glu
|
||||
else GEGLU(dim, inner_dim)
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(
|
||||
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
||||
)
|
||||
|
||||
|
||||
class LinearAttention(nn.Module):
|
||||
def __init__(self, dim, heads=4, dim_head=32):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
hidden_dim = dim_head * heads
|
||||
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
||||
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
qkv = self.to_qkv(x)
|
||||
q, k, v = rearrange(
|
||||
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
||||
)
|
||||
k = k.softmax(dim=-1)
|
||||
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
||||
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
||||
out = rearrange(
|
||||
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
||||
)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class SpatialSelfAttention(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.k = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.v = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.proj_out = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = rearrange(q, "b c h w -> b (h w) c")
|
||||
k = rearrange(k, "b c h w -> b c (h w)")
|
||||
w_ = torch.einsum("bij,bjk->bik", q, k)
|
||||
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = rearrange(v, "b c h w -> b c (h w)")
|
||||
w_ = rearrange(w_, "b i j -> b j i")
|
||||
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
||||
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
def get_mem_free_total(device):
|
||||
# only on cuda
|
||||
if not torch.cuda.is_available():
|
||||
return None
|
||||
stats = torch.cuda.memory_stats(device)
|
||||
mem_active = stats["active_bytes.all.current"]
|
||||
mem_reserved = stats["reserved_bytes.all.current"]
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
return mem_free_total
|
||||
|
||||
|
||||
class CrossAttention(nn.Module, InvokeAICrossAttentionMixin):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
||||
super().__init__()
|
||||
InvokeAICrossAttentionMixin.__init__(self)
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context) * self.scale
|
||||
v = self.to_v(context)
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
||||
|
||||
# don't apply scale twice
|
||||
cached_scale = self.scale
|
||||
self.scale = 1
|
||||
r = self.get_invokeai_attention_mem_efficient(q, k, v)
|
||||
self.scale = cached_scale
|
||||
|
||||
hidden_states = rearrange(r, "(b h) n d -> b n (h d)", h=h)
|
||||
return self.to_out(hidden_states)
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=0.0,
|
||||
context_dim=None,
|
||||
gated_ff=True,
|
||||
checkpoint=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.attn1 = CrossAttention(
|
||||
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
) # is a self-attention
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||
self.attn2 = CrossAttention(
|
||||
query_dim=dim,
|
||||
context_dim=context_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
dropout=dropout,
|
||||
) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
self.checkpoint = checkpoint
|
||||
|
||||
def forward(self, x, context=None):
|
||||
return checkpoint(
|
||||
self._forward, (x, context), self.parameters(), self.checkpoint
|
||||
)
|
||||
|
||||
def _forward(self, x, context=None):
|
||||
x = x.contiguous() if x.device.type == "mps" else x
|
||||
x += self.attn1(self.norm1(x.clone()))
|
||||
x += self.attn2(self.norm2(x.clone()), context=context)
|
||||
x += self.ff(self.norm3(x.clone()))
|
||||
return x
|
||||
|
||||
|
||||
class SpatialTransformer(nn.Module):
|
||||
"""
|
||||
Transformer block for image-like data.
|
||||
First, project the input (aka embedding)
|
||||
and reshape to b, t, d.
|
||||
Then apply standard transformer action.
|
||||
Finally, reshape to image
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels)
|
||||
|
||||
self.proj_in = nn.Conv2d(
|
||||
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
|
||||
)
|
||||
for d in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.proj_out = zero_module(
|
||||
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
b, c, h, w = x.shape
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
for block in self.transformer_blocks:
|
||||
x = block(x, context=context)
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
@ -1,565 +0,0 @@
|
||||
from contextlib import contextmanager
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||
|
||||
from ..util import instantiate_from_config
|
||||
from .diffusionmodules.model import Decoder, Encoder
|
||||
from .distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
|
||||
class VQModel(pl.LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key="image",
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
batch_resize_range=None,
|
||||
scheduler_config=None,
|
||||
lr_g_factor=1.0,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
use_ema=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.n_embed = n_embed
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
self.quantize = VectorQuantizer(
|
||||
n_embed,
|
||||
embed_dim,
|
||||
beta=0.25,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
)
|
||||
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels) == int
|
||||
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
self.batch_resize_range = batch_resize_range
|
||||
if self.batch_resize_range is not None:
|
||||
print(
|
||||
f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}."
|
||||
)
|
||||
|
||||
self.use_ema = use_ema
|
||||
if self.use_ema:
|
||||
self.model_ema = LitEma(self)
|
||||
print(f">> Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
self.scheduler_config = scheduler_config
|
||||
self.lr_g_factor = lr_g_factor
|
||||
|
||||
@contextmanager
|
||||
def ema_scope(self, context=None):
|
||||
if self.use_ema:
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
print(f"{context}: Switched to EMA weights")
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
print(f"{context}: Restored training weights")
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del sd[k]
|
||||
missing, unexpected = self.load_state_dict(sd, strict=False)
|
||||
print(
|
||||
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
||||
)
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
def on_train_batch_end(self, *args, **kwargs):
|
||||
if self.use_ema:
|
||||
self.model_ema(self)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
return quant, emb_loss, info
|
||||
|
||||
def encode_to_prequant(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, quant):
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
def decode_code(self, code_b):
|
||||
quant_b = self.quantize.embed_code(code_b)
|
||||
dec = self.decode(quant_b)
|
||||
return dec
|
||||
|
||||
def forward(self, input, return_pred_indices=False):
|
||||
quant, diff, (_, _, ind) = self.encode(input)
|
||||
dec = self.decode(quant)
|
||||
if return_pred_indices:
|
||||
return dec, diff, ind
|
||||
return dec, diff
|
||||
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||
if self.batch_resize_range is not None:
|
||||
lower_size = self.batch_resize_range[0]
|
||||
upper_size = self.batch_resize_range[1]
|
||||
if self.global_step <= 4:
|
||||
# do the first few batches with max size to avoid later oom
|
||||
new_resize = upper_size
|
||||
else:
|
||||
new_resize = np.random.choice(
|
||||
np.arange(lower_size, upper_size + 16, 16)
|
||||
)
|
||||
if new_resize != x.shape[2]:
|
||||
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
||||
x = x.detach()
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
# https://github.com/pytorch/pytorch/issues/37142
|
||||
# try not to fool the heuristics
|
||||
x = self.get_input(batch, self.image_key)
|
||||
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# autoencode
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="train",
|
||||
predicted_indices=ind,
|
||||
)
|
||||
|
||||
self.log_dict(
|
||||
log_dict_ae,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# discriminator
|
||||
discloss, log_dict_disc = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="train",
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_disc,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
log_dict = self._validation_step(batch, batch_idx)
|
||||
with self.ema_scope():
|
||||
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
||||
return log_dict
|
||||
|
||||
def _validation_step(self, batch, batch_idx, suffix=""):
|
||||
x = self.get_input(batch, self.image_key)
|
||||
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="val" + suffix,
|
||||
predicted_indices=ind,
|
||||
)
|
||||
|
||||
discloss, log_dict_disc = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="val" + suffix,
|
||||
predicted_indices=ind,
|
||||
)
|
||||
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
||||
self.log(
|
||||
f"val{suffix}/rec_loss",
|
||||
rec_loss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f"val{suffix}/aeloss",
|
||||
aeloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
if version.parse(pl.__version__) >= version.parse("1.4.0"):
|
||||
del log_dict_ae[f"val{suffix}/rec_loss"]
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr_d = self.learning_rate
|
||||
lr_g = self.lr_g_factor * self.learning_rate
|
||||
print("lr_d", lr_d)
|
||||
print("lr_g", lr_g)
|
||||
opt_ae = torch.optim.Adam(
|
||||
list(self.encoder.parameters())
|
||||
+ list(self.decoder.parameters())
|
||||
+ list(self.quantize.parameters())
|
||||
+ list(self.quant_conv.parameters())
|
||||
+ list(self.post_quant_conv.parameters()),
|
||||
lr=lr_g,
|
||||
betas=(0.5, 0.9),
|
||||
)
|
||||
opt_disc = torch.optim.Adam(
|
||||
self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9)
|
||||
)
|
||||
|
||||
if self.scheduler_config is not None:
|
||||
scheduler = instantiate_from_config(self.scheduler_config)
|
||||
|
||||
print("Setting up LambdaLR scheduler...")
|
||||
scheduler = [
|
||||
{
|
||||
"scheduler": LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1,
|
||||
},
|
||||
{
|
||||
"scheduler": LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1,
|
||||
},
|
||||
]
|
||||
return [opt_ae, opt_disc], scheduler
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if only_inputs:
|
||||
log["inputs"] = x
|
||||
return log
|
||||
xrec, _ = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log["inputs"] = x
|
||||
log["reconstructions"] = xrec
|
||||
if plot_ema:
|
||||
with self.ema_scope():
|
||||
xrec_ema, _ = self(x)
|
||||
if x.shape[1] > 3:
|
||||
xrec_ema = self.to_rgb(xrec_ema)
|
||||
log["reconstructions_ema"] = xrec_ema
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == "segmentation"
|
||||
if not hasattr(self, "colorize"):
|
||||
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
||||
return x
|
||||
|
||||
|
||||
class VQModelInterface(VQModel):
|
||||
def __init__(self, embed_dim, *args, **kwargs):
|
||||
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, h, force_not_quantize=False):
|
||||
# also go through quantization layer
|
||||
if not force_not_quantize:
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
else:
|
||||
quant = h
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
|
||||
class AutoencoderKL(pl.LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key="image",
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
assert ddconfig["double_z"]
|
||||
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.embed_dim = embed_dim
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels) == int
|
||||
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del sd[k]
|
||||
self.load_state_dict(sd, strict=False)
|
||||
print(f"Restored from {path}")
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# train encoder+decoder+logvar
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="train",
|
||||
)
|
||||
self.log(
|
||||
"aeloss",
|
||||
aeloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_ae,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=False,
|
||||
)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# train the discriminator
|
||||
discloss, log_dict_disc = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="train",
|
||||
)
|
||||
|
||||
self.log(
|
||||
"discloss",
|
||||
discloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_disc,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=False,
|
||||
)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="val",
|
||||
)
|
||||
|
||||
discloss, log_dict_disc = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="val",
|
||||
)
|
||||
|
||||
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.learning_rate
|
||||
opt_ae = torch.optim.Adam(
|
||||
list(self.encoder.parameters())
|
||||
+ list(self.decoder.parameters())
|
||||
+ list(self.quant_conv.parameters())
|
||||
+ list(self.post_quant_conv.parameters()),
|
||||
lr=lr,
|
||||
betas=(0.5, 0.9),
|
||||
)
|
||||
opt_disc = torch.optim.Adam(
|
||||
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
||||
)
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, only_inputs=False, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if not only_inputs:
|
||||
xrec, posterior = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
||||
log["reconstructions"] = xrec
|
||||
log["inputs"] = x
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == "segmentation"
|
||||
if not hasattr(self, "colorize"):
|
||||
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
||||
return x
|
||||
|
||||
|
||||
class IdentityFirstStage(torch.nn.Module):
|
||||
def __init__(self, *args, vq_interface=False, **kwargs):
|
||||
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
||||
super().__init__()
|
||||
|
||||
def encode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def decode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def quantize(self, x, *args, **kwargs):
|
||||
if self.vq_interface:
|
||||
return x, None, [None, None, None]
|
||||
return x
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
return x
|
@ -1,25 +0,0 @@
|
||||
from abc import abstractmethod
|
||||
|
||||
from torch.utils.data import ChainDataset, ConcatDataset, Dataset, IterableDataset
|
||||
|
||||
|
||||
class Txt2ImgIterableBaseDataset(IterableDataset):
|
||||
"""
|
||||
Define an interface to make the IterableDatasets for text2img data chainable
|
||||
"""
|
||||
|
||||
def __init__(self, num_records=0, valid_ids=None, size=256):
|
||||
super().__init__()
|
||||
self.num_records = num_records
|
||||
self.valid_ids = valid_ids
|
||||
self.sample_ids = valid_ids
|
||||
self.size = size
|
||||
|
||||
print(f"{self.__class__.__name__} dataset contains {self.__len__()} examples.")
|
||||
|
||||
def __len__(self):
|
||||
return self.num_records
|
||||
|
||||
@abstractmethod
|
||||
def __iter__(self):
|
||||
pass
|
@ -1,453 +0,0 @@
|
||||
import glob
|
||||
import os
|
||||
import pickle
|
||||
import shutil
|
||||
import tarfile
|
||||
from functools import partial
|
||||
|
||||
import albumentations
|
||||
import cv2
|
||||
import numpy as np
|
||||
import PIL
|
||||
import taming.data.utils as tdu
|
||||
import torchvision.transforms.functional as TF
|
||||
import yaml
|
||||
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from taming.data.imagenet import (
|
||||
ImagePaths,
|
||||
download,
|
||||
give_synsets_from_indices,
|
||||
retrieve,
|
||||
str_to_indices,
|
||||
)
|
||||
from torch.utils.data import Dataset, Subset
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
||||
with open(path_to_yaml) as f:
|
||||
di2s = yaml.load(f)
|
||||
return dict((v, k) for k, v in di2s.items())
|
||||
|
||||
|
||||
class ImageNetBase(Dataset):
|
||||
def __init__(self, config=None):
|
||||
self.config = config or OmegaConf.create()
|
||||
if not type(self.config) == dict:
|
||||
self.config = OmegaConf.to_container(self.config)
|
||||
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
||||
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
||||
self._prepare()
|
||||
self._prepare_synset_to_human()
|
||||
self._prepare_idx_to_synset()
|
||||
self._prepare_human_to_integer_label()
|
||||
self._load()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.data[i]
|
||||
|
||||
def _prepare(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _filter_relpaths(self, relpaths):
|
||||
ignore = set(
|
||||
[
|
||||
"n06596364_9591.JPEG",
|
||||
]
|
||||
)
|
||||
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
||||
if "sub_indices" in self.config:
|
||||
indices = str_to_indices(self.config["sub_indices"])
|
||||
synsets = give_synsets_from_indices(
|
||||
indices, path_to_yaml=self.idx2syn
|
||||
) # returns a list of strings
|
||||
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
||||
files = []
|
||||
for rpath in relpaths:
|
||||
syn = rpath.split("/")[0]
|
||||
if syn in synsets:
|
||||
files.append(rpath)
|
||||
return files
|
||||
else:
|
||||
return relpaths
|
||||
|
||||
def _prepare_synset_to_human(self):
|
||||
SIZE = 2655750
|
||||
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
||||
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
||||
if (
|
||||
not os.path.exists(self.human_dict)
|
||||
or not os.path.getsize(self.human_dict) == SIZE
|
||||
):
|
||||
download(URL, self.human_dict)
|
||||
|
||||
def _prepare_idx_to_synset(self):
|
||||
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
||||
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
||||
if not os.path.exists(self.idx2syn):
|
||||
download(URL, self.idx2syn)
|
||||
|
||||
def _prepare_human_to_integer_label(self):
|
||||
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
||||
self.human2integer = os.path.join(
|
||||
self.root, "imagenet1000_clsidx_to_labels.txt"
|
||||
)
|
||||
if not os.path.exists(self.human2integer):
|
||||
download(URL, self.human2integer)
|
||||
with open(self.human2integer, "r") as f:
|
||||
lines = f.read().splitlines()
|
||||
assert len(lines) == 1000
|
||||
self.human2integer_dict = dict()
|
||||
for line in lines:
|
||||
value, key = line.split(":")
|
||||
self.human2integer_dict[key] = int(value)
|
||||
|
||||
def _load(self):
|
||||
with open(self.txt_filelist, "r") as f:
|
||||
self.relpaths = f.read().splitlines()
|
||||
l1 = len(self.relpaths)
|
||||
self.relpaths = self._filter_relpaths(self.relpaths)
|
||||
print(
|
||||
"Removed {} files from filelist during filtering.".format(
|
||||
l1 - len(self.relpaths)
|
||||
)
|
||||
)
|
||||
|
||||
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
||||
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
||||
|
||||
unique_synsets = np.unique(self.synsets)
|
||||
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
||||
if not self.keep_orig_class_label:
|
||||
self.class_labels = [class_dict[s] for s in self.synsets]
|
||||
else:
|
||||
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
||||
|
||||
with open(self.human_dict, "r") as f:
|
||||
human_dict = f.read().splitlines()
|
||||
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
||||
|
||||
self.human_labels = [human_dict[s] for s in self.synsets]
|
||||
|
||||
labels = {
|
||||
"relpath": np.array(self.relpaths),
|
||||
"synsets": np.array(self.synsets),
|
||||
"class_label": np.array(self.class_labels),
|
||||
"human_label": np.array(self.human_labels),
|
||||
}
|
||||
|
||||
if self.process_images:
|
||||
self.size = retrieve(self.config, "size", default=256)
|
||||
self.data = ImagePaths(
|
||||
self.abspaths,
|
||||
labels=labels,
|
||||
size=self.size,
|
||||
random_crop=self.random_crop,
|
||||
)
|
||||
else:
|
||||
self.data = self.abspaths
|
||||
|
||||
|
||||
class ImageNetTrain(ImageNetBase):
|
||||
NAME = "ILSVRC2012_train"
|
||||
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
||||
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
||||
FILES = [
|
||||
"ILSVRC2012_img_train.tar",
|
||||
]
|
||||
SIZES = [
|
||||
147897477120,
|
||||
]
|
||||
|
||||
def __init__(self, process_images=True, data_root=None, **kwargs):
|
||||
self.process_images = process_images
|
||||
self.data_root = data_root
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _prepare(self):
|
||||
if self.data_root:
|
||||
self.root = os.path.join(self.data_root, self.NAME)
|
||||
else:
|
||||
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
||||
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
||||
|
||||
self.datadir = os.path.join(self.root, "data")
|
||||
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
||||
self.expected_length = 1281167
|
||||
self.random_crop = retrieve(
|
||||
self.config, "ImageNetTrain/random_crop", default=True
|
||||
)
|
||||
if not tdu.is_prepared(self.root):
|
||||
# prep
|
||||
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
||||
|
||||
datadir = self.datadir
|
||||
if not os.path.exists(datadir):
|
||||
path = os.path.join(self.root, self.FILES[0])
|
||||
if (
|
||||
not os.path.exists(path)
|
||||
or not os.path.getsize(path) == self.SIZES[0]
|
||||
):
|
||||
import academictorrents as at
|
||||
|
||||
atpath = at.get(self.AT_HASH, datastore=self.root)
|
||||
assert atpath == path
|
||||
|
||||
print("Extracting {} to {}".format(path, datadir))
|
||||
os.makedirs(datadir, exist_ok=True)
|
||||
with tarfile.open(path, "r:") as tar:
|
||||
tar.extractall(path=datadir)
|
||||
|
||||
print("Extracting sub-tars.")
|
||||
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
||||
for subpath in tqdm(subpaths):
|
||||
subdir = subpath[: -len(".tar")]
|
||||
os.makedirs(subdir, exist_ok=True)
|
||||
with tarfile.open(subpath, "r:") as tar:
|
||||
tar.extractall(path=subdir)
|
||||
|
||||
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
||||
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
||||
filelist = sorted(filelist)
|
||||
filelist = "\n".join(filelist) + "\n"
|
||||
with open(self.txt_filelist, "w") as f:
|
||||
f.write(filelist)
|
||||
|
||||
tdu.mark_prepared(self.root)
|
||||
|
||||
|
||||
class ImageNetValidation(ImageNetBase):
|
||||
NAME = "ILSVRC2012_validation"
|
||||
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
||||
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
||||
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
||||
FILES = [
|
||||
"ILSVRC2012_img_val.tar",
|
||||
"validation_synset.txt",
|
||||
]
|
||||
SIZES = [
|
||||
6744924160,
|
||||
1950000,
|
||||
]
|
||||
|
||||
def __init__(self, process_images=True, data_root=None, **kwargs):
|
||||
self.data_root = data_root
|
||||
self.process_images = process_images
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _prepare(self):
|
||||
if self.data_root:
|
||||
self.root = os.path.join(self.data_root, self.NAME)
|
||||
else:
|
||||
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
||||
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
||||
self.datadir = os.path.join(self.root, "data")
|
||||
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
||||
self.expected_length = 50000
|
||||
self.random_crop = retrieve(
|
||||
self.config, "ImageNetValidation/random_crop", default=False
|
||||
)
|
||||
if not tdu.is_prepared(self.root):
|
||||
# prep
|
||||
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
||||
|
||||
datadir = self.datadir
|
||||
if not os.path.exists(datadir):
|
||||
path = os.path.join(self.root, self.FILES[0])
|
||||
if (
|
||||
not os.path.exists(path)
|
||||
or not os.path.getsize(path) == self.SIZES[0]
|
||||
):
|
||||
import academictorrents as at
|
||||
|
||||
atpath = at.get(self.AT_HASH, datastore=self.root)
|
||||
assert atpath == path
|
||||
|
||||
print("Extracting {} to {}".format(path, datadir))
|
||||
os.makedirs(datadir, exist_ok=True)
|
||||
with tarfile.open(path, "r:") as tar:
|
||||
tar.extractall(path=datadir)
|
||||
|
||||
vspath = os.path.join(self.root, self.FILES[1])
|
||||
if (
|
||||
not os.path.exists(vspath)
|
||||
or not os.path.getsize(vspath) == self.SIZES[1]
|
||||
):
|
||||
download(self.VS_URL, vspath)
|
||||
|
||||
with open(vspath, "r") as f:
|
||||
synset_dict = f.read().splitlines()
|
||||
synset_dict = dict(line.split() for line in synset_dict)
|
||||
|
||||
print("Reorganizing into synset folders")
|
||||
synsets = np.unique(list(synset_dict.values()))
|
||||
for s in synsets:
|
||||
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
||||
for k, v in synset_dict.items():
|
||||
src = os.path.join(datadir, k)
|
||||
dst = os.path.join(datadir, v)
|
||||
shutil.move(src, dst)
|
||||
|
||||
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
||||
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
||||
filelist = sorted(filelist)
|
||||
filelist = "\n".join(filelist) + "\n"
|
||||
with open(self.txt_filelist, "w") as f:
|
||||
f.write(filelist)
|
||||
|
||||
tdu.mark_prepared(self.root)
|
||||
|
||||
|
||||
class ImageNetSR(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
size=None,
|
||||
degradation=None,
|
||||
downscale_f=4,
|
||||
min_crop_f=0.5,
|
||||
max_crop_f=1.0,
|
||||
random_crop=True,
|
||||
):
|
||||
"""
|
||||
Imagenet Superresolution Dataloader
|
||||
Performs following ops in order:
|
||||
1. crops a crop of size s from image either as random or center crop
|
||||
2. resizes crop to size with cv2.area_interpolation
|
||||
3. degrades resized crop with degradation_fn
|
||||
|
||||
:param size: resizing to size after cropping
|
||||
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
||||
:param downscale_f: Low Resolution Downsample factor
|
||||
:param min_crop_f: determines crop size s,
|
||||
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
||||
:param max_crop_f: ""
|
||||
:param data_root:
|
||||
:param random_crop:
|
||||
"""
|
||||
self.base = self.get_base()
|
||||
assert size
|
||||
assert (size / downscale_f).is_integer()
|
||||
self.size = size
|
||||
self.LR_size = int(size / downscale_f)
|
||||
self.min_crop_f = min_crop_f
|
||||
self.max_crop_f = max_crop_f
|
||||
assert max_crop_f <= 1.0
|
||||
self.center_crop = not random_crop
|
||||
|
||||
self.image_rescaler = albumentations.SmallestMaxSize(
|
||||
max_size=size, interpolation=cv2.INTER_AREA
|
||||
)
|
||||
|
||||
self.pil_interpolation = (
|
||||
False # gets reset later if incase interp_op is from pillow
|
||||
)
|
||||
|
||||
if degradation == "bsrgan":
|
||||
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
||||
|
||||
elif degradation == "bsrgan_light":
|
||||
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
||||
|
||||
else:
|
||||
interpolation_fn = {
|
||||
"cv_nearest": cv2.INTER_NEAREST,
|
||||
"cv_bilinear": cv2.INTER_LINEAR,
|
||||
"cv_bicubic": cv2.INTER_CUBIC,
|
||||
"cv_area": cv2.INTER_AREA,
|
||||
"cv_lanczos": cv2.INTER_LANCZOS4,
|
||||
"pil_nearest": PIL.Image.NEAREST,
|
||||
"pil_bilinear": PIL.Image.BILINEAR,
|
||||
"pil_bicubic": PIL.Image.BICUBIC,
|
||||
"pil_box": PIL.Image.BOX,
|
||||
"pil_hamming": PIL.Image.HAMMING,
|
||||
"pil_lanczos": PIL.Image.LANCZOS,
|
||||
}[degradation]
|
||||
|
||||
self.pil_interpolation = degradation.startswith("pil_")
|
||||
|
||||
if self.pil_interpolation:
|
||||
self.degradation_process = partial(
|
||||
TF.resize,
|
||||
size=self.LR_size,
|
||||
interpolation=interpolation_fn,
|
||||
)
|
||||
|
||||
else:
|
||||
self.degradation_process = albumentations.SmallestMaxSize(
|
||||
max_size=self.LR_size, interpolation=interpolation_fn
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.base)
|
||||
|
||||
def __getitem__(self, i):
|
||||
example = self.base[i]
|
||||
image = Image.open(example["file_path_"])
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
image = np.array(image).astype(np.uint8)
|
||||
|
||||
min_side_len = min(image.shape[:2])
|
||||
crop_side_len = min_side_len * np.random.uniform(
|
||||
self.min_crop_f, self.max_crop_f, size=None
|
||||
)
|
||||
crop_side_len = int(crop_side_len)
|
||||
|
||||
if self.center_crop:
|
||||
self.cropper = albumentations.CenterCrop(
|
||||
height=crop_side_len, width=crop_side_len
|
||||
)
|
||||
|
||||
else:
|
||||
self.cropper = albumentations.RandomCrop(
|
||||
height=crop_side_len, width=crop_side_len
|
||||
)
|
||||
|
||||
image = self.cropper(image=image)["image"]
|
||||
image = self.image_rescaler(image=image)["image"]
|
||||
|
||||
if self.pil_interpolation:
|
||||
image_pil = PIL.Image.fromarray(image)
|
||||
LR_image = self.degradation_process(image_pil)
|
||||
LR_image = np.array(LR_image).astype(np.uint8)
|
||||
|
||||
else:
|
||||
LR_image = self.degradation_process(image=image)["image"]
|
||||
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
example["LR_image"] = (LR_image / 127.5 - 1.0).astype(np.float32)
|
||||
|
||||
return example
|
||||
|
||||
|
||||
class ImageNetSRTrain(ImageNetSR):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def get_base(self):
|
||||
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
||||
indices = pickle.load(f)
|
||||
dset = ImageNetTrain(
|
||||
process_images=False,
|
||||
)
|
||||
return Subset(dset, indices)
|
||||
|
||||
|
||||
class ImageNetSRValidation(ImageNetSR):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def get_base(self):
|
||||
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
||||
indices = pickle.load(f)
|
||||
dset = ImageNetValidation(
|
||||
process_images=False,
|
||||
)
|
||||
return Subset(dset, indices)
|
@ -1,124 +0,0 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
class LSUNBase(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
txt_file,
|
||||
data_root,
|
||||
size=None,
|
||||
interpolation="bicubic",
|
||||
flip_p=0.5,
|
||||
):
|
||||
self.data_paths = txt_file
|
||||
self.data_root = data_root
|
||||
with open(self.data_paths, "r") as f:
|
||||
self.image_paths = f.read().splitlines()
|
||||
self._length = len(self.image_paths)
|
||||
self.labels = {
|
||||
"relative_file_path_": [l for l in self.image_paths],
|
||||
"file_path_": [os.path.join(self.data_root, l) for l in self.image_paths],
|
||||
}
|
||||
|
||||
self.size = size
|
||||
self.interpolation = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
def __getitem__(self, i):
|
||||
example = dict((k, self.labels[k][i]) for k in self.labels)
|
||||
image = Image.open(example["file_path_"])
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
(
|
||||
h,
|
||||
w,
|
||||
) = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[
|
||||
(h - crop) // 2 : (h + crop) // 2,
|
||||
(w - crop) // 2 : (w + crop) // 2,
|
||||
]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
||||
|
||||
|
||||
class LSUNChurchesTrain(LSUNBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(
|
||||
txt_file="data/lsun/church_outdoor_train.txt",
|
||||
data_root="data/lsun/churches",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class LSUNChurchesValidation(LSUNBase):
|
||||
def __init__(self, flip_p=0.0, **kwargs):
|
||||
super().__init__(
|
||||
txt_file="data/lsun/church_outdoor_val.txt",
|
||||
data_root="data/lsun/churches",
|
||||
flip_p=flip_p,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class LSUNBedroomsTrain(LSUNBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(
|
||||
txt_file="data/lsun/bedrooms_train.txt",
|
||||
data_root="data/lsun/bedrooms",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class LSUNBedroomsValidation(LSUNBase):
|
||||
def __init__(self, flip_p=0.0, **kwargs):
|
||||
super().__init__(
|
||||
txt_file="data/lsun/bedrooms_val.txt",
|
||||
data_root="data/lsun/bedrooms",
|
||||
flip_p=flip_p,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class LSUNCatsTrain(LSUNBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(
|
||||
txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs
|
||||
)
|
||||
|
||||
|
||||
class LSUNCatsValidation(LSUNBase):
|
||||
def __init__(self, flip_p=0.0, **kwargs):
|
||||
super().__init__(
|
||||
txt_file="data/lsun/cat_val.txt",
|
||||
data_root="data/lsun/cats",
|
||||
flip_p=flip_p,
|
||||
**kwargs,
|
||||
)
|
@ -1,199 +0,0 @@
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
|
||||
imagenet_templates_smallest = [
|
||||
"a photo of a {}",
|
||||
]
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a photo of a {}",
|
||||
"a rendering of a {}",
|
||||
"a cropped photo of the {}",
|
||||
"the photo of a {}",
|
||||
"a photo of a clean {}",
|
||||
"a photo of a dirty {}",
|
||||
"a dark photo of the {}",
|
||||
"a photo of my {}",
|
||||
"a photo of the cool {}",
|
||||
"a close-up photo of a {}",
|
||||
"a bright photo of the {}",
|
||||
"a cropped photo of a {}",
|
||||
"a photo of the {}",
|
||||
"a good photo of the {}",
|
||||
"a photo of one {}",
|
||||
"a close-up photo of the {}",
|
||||
"a rendition of the {}",
|
||||
"a photo of the clean {}",
|
||||
"a rendition of a {}",
|
||||
"a photo of a nice {}",
|
||||
"a good photo of a {}",
|
||||
"a photo of the nice {}",
|
||||
"a photo of the small {}",
|
||||
"a photo of the weird {}",
|
||||
"a photo of the large {}",
|
||||
"a photo of a cool {}",
|
||||
"a photo of a small {}",
|
||||
]
|
||||
|
||||
imagenet_dual_templates_small = [
|
||||
"a photo of a {} with {}",
|
||||
"a rendering of a {} with {}",
|
||||
"a cropped photo of the {} with {}",
|
||||
"the photo of a {} with {}",
|
||||
"a photo of a clean {} with {}",
|
||||
"a photo of a dirty {} with {}",
|
||||
"a dark photo of the {} with {}",
|
||||
"a photo of my {} with {}",
|
||||
"a photo of the cool {} with {}",
|
||||
"a close-up photo of a {} with {}",
|
||||
"a bright photo of the {} with {}",
|
||||
"a cropped photo of a {} with {}",
|
||||
"a photo of the {} with {}",
|
||||
"a good photo of the {} with {}",
|
||||
"a photo of one {} with {}",
|
||||
"a close-up photo of the {} with {}",
|
||||
"a rendition of the {} with {}",
|
||||
"a photo of the clean {} with {}",
|
||||
"a rendition of a {} with {}",
|
||||
"a photo of a nice {} with {}",
|
||||
"a good photo of a {} with {}",
|
||||
"a photo of the nice {} with {}",
|
||||
"a photo of the small {} with {}",
|
||||
"a photo of the weird {} with {}",
|
||||
"a photo of the large {} with {}",
|
||||
"a photo of a cool {} with {}",
|
||||
"a photo of a small {} with {}",
|
||||
]
|
||||
|
||||
per_img_token_list = [
|
||||
"א",
|
||||
"ב",
|
||||
"ג",
|
||||
"ד",
|
||||
"ה",
|
||||
"ו",
|
||||
"ז",
|
||||
"ח",
|
||||
"ט",
|
||||
"י",
|
||||
"כ",
|
||||
"ל",
|
||||
"מ",
|
||||
"נ",
|
||||
"ס",
|
||||
"ע",
|
||||
"פ",
|
||||
"צ",
|
||||
"ק",
|
||||
"ר",
|
||||
"ש",
|
||||
"ת",
|
||||
]
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
data_root,
|
||||
size=None,
|
||||
repeats=100,
|
||||
interpolation="bicubic",
|
||||
flip_p=0.5,
|
||||
set="train",
|
||||
placeholder_token="*",
|
||||
per_image_tokens=False,
|
||||
center_crop=False,
|
||||
mixing_prob=0.25,
|
||||
coarse_class_text=None,
|
||||
):
|
||||
self.data_root = data_root
|
||||
|
||||
self.image_paths = [
|
||||
os.path.join(self.data_root, file_path)
|
||||
for file_path in os.listdir(self.data_root)
|
||||
if file_path != ".DS_Store"
|
||||
]
|
||||
|
||||
# self._length = len(self.image_paths)
|
||||
self.num_images = len(self.image_paths)
|
||||
self._length = self.num_images
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.per_image_tokens = per_image_tokens
|
||||
self.center_crop = center_crop
|
||||
self.mixing_prob = mixing_prob
|
||||
|
||||
self.coarse_class_text = coarse_class_text
|
||||
|
||||
if per_image_tokens:
|
||||
assert self.num_images < len(
|
||||
per_img_token_list
|
||||
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
|
||||
if set == "train":
|
||||
self._length = self.num_images * repeats
|
||||
|
||||
self.size = size
|
||||
self.interpolation = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
def __getitem__(self, i):
|
||||
example = {}
|
||||
image = Image.open(self.image_paths[i % self.num_images])
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
placeholder_string = self.placeholder_token
|
||||
if self.coarse_class_text:
|
||||
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
|
||||
|
||||
if self.per_image_tokens and np.random.uniform() < self.mixing_prob:
|
||||
text = random.choice(imagenet_dual_templates_small).format(
|
||||
placeholder_string, per_img_token_list[i % self.num_images]
|
||||
)
|
||||
else:
|
||||
text = random.choice(imagenet_templates_small).format(placeholder_string)
|
||||
|
||||
example["caption"] = text
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
(
|
||||
h,
|
||||
w,
|
||||
) = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[
|
||||
(h - crop) // 2 : (h + crop) // 2,
|
||||
(w - crop) // 2 : (w + crop) // 2,
|
||||
]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
@ -1,170 +0,0 @@
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a painting in the style of {}",
|
||||
"a rendering in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"the painting in the style of {}",
|
||||
"a clean painting in the style of {}",
|
||||
"a dirty painting in the style of {}",
|
||||
"a dark painting in the style of {}",
|
||||
"a picture in the style of {}",
|
||||
"a cool painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a bright painting in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"a good painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a rendition in the style of {}",
|
||||
"a nice painting in the style of {}",
|
||||
"a small painting in the style of {}",
|
||||
"a weird painting in the style of {}",
|
||||
"a large painting in the style of {}",
|
||||
]
|
||||
|
||||
imagenet_dual_templates_small = [
|
||||
"a painting in the style of {} with {}",
|
||||
"a rendering in the style of {} with {}",
|
||||
"a cropped painting in the style of {} with {}",
|
||||
"the painting in the style of {} with {}",
|
||||
"a clean painting in the style of {} with {}",
|
||||
"a dirty painting in the style of {} with {}",
|
||||
"a dark painting in the style of {} with {}",
|
||||
"a cool painting in the style of {} with {}",
|
||||
"a close-up painting in the style of {} with {}",
|
||||
"a bright painting in the style of {} with {}",
|
||||
"a cropped painting in the style of {} with {}",
|
||||
"a good painting in the style of {} with {}",
|
||||
"a painting of one {} in the style of {}",
|
||||
"a nice painting in the style of {} with {}",
|
||||
"a small painting in the style of {} with {}",
|
||||
"a weird painting in the style of {} with {}",
|
||||
"a large painting in the style of {} with {}",
|
||||
]
|
||||
|
||||
per_img_token_list = [
|
||||
"א",
|
||||
"ב",
|
||||
"ג",
|
||||
"ד",
|
||||
"ה",
|
||||
"ו",
|
||||
"ז",
|
||||
"ח",
|
||||
"ט",
|
||||
"י",
|
||||
"כ",
|
||||
"ל",
|
||||
"מ",
|
||||
"נ",
|
||||
"ס",
|
||||
"ע",
|
||||
"פ",
|
||||
"צ",
|
||||
"ק",
|
||||
"ר",
|
||||
"ש",
|
||||
"ת",
|
||||
]
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
data_root,
|
||||
size=None,
|
||||
repeats=100,
|
||||
interpolation="bicubic",
|
||||
flip_p=0.5,
|
||||
set="train",
|
||||
placeholder_token="*",
|
||||
per_image_tokens=False,
|
||||
center_crop=False,
|
||||
):
|
||||
self.data_root = data_root
|
||||
|
||||
self.image_paths = [
|
||||
os.path.join(self.data_root, file_path)
|
||||
for file_path in os.listdir(self.data_root)
|
||||
if file_path != ".DS_Store"
|
||||
]
|
||||
|
||||
# self._length = len(self.image_paths)
|
||||
self.num_images = len(self.image_paths)
|
||||
self._length = self.num_images
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.per_image_tokens = per_image_tokens
|
||||
self.center_crop = center_crop
|
||||
|
||||
if per_image_tokens:
|
||||
assert self.num_images < len(
|
||||
per_img_token_list
|
||||
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
|
||||
if set == "train":
|
||||
self._length = self.num_images * repeats
|
||||
|
||||
self.size = size
|
||||
self.interpolation = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
def __getitem__(self, i):
|
||||
example = {}
|
||||
image = Image.open(self.image_paths[i % self.num_images])
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
if self.per_image_tokens and np.random.uniform() < 0.25:
|
||||
text = random.choice(imagenet_dual_templates_small).format(
|
||||
self.placeholder_token, per_img_token_list[i % self.num_images]
|
||||
)
|
||||
else:
|
||||
text = random.choice(imagenet_templates_small).format(
|
||||
self.placeholder_token
|
||||
)
|
||||
|
||||
example["caption"] = text
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
(
|
||||
h,
|
||||
w,
|
||||
) = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[
|
||||
(h - crop) // 2 : (h + crop) // 2,
|
||||
(w - crop) // 2 : (w + crop) // 2,
|
||||
]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
@ -1,330 +0,0 @@
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from glob import glob
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
||||
from ldm.util import default, instantiate_from_config, ismap, log_txt_as_img
|
||||
from natsort import natsorted
|
||||
from omegaconf import OmegaConf
|
||||
from torch.nn import functional as F
|
||||
from torch.optim import AdamW
|
||||
from torch.optim.lr_scheduler import LambdaLR
|
||||
|
||||
__models__ = {"class_label": EncoderUNetModel, "segmentation": UNetModel}
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
diffusion_path,
|
||||
num_classes,
|
||||
ckpt_path=None,
|
||||
pool="attention",
|
||||
label_key=None,
|
||||
diffusion_ckpt_path=None,
|
||||
scheduler_config=None,
|
||||
weight_decay=1.0e-2,
|
||||
log_steps=10,
|
||||
monitor="val/loss",
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_classes = num_classes
|
||||
# get latest config of diffusion model
|
||||
diffusion_config = natsorted(
|
||||
glob(os.path.join(diffusion_path, "configs", "*-project.yaml"))
|
||||
)[-1]
|
||||
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
||||
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
||||
self.load_diffusion()
|
||||
|
||||
self.monitor = monitor
|
||||
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
||||
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
||||
self.log_steps = log_steps
|
||||
|
||||
self.label_key = (
|
||||
label_key
|
||||
if not hasattr(self.diffusion_model, "cond_stage_key")
|
||||
else self.diffusion_model.cond_stage_key
|
||||
)
|
||||
|
||||
assert (
|
||||
self.label_key is not None
|
||||
), "label_key neither in diffusion model nor in model.params"
|
||||
|
||||
if self.label_key not in __models__:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.load_classifier(ckpt_path, pool)
|
||||
|
||||
self.scheduler_config = scheduler_config
|
||||
self.use_scheduler = self.scheduler_config is not None
|
||||
self.weight_decay = weight_decay
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
||||
sd = torch.load(path, map_location="cpu")
|
||||
if "state_dict" in list(sd.keys()):
|
||||
sd = sd["state_dict"]
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del sd[k]
|
||||
missing, unexpected = (
|
||||
self.load_state_dict(sd, strict=False)
|
||||
if not only_model
|
||||
else self.model.load_state_dict(sd, strict=False)
|
||||
)
|
||||
print(
|
||||
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
||||
)
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
if len(unexpected) > 0:
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
def load_diffusion(self):
|
||||
model = instantiate_from_config(self.diffusion_config)
|
||||
self.diffusion_model = model.eval()
|
||||
self.diffusion_model.train = disabled_train
|
||||
for param in self.diffusion_model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def load_classifier(self, ckpt_path, pool):
|
||||
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
||||
model_config.in_channels = (
|
||||
self.diffusion_config.params.unet_config.params.out_channels
|
||||
)
|
||||
model_config.out_channels = self.num_classes
|
||||
if self.label_key == "class_label":
|
||||
model_config.pool = pool
|
||||
|
||||
self.model = __models__[self.label_key](**model_config)
|
||||
if ckpt_path is not None:
|
||||
print(
|
||||
"#####################################################################"
|
||||
)
|
||||
print(f'load from ckpt "{ckpt_path}"')
|
||||
print(
|
||||
"#####################################################################"
|
||||
)
|
||||
self.init_from_ckpt(ckpt_path)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_x_noisy(self, x, t, noise=None):
|
||||
noise = default(noise, lambda: torch.randn_like(x))
|
||||
continuous_sqrt_alpha_cumprod = None
|
||||
if self.diffusion_model.use_continuous_noise:
|
||||
continuous_sqrt_alpha_cumprod = (
|
||||
self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
||||
)
|
||||
# todo: make sure t+1 is correct here
|
||||
|
||||
return self.diffusion_model.q_sample(
|
||||
x_start=x,
|
||||
t=t,
|
||||
noise=noise,
|
||||
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod,
|
||||
)
|
||||
|
||||
def forward(self, x_noisy, t, *args, **kwargs):
|
||||
return self.model(x_noisy, t)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = rearrange(x, "b h w c -> b c h w")
|
||||
x = x.to(memory_format=torch.contiguous_format).float()
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def get_conditioning(self, batch, k=None):
|
||||
if k is None:
|
||||
k = self.label_key
|
||||
assert k is not None, "Needs to provide label key"
|
||||
|
||||
targets = batch[k].to(self.device)
|
||||
|
||||
if self.label_key == "segmentation":
|
||||
targets = rearrange(targets, "b h w c -> b c h w")
|
||||
for down in range(self.numd):
|
||||
h, w = targets.shape[-2:]
|
||||
targets = F.interpolate(targets, size=(h // 2, w // 2), mode="nearest")
|
||||
|
||||
# targets = rearrange(targets,'b c h w -> b h w c')
|
||||
|
||||
return targets
|
||||
|
||||
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
||||
_, top_ks = torch.topk(logits, k, dim=1)
|
||||
if reduction == "mean":
|
||||
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
||||
elif reduction == "none":
|
||||
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
||||
|
||||
def on_train_epoch_start(self):
|
||||
# save some memory
|
||||
self.diffusion_model.model.to("cpu")
|
||||
|
||||
@torch.no_grad()
|
||||
def write_logs(self, loss, logits, targets):
|
||||
log_prefix = "train" if self.training else "val"
|
||||
log = {}
|
||||
log[f"{log_prefix}/loss"] = loss.mean()
|
||||
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
||||
logits, targets, k=1, reduction="mean"
|
||||
)
|
||||
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
||||
logits, targets, k=5, reduction="mean"
|
||||
)
|
||||
|
||||
self.log_dict(
|
||||
log,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=self.training,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log("loss", log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
||||
self.log(
|
||||
"global_step",
|
||||
self.global_step,
|
||||
logger=False,
|
||||
on_epoch=False,
|
||||
prog_bar=True,
|
||||
)
|
||||
lr = self.optimizers().param_groups[0]["lr"]
|
||||
self.log(
|
||||
"lr_abs",
|
||||
lr,
|
||||
on_step=True,
|
||||
logger=True,
|
||||
on_epoch=False,
|
||||
prog_bar=True,
|
||||
)
|
||||
|
||||
def shared_step(self, batch, t=None):
|
||||
x, *_ = self.diffusion_model.get_input(
|
||||
batch, k=self.diffusion_model.first_stage_key
|
||||
)
|
||||
targets = self.get_conditioning(batch)
|
||||
if targets.dim() == 4:
|
||||
targets = targets.argmax(dim=1)
|
||||
if t is None:
|
||||
t = torch.randint(
|
||||
0,
|
||||
self.diffusion_model.num_timesteps,
|
||||
(x.shape[0],),
|
||||
device=self.device,
|
||||
).long()
|
||||
else:
|
||||
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
||||
x_noisy = self.get_x_noisy(x, t)
|
||||
logits = self(x_noisy, t)
|
||||
|
||||
loss = F.cross_entropy(logits, targets, reduction="none")
|
||||
|
||||
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
||||
|
||||
loss = loss.mean()
|
||||
return loss, logits, x_noisy, targets
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
loss, *_ = self.shared_step(batch)
|
||||
return loss
|
||||
|
||||
def reset_noise_accs(self):
|
||||
self.noisy_acc = {
|
||||
t: {"acc@1": [], "acc@5": []}
|
||||
for t in range(
|
||||
0,
|
||||
self.diffusion_model.num_timesteps,
|
||||
self.diffusion_model.log_every_t,
|
||||
)
|
||||
}
|
||||
|
||||
def on_validation_start(self):
|
||||
self.reset_noise_accs()
|
||||
|
||||
@torch.no_grad()
|
||||
def validation_step(self, batch, batch_idx):
|
||||
loss, *_ = self.shared_step(batch)
|
||||
|
||||
for t in self.noisy_acc:
|
||||
_, logits, _, targets = self.shared_step(batch, t)
|
||||
self.noisy_acc[t]["acc@1"].append(
|
||||
self.compute_top_k(logits, targets, k=1, reduction="mean")
|
||||
)
|
||||
self.noisy_acc[t]["acc@5"].append(
|
||||
self.compute_top_k(logits, targets, k=5, reduction="mean")
|
||||
)
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = AdamW(
|
||||
self.model.parameters(),
|
||||
lr=self.learning_rate,
|
||||
weight_decay=self.weight_decay,
|
||||
)
|
||||
|
||||
if self.use_scheduler:
|
||||
scheduler = instantiate_from_config(self.scheduler_config)
|
||||
|
||||
print("Setting up LambdaLR scheduler...")
|
||||
scheduler = [
|
||||
{
|
||||
"scheduler": LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
||||
"interval": "step",
|
||||
"frequency": 1,
|
||||
}
|
||||
]
|
||||
return [optimizer], scheduler
|
||||
|
||||
return optimizer
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, N=8, *args, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
||||
log["inputs"] = x
|
||||
|
||||
y = self.get_conditioning(batch)
|
||||
|
||||
if self.label_key == "class_label":
|
||||
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
||||
log["labels"] = y
|
||||
|
||||
if ismap(y):
|
||||
log["labels"] = self.diffusion_model.to_rgb(y)
|
||||
|
||||
for step in range(self.log_steps):
|
||||
current_time = step * self.log_time_interval
|
||||
|
||||
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
||||
|
||||
log[f"inputs@t{current_time}"] = x_noisy
|
||||
|
||||
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
||||
pred = rearrange(pred, "b h w c -> b c h w")
|
||||
|
||||
log[f"pred@t{current_time}"] = self.diffusion_model.to_rgb(pred)
|
||||
|
||||
for key in log:
|
||||
log[key] = log[key][:N]
|
||||
|
||||
return log
|
@ -1,113 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
|
||||
from ..diffusionmodules.util import noise_like
|
||||
from .sampler import Sampler
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
|
||||
class DDIMSampler(Sampler):
|
||||
def __init__(self, model, schedule="linear", device=None, **kwargs):
|
||||
super().__init__(model, schedule, model.num_timesteps, device)
|
||||
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(
|
||||
self.model,
|
||||
model_forward_callback=lambda x, sigma, cond: self.model.apply_model(
|
||||
x, sigma, cond
|
||||
),
|
||||
)
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
super().prepare_to_sample(t_enc, **kwargs)
|
||||
|
||||
extra_conditioning_info = kwargs.get("extra_conditioning_info", None)
|
||||
all_timesteps_count = kwargs.get("all_timesteps_count", t_enc)
|
||||
|
||||
if (
|
||||
extra_conditioning_info is not None
|
||||
and extra_conditioning_info.wants_cross_attention_control
|
||||
):
|
||||
self.invokeai_diffuser.override_cross_attention(
|
||||
extra_conditioning_info, step_count=all_timesteps_count
|
||||
)
|
||||
else:
|
||||
self.invokeai_diffuser.restore_default_cross_attention()
|
||||
|
||||
# This is the central routine
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
step_count: int = 1000, # total number of steps
|
||||
**kwargs,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
||||
# damian0815 would like to know when/if this code path is used
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
# step_index counts in the opposite direction to index
|
||||
step_index = step_count - (index + 1)
|
||||
e_t = self.invokeai_diffuser.do_diffusion_step(
|
||||
x,
|
||||
t,
|
||||
unconditional_conditioning,
|
||||
c,
|
||||
unconditional_guidance_scale,
|
||||
step_index=step_index,
|
||||
)
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0, None
|
File diff suppressed because it is too large
Load Diff
@ -1,339 +0,0 @@
|
||||
"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers"""
|
||||
|
||||
import k_diffusion as K
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .cross_attention_map_saving import AttentionMapSaver
|
||||
from .sampler import Sampler
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
# at this threshold, the scheduler will stop using the Karras
|
||||
# noise schedule and start using the model's schedule
|
||||
STEP_THRESHOLD = 30
|
||||
|
||||
|
||||
def cfg_apply_threshold(result, threshold=0.0, scale=0.7):
|
||||
if threshold <= 0.0:
|
||||
return result
|
||||
maxval = 0.0 + torch.max(result).cpu().numpy()
|
||||
minval = 0.0 + torch.min(result).cpu().numpy()
|
||||
if maxval < threshold and minval > -threshold:
|
||||
return result
|
||||
if maxval > threshold:
|
||||
maxval = min(max(1, scale * maxval), threshold)
|
||||
if minval < -threshold:
|
||||
minval = max(min(-1, scale * minval), -threshold)
|
||||
return torch.clamp(result, min=minval, max=maxval)
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model, threshold=0, warmup=0):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.threshold = threshold
|
||||
self.warmup_max = warmup
|
||||
self.warmup = max(warmup / 10, 1)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(
|
||||
model,
|
||||
model_forward_callback=lambda x, sigma, cond: self.inner_model(
|
||||
x, sigma, cond=cond
|
||||
),
|
||||
)
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
extra_conditioning_info = kwargs.get("extra_conditioning_info", None)
|
||||
|
||||
if (
|
||||
extra_conditioning_info is not None
|
||||
and extra_conditioning_info.wants_cross_attention_control
|
||||
):
|
||||
self.invokeai_diffuser.override_cross_attention(
|
||||
extra_conditioning_info, step_count=t_enc
|
||||
)
|
||||
else:
|
||||
self.invokeai_diffuser.restore_default_cross_attention()
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
next_x = self.invokeai_diffuser.do_diffusion_step(
|
||||
x, sigma, uncond, cond, cond_scale
|
||||
)
|
||||
if self.warmup < self.warmup_max:
|
||||
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
|
||||
self.warmup += 1
|
||||
else:
|
||||
thresh = self.threshold
|
||||
if thresh > self.threshold:
|
||||
thresh = self.threshold
|
||||
return cfg_apply_threshold(next_x, thresh)
|
||||
|
||||
|
||||
class KSampler(Sampler):
|
||||
def __init__(self, model, schedule="lms", device=None, **kwargs):
|
||||
denoiser = K.external.CompVisDenoiser(model)
|
||||
super().__init__(
|
||||
denoiser,
|
||||
schedule,
|
||||
steps=model.num_timesteps,
|
||||
)
|
||||
self.sigmas = None
|
||||
self.ds = None
|
||||
self.s_in = None
|
||||
self.karras_max = kwargs.get("karras_max", STEP_THRESHOLD)
|
||||
if self.karras_max is None:
|
||||
self.karras_max = STEP_THRESHOLD
|
||||
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize="uniform",
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
):
|
||||
outer_model = self.model
|
||||
self.model = outer_model.inner_model
|
||||
super().make_schedule(
|
||||
ddim_num_steps,
|
||||
ddim_discretize="uniform",
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
)
|
||||
self.model = outer_model
|
||||
self.ddim_num_steps = ddim_num_steps
|
||||
# we don't need both of these sigmas, but storing them here to make
|
||||
# comparison easier later on
|
||||
self.model_sigmas = self.model.get_sigmas(ddim_num_steps)
|
||||
self.karras_sigmas = K.sampling.get_sigmas_karras(
|
||||
n=ddim_num_steps,
|
||||
sigma_min=self.model.sigmas[0].item(),
|
||||
sigma_max=self.model.sigmas[-1].item(),
|
||||
rho=7.0,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
if ddim_num_steps >= self.karras_max:
|
||||
print(
|
||||
f">> Ksampler using model noise schedule (steps >= {self.karras_max})"
|
||||
)
|
||||
self.sigmas = self.model_sigmas
|
||||
else:
|
||||
print(
|
||||
f">> Ksampler using karras noise schedule (steps < {self.karras_max})"
|
||||
)
|
||||
self.sigmas = self.karras_sigmas
|
||||
|
||||
# ALERT: We are completely overriding the sample() method in the base class, which
|
||||
# means that inpainting will not work. To get this to work we need to be able to
|
||||
# modify the inner loop of k_heun, k_lms, etc, as is done in an ugly way
|
||||
# in the lstein/k-diffusion branch.
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
z_enc,
|
||||
cond,
|
||||
t_enc,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent=None,
|
||||
mask=None,
|
||||
**kwargs,
|
||||
):
|
||||
samples, _ = self.sample(
|
||||
batch_size=1,
|
||||
S=t_enc,
|
||||
x_T=z_enc,
|
||||
shape=z_enc.shape[1:],
|
||||
conditioning=cond,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
img_callback=img_callback,
|
||||
x0=init_latent,
|
||||
mask=mask,
|
||||
**kwargs,
|
||||
)
|
||||
return samples
|
||||
|
||||
# this is a no-op, provided here for compatibility with ddim and plms samplers
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
return x0
|
||||
|
||||
# Most of these arguments are ignored and are only present for compatibility with
|
||||
# other samples
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
attention_maps_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None,
|
||||
threshold=0,
|
||||
perlin=0,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
def route_callback(k_callback_values):
|
||||
if img_callback is not None:
|
||||
img_callback(k_callback_values["x"], k_callback_values["i"])
|
||||
|
||||
# if make_schedule() hasn't been called, we do it now
|
||||
if self.sigmas is None:
|
||||
self.make_schedule(
|
||||
ddim_num_steps=S,
|
||||
ddim_eta=eta,
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
# sigmas are set up in make_schedule - we take the last steps items
|
||||
sigmas = self.sigmas[-S - 1 :]
|
||||
|
||||
# x_T is variation noise. When an init image is provided (in x0) we need to add
|
||||
# more randomness to the starting image.
|
||||
if x_T is not None:
|
||||
if x0 is not None:
|
||||
x = x_T + torch.randn_like(x0, device=self.device) * sigmas[0]
|
||||
else:
|
||||
x = x_T * sigmas[0]
|
||||
else:
|
||||
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0]
|
||||
|
||||
model_wrap_cfg = CFGDenoiser(
|
||||
self.model, threshold=threshold, warmup=max(0.8 * S, S - 10)
|
||||
)
|
||||
model_wrap_cfg.prepare_to_sample(
|
||||
S, extra_conditioning_info=extra_conditioning_info
|
||||
)
|
||||
|
||||
# setup attention maps saving. checks for None are because there are multiple code paths to get here.
|
||||
attention_map_saver = None
|
||||
if attention_maps_callback is not None and extra_conditioning_info is not None:
|
||||
eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
|
||||
attention_map_token_ids = range(1, eos_token_index)
|
||||
attention_map_saver = AttentionMapSaver(
|
||||
token_ids=attention_map_token_ids, latents_shape=x.shape[-2:]
|
||||
)
|
||||
model_wrap_cfg.invokeai_diffuser.setup_attention_map_saving(
|
||||
attention_map_saver
|
||||
)
|
||||
|
||||
extra_args = {
|
||||
"cond": conditioning,
|
||||
"uncond": unconditional_conditioning,
|
||||
"cond_scale": unconditional_guidance_scale,
|
||||
}
|
||||
print(
|
||||
f">> Sampling with k_{self.schedule} starting at step {len(self.sigmas)-S-1} of {len(self.sigmas)-1} ({S} new sampling steps)"
|
||||
)
|
||||
sampling_result = (
|
||||
K.sampling.__dict__[f"sample_{self.schedule}"](
|
||||
model_wrap_cfg,
|
||||
x,
|
||||
sigmas,
|
||||
extra_args=extra_args,
|
||||
callback=route_callback,
|
||||
),
|
||||
None,
|
||||
)
|
||||
if attention_map_saver is not None:
|
||||
attention_maps_callback(attention_map_saver)
|
||||
return sampling_result
|
||||
|
||||
# this code will support inpainting if and when ksampler API modified or
|
||||
# a workaround is found.
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
extra_conditioning_info=None,
|
||||
**kwargs,
|
||||
):
|
||||
if self.model_wrap is None:
|
||||
self.model_wrap = CFGDenoiser(self.model)
|
||||
extra_args = {
|
||||
"cond": cond,
|
||||
"uncond": unconditional_conditioning,
|
||||
"cond_scale": unconditional_guidance_scale,
|
||||
}
|
||||
if self.s_in is None:
|
||||
self.s_in = img.new_ones([img.shape[0]])
|
||||
if self.ds is None:
|
||||
self.ds = []
|
||||
|
||||
# terrible, confusing names here
|
||||
steps = self.ddim_num_steps
|
||||
t_enc = self.t_enc
|
||||
|
||||
# sigmas is a full steps in length, but t_enc might
|
||||
# be less. We start in the middle of the sigma array
|
||||
# and work our way to the end after t_enc steps.
|
||||
# index starts at t_enc and works its way to zero,
|
||||
# so the actual formula for indexing into sigmas:
|
||||
# sigma_index = (steps-index)
|
||||
s_index = t_enc - index - 1
|
||||
self.model_wrap.prepare_to_sample(
|
||||
s_index, extra_conditioning_info=extra_conditioning_info
|
||||
)
|
||||
img = K.sampling.__dict__[f"_{self.schedule}"](
|
||||
self.model_wrap,
|
||||
img,
|
||||
self.sigmas,
|
||||
s_index,
|
||||
s_in=self.s_in,
|
||||
ds=self.ds,
|
||||
extra_args=extra_args,
|
||||
)
|
||||
|
||||
return img, None, None
|
||||
|
||||
# REVIEW THIS METHOD: it has never been tested. In particular,
|
||||
# we should not be multiplying by self.sigmas[0] if we
|
||||
# are at an intermediate step in img2img. See similar in
|
||||
# sample() which does work.
|
||||
def get_initial_image(self, x_T, shape, steps):
|
||||
print(f"WARNING: ksampler.get_initial_image(): get_initial_image needs testing")
|
||||
x = torch.randn(shape, device=self.device) * self.sigmas[0]
|
||||
if x_T is not None:
|
||||
return x_T + x
|
||||
else:
|
||||
return x
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
self.t_enc = t_enc
|
||||
self.model_wrap = None
|
||||
self.ds = None
|
||||
self.s_in = None
|
||||
|
||||
def q_sample(self, x0, ts):
|
||||
"""
|
||||
Overrides parent method to return the q_sample of the inner model.
|
||||
"""
|
||||
return self.model.inner_model.q_sample(x0, ts)
|
||||
|
||||
def conditioning_key(self) -> str:
|
||||
return self.model.inner_model.model.conditioning_key
|
@ -1,143 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from ...util import choose_torch_device
|
||||
from ..diffusionmodules.util import noise_like
|
||||
from .sampler import Sampler
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
|
||||
class PLMSSampler(Sampler):
|
||||
def __init__(self, model, schedule="linear", device=None, **kwargs):
|
||||
super().__init__(model, schedule, model.num_timesteps, device)
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
super().prepare_to_sample(t_enc, **kwargs)
|
||||
|
||||
extra_conditioning_info = kwargs.get("extra_conditioning_info", None)
|
||||
all_timesteps_count = kwargs.get("all_timesteps_count", t_enc)
|
||||
|
||||
if (
|
||||
extra_conditioning_info is not None
|
||||
and extra_conditioning_info.wants_cross_attention_control
|
||||
):
|
||||
self.invokeai_diffuser.override_cross_attention(
|
||||
extra_conditioning_info, step_count=all_timesteps_count
|
||||
)
|
||||
else:
|
||||
self.invokeai_diffuser.restore_default_cross_attention()
|
||||
|
||||
# this is the essential routine
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
x, # image, called 'img' elsewhere
|
||||
c, # conditioning, called 'cond' elsewhere
|
||||
t, # timesteps, called 'ts' elsewhere
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=[],
|
||||
t_next=None,
|
||||
step_count: int = 1000, # total number of steps
|
||||
**kwargs,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if (
|
||||
unconditional_conditioning is None
|
||||
or unconditional_guidance_scale == 1.0
|
||||
):
|
||||
# damian0815 would like to know when/if this code path is used
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
# step_index counts in the opposite direction to index
|
||||
step_index = step_count - (index + 1)
|
||||
e_t = self.invokeai_diffuser.do_diffusion_step(
|
||||
x,
|
||||
t,
|
||||
unconditional_conditioning,
|
||||
c,
|
||||
unconditional_guidance_scale,
|
||||
step_index=step_index,
|
||||
)
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (
|
||||
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
|
||||
) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
@ -1,454 +0,0 @@
|
||||
"""
|
||||
invokeai.models.diffusion.sampler
|
||||
|
||||
Base class for invokeai.models.diffusion.ddim, invokeai.models.diffusion.ksampler, etc
|
||||
"""
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from ...util import choose_torch_device
|
||||
from ..diffusionmodules.util import (
|
||||
extract_into_tensor,
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
)
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
|
||||
class Sampler(object):
|
||||
def __init__(self, model, schedule="linear", steps=None, device=None, **kwargs):
|
||||
self.model = model
|
||||
self.ddim_timesteps = None
|
||||
self.ddpm_num_timesteps = steps
|
||||
self.schedule = schedule
|
||||
self.device = device or choose_torch_device()
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(
|
||||
self.model,
|
||||
model_forward_callback=lambda x, sigma, cond: self.model.apply_model(
|
||||
x, sigma, cond
|
||||
),
|
||||
)
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.float32).to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
# This method was copied over from ddim.py and probably does stuff that is
|
||||
# ddim-specific. Disentangle at some point.
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize="uniform",
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
):
|
||||
self.total_steps = ddim_num_steps
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), "alphas have to be defined for each timestep"
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer("betas", to_torch(self.model.betas))
|
||||
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_one_minus_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
"log_one_minus_alphas_cumprod",
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recip_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recipm1_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
||||
self.register_buffer("ddim_alphas", ddim_alphas)
|
||||
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
||||
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
"ddim_sigmas_for_original_num_steps",
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (
|
||||
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
||||
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S, # S is steps
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None, # TODO: this is very confusing because it is called "step_callback" elsewhere. Change.
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=False,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list):
|
||||
ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(
|
||||
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
||||
)
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(
|
||||
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
||||
)
|
||||
|
||||
# check to see if make_schedule() has run, and if not, run it
|
||||
if self.ddim_timesteps is None:
|
||||
self.make_schedule(
|
||||
ddim_num_steps=S,
|
||||
ddim_eta=eta,
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
ts = self.get_timesteps(S)
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
shape = (batch_size, C, H, W)
|
||||
samples, intermediates = self.do_sampling(
|
||||
conditioning,
|
||||
shape,
|
||||
timesteps=ts,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
steps=S,
|
||||
**kwargs,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def do_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
timesteps=None,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
steps=None,
|
||||
**kwargs,
|
||||
):
|
||||
b = shape[0]
|
||||
time_range = (
|
||||
list(reversed(range(0, timesteps)))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
|
||||
total_steps = steps
|
||||
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc=f"{self.__class__.__name__}",
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
old_eps = []
|
||||
self.prepare_to_sample(t_enc=total_steps, all_timesteps_count=steps, **kwargs)
|
||||
img = self.get_initial_image(x_T, shape, total_steps)
|
||||
|
||||
# probably don't need this at all
|
||||
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
|
||||
ts_next = torch.full(
|
||||
(b,),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps,
|
||||
t_next=ts_next,
|
||||
step_count=steps,
|
||||
)
|
||||
img, pred_x0, e_t = outs
|
||||
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(img, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates["x_inter"].append(img)
|
||||
intermediates["pred_x0"].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
# NOTE that decode() and sample() are almost the same code, and do the same thing.
|
||||
# The variable names are changed in order to be confusing.
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
x_latent,
|
||||
cond,
|
||||
t_start,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent=None,
|
||||
mask=None,
|
||||
all_timesteps_count=None,
|
||||
**kwargs,
|
||||
):
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(
|
||||
f">> Running {self.__class__.__name__} sampling starting at step {self.total_steps - t_start} of {self.total_steps} ({total_steps} new sampling steps)"
|
||||
)
|
||||
|
||||
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
||||
x_dec = x_latent
|
||||
x0 = init_latent
|
||||
self.prepare_to_sample(
|
||||
t_enc=total_steps, all_timesteps_count=all_timesteps_count, **kwargs
|
||||
)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
step,
|
||||
device=x_latent.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
ts_next = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
xdec_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
|
||||
|
||||
outs = self.p_sample(
|
||||
x_dec,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
t_next=ts_next,
|
||||
step_count=len(self.ddim_timesteps),
|
||||
)
|
||||
|
||||
x_dec, pred_x0, e_t = outs
|
||||
if img_callback:
|
||||
img_callback(x_dec, i)
|
||||
|
||||
return x_dec
|
||||
|
||||
def get_initial_image(self, x_T, shape, timesteps=None):
|
||||
if x_T is None:
|
||||
return torch.randn(shape, device=self.device)
|
||||
else:
|
||||
return x_T
|
||||
|
||||
def p_sample(
|
||||
self,
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=None,
|
||||
t_next=None,
|
||||
steps=None,
|
||||
):
|
||||
raise NotImplementedError(
|
||||
"p_sample() must be implemented in a descendent class"
|
||||
)
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
"""
|
||||
Hook that will be called right before the very first invocation of p_sample()
|
||||
to allow subclass to do additional initialization. t_enc corresponds to the actual
|
||||
number of steps that will be run, and may be less than total steps if img2img is
|
||||
active.
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_timesteps(self, ddim_steps):
|
||||
"""
|
||||
The ddim and plms samplers work on timesteps. This method is called after
|
||||
ddim_timesteps are created in make_schedule(), and selects the portion of
|
||||
timesteps that will be used for sampling, depending on the t_enc in img2img.
|
||||
"""
|
||||
return self.ddim_timesteps[:ddim_steps]
|
||||
|
||||
def q_sample(self, x0, ts):
|
||||
"""
|
||||
Returns self.model.q_sample(x0,ts). Is overridden in the k* samplers to
|
||||
return self.model.inner_model.q_sample(x0,ts)
|
||||
"""
|
||||
return self.model.q_sample(x0, ts)
|
||||
|
||||
def conditioning_key(self) -> str:
|
||||
return self.model.model.conditioning_key
|
||||
|
||||
def uses_inpainting_model(self) -> bool:
|
||||
return self.conditioning_key() in ("hybrid", "concat")
|
||||
|
||||
def adjust_settings(self, **kwargs):
|
||||
"""
|
||||
This is a catch-all method for adjusting any instance variables
|
||||
after the sampler is instantiated. No type-checking performed
|
||||
here, so use with care!
|
||||
"""
|
||||
for k in kwargs.keys():
|
||||
try:
|
||||
setattr(self, k, kwargs[k])
|
||||
except AttributeError:
|
||||
print(
|
||||
f"** Warning: attempt to set unknown attribute {k} in sampler of type {type(self)}"
|
||||
)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,297 +0,0 @@
|
||||
# adopted from
|
||||
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
||||
# and
|
||||
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
||||
# and
|
||||
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
||||
#
|
||||
# thanks!
|
||||
|
||||
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import repeat
|
||||
|
||||
from ...util.util import instantiate_from_config
|
||||
|
||||
|
||||
def make_beta_schedule(
|
||||
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
||||
):
|
||||
if schedule == "linear":
|
||||
betas = (
|
||||
torch.linspace(
|
||||
linear_start**0.5,
|
||||
linear_end**0.5,
|
||||
n_timestep,
|
||||
dtype=torch.float64,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
|
||||
elif schedule == "cosine":
|
||||
timesteps = (
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
)
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2)
|
||||
alphas = alphas / alphas[0]
|
||||
betas = 1 - alphas[1:] / alphas[:-1]
|
||||
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(
|
||||
linear_start, linear_end, n_timestep, dtype=torch.float64
|
||||
)
|
||||
elif schedule == "sqrt":
|
||||
betas = (
|
||||
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
** 0.5
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas.numpy()
|
||||
|
||||
|
||||
def make_ddim_timesteps(
|
||||
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
|
||||
):
|
||||
if ddim_discr_method == "uniform":
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
if c < 1:
|
||||
c = 1
|
||||
ddim_timesteps = (np.arange(0, num_ddim_timesteps) * c).astype(int)
|
||||
elif ddim_discr_method == "quad":
|
||||
ddim_timesteps = (
|
||||
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
|
||||
).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
||||
)
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
# steps_out = ddim_timesteps
|
||||
|
||||
if verbose:
|
||||
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
||||
return steps_out
|
||||
|
||||
|
||||
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
# select alphas for computing the variance schedule
|
||||
alphas = alphacums[ddim_timesteps]
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt(
|
||||
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
|
||||
)
|
||||
if verbose:
|
||||
print(
|
||||
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
|
||||
)
|
||||
print(
|
||||
f"For the chosen value of eta, which is {eta}, "
|
||||
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
||||
)
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||||
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||||
:param num_diffusion_timesteps: the number of betas to produce.
|
||||
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||||
produces the cumulative product of (1-beta) up to that
|
||||
part of the diffusion process.
|
||||
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
"""
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return np.array(betas)
|
||||
|
||||
|
||||
def extract_into_tensor(a, t, x_shape):
|
||||
b, *_ = t.shape
|
||||
out = a.gather(-1, t)
|
||||
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||||
|
||||
|
||||
def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if False: # disabled checkpointing to allow requires_grad = False for main model
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
ctx.input_tensors = list(args[:length])
|
||||
ctx.input_params = list(args[length:])
|
||||
|
||||
with torch.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
return output_tensors
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad():
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = torch.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
output_grads,
|
||||
allow_unused=True,
|
||||
)
|
||||
del ctx.input_tensors
|
||||
del ctx.input_params
|
||||
del output_tensors
|
||||
return (None, None) + input_grads
|
||||
|
||||
|
||||
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period)
|
||||
* torch.arange(start=0, end=half, dtype=torch.float32)
|
||||
/ half
|
||||
).to(device=timesteps.device)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
else:
|
||||
embedding = repeat(timesteps, "b -> b d", d=dim)
|
||||
return embedding
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def scale_module(module, scale):
|
||||
"""
|
||||
Scale the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().mul_(scale)
|
||||
return module
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def normalization(channels):
|
||||
"""
|
||||
Make a standard normalization layer.
|
||||
:param channels: number of input channels.
|
||||
:return: an nn.Module for normalization.
|
||||
"""
|
||||
return GroupNorm32(32, channels)
|
||||
|
||||
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class HybridConditioner(nn.Module):
|
||||
def __init__(self, c_concat_config, c_crossattn_config):
|
||||
super().__init__()
|
||||
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||||
|
||||
def forward(self, c_concat, c_crossattn):
|
||||
c_concat = self.concat_conditioner(c_concat)
|
||||
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||||
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
||||
shape[0], *((1,) * (len(shape) - 1))
|
||||
)
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
@ -1,102 +0,0 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
class AbstractDistribution:
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(
|
||||
device=self.parameters.device
|
||||
)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
||||
device=self.parameters.device
|
||||
)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.0])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3],
|
||||
)
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var
|
||||
- 1.0
|
||||
- self.logvar
|
||||
+ other.logvar,
|
||||
dim=[1, 2, 3],
|
||||
)
|
||||
|
||||
def nll(self, sample, dims=[1, 2, 3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.0])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims,
|
||||
)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
@ -1,82 +0,0 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class LitEma(nn.Module):
|
||||
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
||||
super().__init__()
|
||||
if decay < 0.0 or decay > 1.0:
|
||||
raise ValueError("Decay must be between 0 and 1")
|
||||
|
||||
self.m_name2s_name = {}
|
||||
self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
|
||||
self.register_buffer(
|
||||
"num_updates",
|
||||
torch.tensor(0, dtype=torch.int)
|
||||
if use_num_upates
|
||||
else torch.tensor(-1, dtype=torch.int),
|
||||
)
|
||||
|
||||
for name, p in model.named_parameters():
|
||||
if p.requires_grad:
|
||||
# remove as '.'-character is not allowed in buffers
|
||||
s_name = name.replace(".", "")
|
||||
self.m_name2s_name.update({name: s_name})
|
||||
self.register_buffer(s_name, p.clone().detach().data)
|
||||
|
||||
self.collected_params = []
|
||||
|
||||
def forward(self, model):
|
||||
decay = self.decay
|
||||
|
||||
if self.num_updates >= 0:
|
||||
self.num_updates += 1
|
||||
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
||||
|
||||
one_minus_decay = 1.0 - decay
|
||||
|
||||
with torch.no_grad():
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
sname = self.m_name2s_name[key]
|
||||
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
||||
shadow_params[sname].sub_(
|
||||
one_minus_decay * (shadow_params[sname] - m_param[key])
|
||||
)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def copy_to(self, model):
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def store(self, parameters):
|
||||
"""
|
||||
Save the current parameters for restoring later.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
temporarily stored.
|
||||
"""
|
||||
self.collected_params = [param.clone() for param in parameters]
|
||||
|
||||
def restore(self, parameters):
|
||||
"""
|
||||
Restore the parameters stored with the `store` method.
|
||||
Useful to validate the model with EMA parameters without affecting the
|
||||
original optimization process. Store the parameters before the
|
||||
`copy_to` method. After validation (or model saving), use this to
|
||||
restore the former parameters.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
updated with the stored parameters.
|
||||
"""
|
||||
for c_param, param in zip(self.collected_params, parameters):
|
||||
param.data.copy_(c_param.data)
|
@ -1,858 +0,0 @@
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
|
||||
import clip
|
||||
import kornia
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import repeat
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from ...util import choose_torch_device
|
||||
from ..globals import global_cache_dir
|
||||
from ..x_transformer import ( # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||
Encoder,
|
||||
TransformerWrapper,
|
||||
)
|
||||
|
||||
|
||||
def _expand_mask(mask, dtype, tgt_len=None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(
|
||||
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
||||
)
|
||||
|
||||
|
||||
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
||||
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
mask = mask.unsqueeze(1) # expand mask
|
||||
return mask
|
||||
|
||||
|
||||
class AbstractEncoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ClassEmbedder(nn.Module):
|
||||
def __init__(self, embed_dim, n_classes=1000, key="class"):
|
||||
super().__init__()
|
||||
self.key = key
|
||||
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||||
|
||||
def forward(self, batch, key=None):
|
||||
if key is None:
|
||||
key = self.key
|
||||
# this is for use in crossattn
|
||||
c = batch[key][:, None]
|
||||
c = self.embedding(c)
|
||||
return c
|
||||
|
||||
|
||||
class TransformerEmbedder(AbstractEncoder):
|
||||
"""Some transformer encoder layers"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_embed,
|
||||
n_layer,
|
||||
vocab_size,
|
||||
max_seq_len=77,
|
||||
device=choose_torch_device(),
|
||||
):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.transformer = TransformerWrapper(
|
||||
num_tokens=vocab_size,
|
||||
max_seq_len=max_seq_len,
|
||||
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
tokens = tokens.to(self.device) # meh
|
||||
z = self.transformer(tokens, return_embeddings=True)
|
||||
return z
|
||||
|
||||
def encode(self, x):
|
||||
return self(x)
|
||||
|
||||
|
||||
class BERTTokenizer(AbstractEncoder):
|
||||
"""Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||||
|
||||
def __init__(self, device=choose_torch_device(), vq_interface=True, max_length=77):
|
||||
super().__init__()
|
||||
from transformers import BertTokenizerFast
|
||||
|
||||
cache = global_cache_dir("hub")
|
||||
try:
|
||||
self.tokenizer = BertTokenizerFast.from_pretrained(
|
||||
"bert-base-uncased", cache_dir=cache, local_files_only=True
|
||||
)
|
||||
except OSError:
|
||||
raise SystemExit(
|
||||
"* Couldn't load Bert tokenizer files. Try running scripts/preload_models.py from an internet-conected machine."
|
||||
)
|
||||
self.device = device
|
||||
self.vq_interface = vq_interface
|
||||
self.max_length = max_length
|
||||
|
||||
def forward(self, text):
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
return tokens
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, text):
|
||||
tokens = self(text)
|
||||
if not self.vq_interface:
|
||||
return tokens
|
||||
return None, None, [None, None, tokens]
|
||||
|
||||
def decode(self, text):
|
||||
return text
|
||||
|
||||
|
||||
class BERTEmbedder(AbstractEncoder):
|
||||
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_embed,
|
||||
n_layer,
|
||||
vocab_size=30522,
|
||||
max_seq_len=77,
|
||||
device=choose_torch_device(),
|
||||
use_tokenizer=True,
|
||||
embedding_dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.use_tknz_fn = use_tokenizer
|
||||
if self.use_tknz_fn:
|
||||
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
||||
self.device = device
|
||||
self.transformer = TransformerWrapper(
|
||||
num_tokens=vocab_size,
|
||||
max_seq_len=max_seq_len,
|
||||
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||
emb_dropout=embedding_dropout,
|
||||
)
|
||||
|
||||
def forward(self, text, embedding_manager=None):
|
||||
if self.use_tknz_fn:
|
||||
tokens = self.tknz_fn(text) # .to(self.device)
|
||||
else:
|
||||
tokens = text
|
||||
z = self.transformer(
|
||||
tokens, return_embeddings=True, embedding_manager=embedding_manager
|
||||
)
|
||||
return z
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
# output of length 77
|
||||
return self(text, **kwargs)
|
||||
|
||||
|
||||
class SpatialRescaler(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_stages=1,
|
||||
method="bilinear",
|
||||
multiplier=0.5,
|
||||
in_channels=3,
|
||||
out_channels=None,
|
||||
bias=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_stages = n_stages
|
||||
assert self.n_stages >= 0
|
||||
assert method in [
|
||||
"nearest",
|
||||
"linear",
|
||||
"bilinear",
|
||||
"trilinear",
|
||||
"bicubic",
|
||||
"area",
|
||||
]
|
||||
self.multiplier = multiplier
|
||||
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
||||
self.remap_output = out_channels is not None
|
||||
if self.remap_output:
|
||||
print(
|
||||
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing."
|
||||
)
|
||||
self.channel_mapper = nn.Conv2d(in_channels, out_channels, 1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
for stage in range(self.n_stages):
|
||||
x = self.interpolator(x, scale_factor=self.multiplier)
|
||||
|
||||
if self.remap_output:
|
||||
x = self.channel_mapper(x)
|
||||
return x
|
||||
|
||||
def encode(self, x):
|
||||
return self(x)
|
||||
|
||||
|
||||
class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
|
||||
tokenizer: CLIPTokenizer
|
||||
transformer: CLIPTextModel
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version: str = "openai/clip-vit-large-patch14",
|
||||
max_length: int = 77,
|
||||
tokenizer: Optional[CLIPTokenizer] = None,
|
||||
transformer: Optional[CLIPTextModel] = None,
|
||||
):
|
||||
super().__init__()
|
||||
cache = global_cache_dir("hub")
|
||||
self.tokenizer = tokenizer or CLIPTokenizer.from_pretrained(
|
||||
version, cache_dir=cache, local_files_only=True
|
||||
)
|
||||
self.transformer = transformer or CLIPTextModel.from_pretrained(
|
||||
version, cache_dir=cache, local_files_only=True
|
||||
)
|
||||
self.max_length = max_length
|
||||
self.freeze()
|
||||
|
||||
def embedding_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
position_ids=None,
|
||||
inputs_embeds=None,
|
||||
embedding_manager=None,
|
||||
) -> torch.Tensor:
|
||||
seq_length = (
|
||||
input_ids.shape[-1]
|
||||
if input_ids is not None
|
||||
else inputs_embeds.shape[-2]
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, :seq_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.token_embedding(input_ids)
|
||||
|
||||
if embedding_manager is not None:
|
||||
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
||||
|
||||
position_embeddings = self.position_embedding(position_ids)
|
||||
embeddings = inputs_embeds + position_embeddings
|
||||
|
||||
return embeddings
|
||||
|
||||
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
|
||||
self.transformer.text_model.embeddings
|
||||
)
|
||||
|
||||
def encoder_forward(
|
||||
self,
|
||||
inputs_embeds,
|
||||
attention_mask=None,
|
||||
causal_attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
encoder_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if output_attentions:
|
||||
all_attentions = all_attentions + (layer_outputs[1],)
|
||||
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
|
||||
return hidden_states
|
||||
|
||||
self.transformer.text_model.encoder.forward = encoder_forward.__get__(
|
||||
self.transformer.text_model.encoder
|
||||
)
|
||||
|
||||
def text_encoder_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
if input_ids is None:
|
||||
raise ValueError("You have to specify either input_ids")
|
||||
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
|
||||
hidden_states = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
embedding_manager=embedding_manager,
|
||||
)
|
||||
|
||||
bsz, seq_len = input_shape
|
||||
# CLIP's text model uses causal mask, prepare it here.
|
||||
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
||||
causal_attention_mask = _build_causal_attention_mask(
|
||||
bsz, seq_len, hidden_states.dtype
|
||||
).to(hidden_states.device)
|
||||
|
||||
# expand attention_mask
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
||||
|
||||
last_hidden_state = self.encoder(
|
||||
inputs_embeds=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
causal_attention_mask=causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||||
|
||||
return last_hidden_state
|
||||
|
||||
self.transformer.text_model.forward = text_encoder_forward.__get__(
|
||||
self.transformer.text_model
|
||||
)
|
||||
|
||||
def transformer_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
return self.text_model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
embedding_manager=embedding_manager,
|
||||
)
|
||||
|
||||
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text, **kwargs):
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
z = self.transformer(input_ids=tokens, **kwargs)
|
||||
|
||||
return z
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
return self(text, **kwargs)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.transformer.device
|
||||
|
||||
@device.setter
|
||||
def device(self, device):
|
||||
self.transformer.to(device=device)
|
||||
|
||||
|
||||
class WeightedFrozenCLIPEmbedder(FrozenCLIPEmbedder):
|
||||
fragment_weights_key = "fragment_weights"
|
||||
return_tokens_key = "return_tokens"
|
||||
|
||||
def set_textual_inversion_manager(self, manager): # TextualInversionManager):
|
||||
# TODO all of the weighting and expanding stuff needs be moved out of this class
|
||||
self.textual_inversion_manager = manager
|
||||
|
||||
def forward(self, text: list, **kwargs):
|
||||
# TODO all of the weighting and expanding stuff needs be moved out of this class
|
||||
"""
|
||||
|
||||
:param text: A batch of prompt strings, or, a batch of lists of fragments of prompt strings to which different
|
||||
weights shall be applied.
|
||||
:param kwargs: If the keyword arg "fragment_weights" is passed, it shall contain a batch of lists of weights
|
||||
for the prompt fragments. In this case text must contain batches of lists of prompt fragments.
|
||||
:return: A tensor of shape (B, 77, 768) containing weighted embeddings
|
||||
"""
|
||||
if self.fragment_weights_key not in kwargs:
|
||||
# fallback to base class implementation
|
||||
return super().forward(text, **kwargs)
|
||||
|
||||
fragment_weights = kwargs[self.fragment_weights_key]
|
||||
# self.transformer doesn't like receiving "fragment_weights" as an argument
|
||||
kwargs.pop(self.fragment_weights_key)
|
||||
|
||||
should_return_tokens = False
|
||||
if self.return_tokens_key in kwargs:
|
||||
should_return_tokens = kwargs.get(self.return_tokens_key, False)
|
||||
# self.transformer doesn't like having extra kwargs
|
||||
kwargs.pop(self.return_tokens_key)
|
||||
|
||||
batch_z = None
|
||||
batch_tokens = None
|
||||
for fragments, weights in zip(text, fragment_weights):
|
||||
# First, weight tokens in individual fragments by scaling the feature vectors as requested (effectively
|
||||
# applying a multiplier to the CFG scale on a per-token basis).
|
||||
# For tokens weighted<1, intuitively we want SD to become not merely *less* interested in the concept
|
||||
# captured by the fragment but actually *dis*interested in it (a 0.01 interest in "red" is still an active
|
||||
# interest, however small, in redness; what the user probably intends when they attach the number 0.01 to
|
||||
# "red" is to tell SD that it should almost completely *ignore* redness).
|
||||
# To do this, the embedding is lerped away from base_embedding in the direction of an embedding for a prompt
|
||||
# string from which the low-weighted fragment has been simply removed. The closer the weight is to zero, the
|
||||
# closer the resulting embedding is to an embedding for a prompt that simply lacks this fragment.
|
||||
|
||||
# handle weights >=1
|
||||
tokens, per_token_weights = self.get_tokens_and_weights(fragments, weights)
|
||||
base_embedding = self.build_weighted_embedding_tensor(
|
||||
tokens, per_token_weights, **kwargs
|
||||
)
|
||||
|
||||
# this is our starting point
|
||||
embeddings = base_embedding.unsqueeze(0)
|
||||
per_embedding_weights = [1.0]
|
||||
|
||||
# now handle weights <1
|
||||
# Do this by building extra embeddings tensors that lack the words being <1 weighted. These will be lerped
|
||||
# with the embeddings tensors that have the words, such that if the weight of a word is 0.5, the resulting
|
||||
# embedding will be exactly half-way between the unweighted prompt and the prompt with the <1 weighted words
|
||||
# removed.
|
||||
# eg for "mountain:1 man:0.5", intuitively the "man" should be "half-gone". therefore, append an embedding
|
||||
# for "mountain" (i.e. without "man") to the already-produced embedding for "mountain man", and weight it
|
||||
# such that the resulting lerped embedding is exactly half-way between "mountain man" and "mountain".
|
||||
for index, fragment_weight in enumerate(weights):
|
||||
if fragment_weight < 1:
|
||||
fragments_without_this = fragments[:index] + fragments[index + 1 :]
|
||||
weights_without_this = weights[:index] + weights[index + 1 :]
|
||||
tokens, per_token_weights = self.get_tokens_and_weights(
|
||||
fragments_without_this, weights_without_this
|
||||
)
|
||||
embedding_without_this = self.build_weighted_embedding_tensor(
|
||||
tokens, per_token_weights, **kwargs
|
||||
)
|
||||
|
||||
embeddings = torch.cat(
|
||||
(embeddings, embedding_without_this.unsqueeze(0)), dim=1
|
||||
)
|
||||
# weight of the embedding *without* this fragment gets *stronger* as its weight approaches 0
|
||||
# if fragment_weight = 0, basically we want embedding_without_this to completely overwhelm base_embedding
|
||||
# therefore:
|
||||
# fragment_weight = 1: we are at base_z => lerp weight 0
|
||||
# fragment_weight = 0.5: we are halfway between base_z and here => lerp weight 1
|
||||
# fragment_weight = 0: we're now entirely overriding base_z ==> lerp weight inf
|
||||
# so let's use tan(), because:
|
||||
# tan is 0.0 at 0,
|
||||
# 1.0 at PI/4, and
|
||||
# inf at PI/2
|
||||
# -> tan((1-weight)*PI/2) should give us ideal lerp weights
|
||||
epsilon = 1e-9
|
||||
fragment_weight = max(epsilon, fragment_weight) # inf is bad
|
||||
embedding_lerp_weight = math.tan(
|
||||
(1.0 - fragment_weight) * math.pi / 2
|
||||
)
|
||||
# todo handle negative weight?
|
||||
|
||||
per_embedding_weights.append(embedding_lerp_weight)
|
||||
|
||||
lerped_embeddings = self.apply_embedding_weights(
|
||||
embeddings, per_embedding_weights, normalize=True
|
||||
).squeeze(0)
|
||||
|
||||
# print(f"assembled tokens for '{fragments}' into tensor of shape {lerped_embeddings.shape}")
|
||||
|
||||
# append to batch
|
||||
batch_z = (
|
||||
lerped_embeddings.unsqueeze(0)
|
||||
if batch_z is None
|
||||
else torch.cat([batch_z, lerped_embeddings.unsqueeze(0)], dim=1)
|
||||
)
|
||||
batch_tokens = (
|
||||
tokens.unsqueeze(0)
|
||||
if batch_tokens is None
|
||||
else torch.cat([batch_tokens, tokens.unsqueeze(0)], dim=1)
|
||||
)
|
||||
|
||||
# should have shape (B, 77, 768)
|
||||
# print(f"assembled all tokens into tensor of shape {batch_z.shape}")
|
||||
|
||||
if should_return_tokens:
|
||||
return batch_z, batch_tokens
|
||||
else:
|
||||
return batch_z
|
||||
|
||||
def get_token_ids(
|
||||
self, fragments: list[str], include_start_and_end_markers: bool = True
|
||||
) -> list[list[int]]:
|
||||
"""
|
||||
Convert a list of strings like `["a cat", "sitting", "on a mat"]` into a list of lists of token ids like
|
||||
`[[bos, 0, 1, eos], [bos, 2, eos], [bos, 3, 0, 4, eos]]`. bos/eos markers are skipped if
|
||||
`include_start_and_end_markers` is `False`. Each list will be restricted to the maximum permitted length
|
||||
(typically 75 tokens + eos/bos markers).
|
||||
|
||||
:param fragments: The strings to convert.
|
||||
:param include_start_and_end_markers:
|
||||
:return:
|
||||
"""
|
||||
|
||||
# for args documentation see ENCODE_KWARGS_DOCSTRING in tokenization_utils_base.py (in `transformers` lib)
|
||||
token_ids_list = self.tokenizer(
|
||||
fragments,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_overflowing_tokens=False,
|
||||
padding="do_not_pad",
|
||||
return_tensors=None, # just give me lists of ints
|
||||
)["input_ids"]
|
||||
|
||||
result = []
|
||||
for token_ids in token_ids_list:
|
||||
# trim eos/bos
|
||||
token_ids = token_ids[1:-1]
|
||||
# pad for textual inversions with vector length >1
|
||||
token_ids = self.textual_inversion_manager.expand_textual_inversion_token_ids_if_necessary(
|
||||
token_ids
|
||||
)
|
||||
# restrict length to max_length-2 (leaving room for bos/eos)
|
||||
token_ids = token_ids[0 : self.max_length - 2]
|
||||
# add back eos/bos if requested
|
||||
if include_start_and_end_markers:
|
||||
token_ids = (
|
||||
[self.tokenizer.bos_token_id]
|
||||
+ token_ids
|
||||
+ [self.tokenizer.eos_token_id]
|
||||
)
|
||||
|
||||
result.append(token_ids)
|
||||
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def apply_embedding_weights(
|
||||
self,
|
||||
embeddings: torch.Tensor,
|
||||
per_embedding_weights: list[float],
|
||||
normalize: bool,
|
||||
) -> torch.Tensor:
|
||||
per_embedding_weights = torch.tensor(
|
||||
per_embedding_weights, dtype=embeddings.dtype, device=embeddings.device
|
||||
)
|
||||
if normalize:
|
||||
per_embedding_weights = per_embedding_weights / torch.sum(
|
||||
per_embedding_weights
|
||||
)
|
||||
reshaped_weights = per_embedding_weights.reshape(
|
||||
per_embedding_weights.shape
|
||||
+ (
|
||||
1,
|
||||
1,
|
||||
)
|
||||
)
|
||||
# reshaped_weights = per_embedding_weights.reshape(per_embedding_weights.shape + (1,1,)).expand(embeddings.shape)
|
||||
return torch.sum(embeddings * reshaped_weights, dim=1)
|
||||
# lerped embeddings has shape (77, 768)
|
||||
|
||||
def get_tokens_and_weights(
|
||||
self, fragments: list[str], weights: list[float]
|
||||
) -> (torch.Tensor, torch.Tensor):
|
||||
"""
|
||||
|
||||
:param fragments:
|
||||
:param weights: Per-fragment weights (CFG scaling). No need for these to be normalized. They will not be normalized here and that's fine.
|
||||
:return:
|
||||
"""
|
||||
# empty is meaningful
|
||||
if len(fragments) == 0 and len(weights) == 0:
|
||||
fragments = [""]
|
||||
weights = [1]
|
||||
per_fragment_token_ids = self.get_token_ids(
|
||||
fragments, include_start_and_end_markers=False
|
||||
)
|
||||
all_token_ids = []
|
||||
per_token_weights = []
|
||||
# print("all fragments:", fragments, weights)
|
||||
for index, fragment in enumerate(per_fragment_token_ids):
|
||||
weight = float(weights[index])
|
||||
# print("processing fragment", fragment, weight)
|
||||
this_fragment_token_ids = per_fragment_token_ids[index]
|
||||
# print("fragment", fragment, "processed to", this_fragment_token_ids)
|
||||
# append
|
||||
all_token_ids += this_fragment_token_ids
|
||||
# fill out weights tensor with one float per token
|
||||
per_token_weights += [weight] * len(this_fragment_token_ids)
|
||||
|
||||
# leave room for bos/eos
|
||||
max_token_count_without_bos_eos_markers = self.max_length - 2
|
||||
if len(all_token_ids) > max_token_count_without_bos_eos_markers:
|
||||
excess_token_count = (
|
||||
len(all_token_ids) - max_token_count_without_bos_eos_markers
|
||||
)
|
||||
# TODO build nice description string of how the truncation was applied
|
||||
# this should be done by calling self.tokenizer.convert_ids_to_tokens() then passing the result to
|
||||
# self.tokenizer.convert_tokens_to_string() for the token_ids on each side of the truncation limit.
|
||||
print(
|
||||
f">> Prompt is {excess_token_count} token(s) too long and has been truncated"
|
||||
)
|
||||
all_token_ids = all_token_ids[0:max_token_count_without_bos_eos_markers]
|
||||
per_token_weights = per_token_weights[
|
||||
0:max_token_count_without_bos_eos_markers
|
||||
]
|
||||
|
||||
# pad out to a 77-entry array: [bos_token, <prompt tokens>, eos_token, pad_token…]
|
||||
# (77 = self.max_length)
|
||||
all_token_ids = (
|
||||
[self.tokenizer.bos_token_id]
|
||||
+ all_token_ids
|
||||
+ [self.tokenizer.eos_token_id]
|
||||
)
|
||||
per_token_weights = [1.0] + per_token_weights + [1.0]
|
||||
pad_length = self.max_length - len(all_token_ids)
|
||||
all_token_ids += [self.tokenizer.pad_token_id] * pad_length
|
||||
per_token_weights += [1.0] * pad_length
|
||||
|
||||
all_token_ids_tensor = torch.tensor(all_token_ids, dtype=torch.long).to(
|
||||
self.device
|
||||
)
|
||||
per_token_weights_tensor = torch.tensor(
|
||||
per_token_weights, dtype=torch.float32
|
||||
).to(self.device)
|
||||
# print(f"assembled all_token_ids_tensor with shape {all_token_ids_tensor.shape}")
|
||||
return all_token_ids_tensor, per_token_weights_tensor
|
||||
|
||||
def build_weighted_embedding_tensor(
|
||||
self,
|
||||
token_ids: torch.Tensor,
|
||||
per_token_weights: torch.Tensor,
|
||||
weight_delta_from_empty=True,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Build a tensor representing the passed-in tokens, each of which has a weight.
|
||||
:param token_ids: A tensor of shape (77) containing token ids (integers)
|
||||
:param per_token_weights: A tensor of shape (77) containing weights (floats)
|
||||
:param method: Whether to multiply the whole feature vector for each token or just its distance from an "empty" feature vector
|
||||
:param kwargs: passed on to self.transformer()
|
||||
:return: A tensor of shape (1, 77, 768) representing the requested weighted embeddings.
|
||||
"""
|
||||
# print(f"building weighted embedding tensor for {tokens} with weights {per_token_weights}")
|
||||
if token_ids.shape != torch.Size([self.max_length]):
|
||||
raise ValueError(
|
||||
f"token_ids has shape {token_ids.shape} - expected [{self.max_length}]"
|
||||
)
|
||||
|
||||
z = self.transformer(input_ids=token_ids.unsqueeze(0), **kwargs)
|
||||
|
||||
batch_weights_expanded = per_token_weights.reshape(
|
||||
per_token_weights.shape + (1,)
|
||||
).expand(z.shape)
|
||||
|
||||
if weight_delta_from_empty:
|
||||
empty_tokens = self.tokenizer(
|
||||
[""] * z.shape[0],
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)["input_ids"].to(self.device)
|
||||
empty_z = self.transformer(input_ids=empty_tokens, **kwargs)
|
||||
z_delta_from_empty = z - empty_z
|
||||
weighted_z = empty_z + (z_delta_from_empty * batch_weights_expanded)
|
||||
|
||||
# weighted_z_delta_from_empty = (weighted_z-empty_z)
|
||||
# print("weighted z has delta from empty with sum", weighted_z_delta_from_empty.sum().item(), "mean", weighted_z_delta_from_empty.mean().item() )
|
||||
|
||||
# print("using empty-delta method, first 5 rows:")
|
||||
# print(weighted_z[:5])
|
||||
|
||||
return weighted_z
|
||||
|
||||
else:
|
||||
original_mean = z.mean()
|
||||
z *= batch_weights_expanded
|
||||
after_weighting_mean = z.mean()
|
||||
# correct the mean. not sure if this is right but it's what the automatic1111 fork of SD does
|
||||
mean_correction_factor = original_mean / after_weighting_mean
|
||||
z *= mean_correction_factor
|
||||
return z
|
||||
|
||||
|
||||
class FrozenCLIPTextEmbedder(nn.Module):
|
||||
"""
|
||||
Uses the CLIP transformer encoder for text.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version="ViT-L/14",
|
||||
device=choose_torch_device(),
|
||||
max_length=77,
|
||||
n_repeat=1,
|
||||
normalize=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.model, _ = clip.load(version, jit=False, device=device)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.n_repeat = n_repeat
|
||||
self.normalize = normalize
|
||||
|
||||
def freeze(self):
|
||||
self.model = self.model.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
tokens = clip.tokenize(text).to(self.device)
|
||||
z = self.model.encode_text(tokens)
|
||||
if self.normalize:
|
||||
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
z = self(text)
|
||||
if z.ndim == 2:
|
||||
z = z[:, None, :]
|
||||
z = repeat(z, "b 1 d -> b k d", k=self.n_repeat)
|
||||
return z
|
||||
|
||||
|
||||
class FrozenClipImageEmbedder(nn.Module):
|
||||
"""
|
||||
Uses the CLIP image encoder.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
jit=False,
|
||||
device=choose_torch_device(),
|
||||
antialias=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
||||
|
||||
self.antialias = antialias
|
||||
|
||||
self.register_buffer(
|
||||
"mean",
|
||||
torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
|
||||
persistent=False,
|
||||
)
|
||||
self.register_buffer(
|
||||
"std",
|
||||
torch.Tensor([0.26862954, 0.26130258, 0.27577711]),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def preprocess(self, x):
|
||||
# normalize to [0,1]
|
||||
x = kornia.geometry.resize(
|
||||
x,
|
||||
(224, 224),
|
||||
interpolation="bicubic",
|
||||
align_corners=True,
|
||||
antialias=self.antialias,
|
||||
)
|
||||
x = (x + 1.0) / 2.0
|
||||
# renormalize according to clip
|
||||
x = kornia.enhance.normalize(x, self.mean, self.std)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
# x is assumed to be in range [-1,1]
|
||||
return self.model.encode_image(self.preprocess(x))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from ...util.util import count_params
|
||||
|
||||
model = FrozenCLIPEmbedder()
|
||||
count_params(model, verbose=True)
|
@ -1 +0,0 @@
|
||||
from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
|
@ -1,159 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
||||
|
||||
|
||||
class LPIPSWithDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
disc_start,
|
||||
logvar_init=0.0,
|
||||
kl_weight=1.0,
|
||||
pixelloss_weight=1.0,
|
||||
disc_num_layers=3,
|
||||
disc_in_channels=3,
|
||||
disc_factor=1.0,
|
||||
disc_weight=1.0,
|
||||
perceptual_weight=1.0,
|
||||
use_actnorm=False,
|
||||
disc_conditional=False,
|
||||
disc_loss="hinge",
|
||||
):
|
||||
super().__init__()
|
||||
assert disc_loss in ["hinge", "vanilla"]
|
||||
self.kl_weight = kl_weight
|
||||
self.pixel_weight = pixelloss_weight
|
||||
self.perceptual_loss = LPIPS().eval()
|
||||
self.perceptual_weight = perceptual_weight
|
||||
# output log variance
|
||||
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
||||
|
||||
self.discriminator = NLayerDiscriminator(
|
||||
input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm,
|
||||
).apply(weights_init)
|
||||
self.discriminator_iter_start = disc_start
|
||||
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
||||
self.disc_factor = disc_factor
|
||||
self.discriminator_weight = disc_weight
|
||||
self.disc_conditional = disc_conditional
|
||||
|
||||
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||
if last_layer is not None:
|
||||
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||
else:
|
||||
nll_grads = torch.autograd.grad(
|
||||
nll_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
g_grads = torch.autograd.grad(
|
||||
g_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
|
||||
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||
d_weight = d_weight * self.discriminator_weight
|
||||
return d_weight
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs,
|
||||
reconstructions,
|
||||
posteriors,
|
||||
optimizer_idx,
|
||||
global_step,
|
||||
last_layer=None,
|
||||
cond=None,
|
||||
split="train",
|
||||
weights=None,
|
||||
):
|
||||
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||
if self.perceptual_weight > 0:
|
||||
p_loss = self.perceptual_loss(
|
||||
inputs.contiguous(), reconstructions.contiguous()
|
||||
)
|
||||
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||
|
||||
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
||||
weighted_nll_loss = nll_loss
|
||||
if weights is not None:
|
||||
weighted_nll_loss = weights * nll_loss
|
||||
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
||||
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||
kl_loss = posteriors.kl()
|
||||
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
||||
|
||||
# now the GAN part
|
||||
if optimizer_idx == 0:
|
||||
# generator update
|
||||
if cond is None:
|
||||
assert not self.disc_conditional
|
||||
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||
else:
|
||||
assert self.disc_conditional
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat((reconstructions.contiguous(), cond), dim=1)
|
||||
)
|
||||
g_loss = -torch.mean(logits_fake)
|
||||
|
||||
if self.disc_factor > 0.0:
|
||||
try:
|
||||
d_weight = self.calculate_adaptive_weight(
|
||||
nll_loss, g_loss, last_layer=last_layer
|
||||
)
|
||||
except RuntimeError:
|
||||
assert not self.training
|
||||
d_weight = torch.tensor(0.0)
|
||||
else:
|
||||
d_weight = torch.tensor(0.0)
|
||||
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
loss = (
|
||||
weighted_nll_loss
|
||||
+ self.kl_weight * kl_loss
|
||||
+ d_weight * disc_factor * g_loss
|
||||
)
|
||||
|
||||
log = {
|
||||
"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||
"{}/logvar".format(split): self.logvar.detach(),
|
||||
"{}/kl_loss".format(split): kl_loss.detach().mean(),
|
||||
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||
"{}/d_weight".format(split): d_weight.detach(),
|
||||
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||
}
|
||||
return loss, log
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# second pass for discriminator update
|
||||
if cond is None:
|
||||
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||
else:
|
||||
logits_real = self.discriminator(
|
||||
torch.cat((inputs.contiguous().detach(), cond), dim=1)
|
||||
)
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat((reconstructions.contiguous().detach(), cond), dim=1)
|
||||
)
|
||||
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||
|
||||
log = {
|
||||
"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||
"{}/logits_fake".format(split): logits_fake.detach().mean(),
|
||||
}
|
||||
return d_loss, log
|
@ -1,222 +0,0 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import repeat
|
||||
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
||||
from taming.modules.losses.lpips import LPIPS
|
||||
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
||||
from torch import nn
|
||||
|
||||
|
||||
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
||||
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
||||
loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3])
|
||||
loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3])
|
||||
loss_real = (weights * loss_real).sum() / weights.sum()
|
||||
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
||||
d_loss = 0.5 * (loss_real + loss_fake)
|
||||
return d_loss
|
||||
|
||||
|
||||
def adopt_weight(weight, global_step, threshold=0, value=0.0):
|
||||
if global_step < threshold:
|
||||
weight = value
|
||||
return weight
|
||||
|
||||
|
||||
def measure_perplexity(predicted_indices, n_embed):
|
||||
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
||||
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
||||
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
||||
avg_probs = encodings.mean(0)
|
||||
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
||||
cluster_use = torch.sum(avg_probs > 0)
|
||||
return perplexity, cluster_use
|
||||
|
||||
|
||||
def l1(x, y):
|
||||
return torch.abs(x - y)
|
||||
|
||||
|
||||
def l2(x, y):
|
||||
return torch.pow((x - y), 2)
|
||||
|
||||
|
||||
class VQLPIPSWithDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
disc_start,
|
||||
codebook_weight=1.0,
|
||||
pixelloss_weight=1.0,
|
||||
disc_num_layers=3,
|
||||
disc_in_channels=3,
|
||||
disc_factor=1.0,
|
||||
disc_weight=1.0,
|
||||
perceptual_weight=1.0,
|
||||
use_actnorm=False,
|
||||
disc_conditional=False,
|
||||
disc_ndf=64,
|
||||
disc_loss="hinge",
|
||||
n_classes=None,
|
||||
perceptual_loss="lpips",
|
||||
pixel_loss="l1",
|
||||
):
|
||||
super().__init__()
|
||||
assert disc_loss in ["hinge", "vanilla"]
|
||||
assert perceptual_loss in ["lpips", "clips", "dists"]
|
||||
assert pixel_loss in ["l1", "l2"]
|
||||
self.codebook_weight = codebook_weight
|
||||
self.pixel_weight = pixelloss_weight
|
||||
if perceptual_loss == "lpips":
|
||||
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
||||
self.perceptual_loss = LPIPS().eval()
|
||||
else:
|
||||
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
||||
self.perceptual_weight = perceptual_weight
|
||||
|
||||
if pixel_loss == "l1":
|
||||
self.pixel_loss = l1
|
||||
else:
|
||||
self.pixel_loss = l2
|
||||
|
||||
self.discriminator = NLayerDiscriminator(
|
||||
input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm,
|
||||
ndf=disc_ndf,
|
||||
).apply(weights_init)
|
||||
self.discriminator_iter_start = disc_start
|
||||
if disc_loss == "hinge":
|
||||
self.disc_loss = hinge_d_loss
|
||||
elif disc_loss == "vanilla":
|
||||
self.disc_loss = vanilla_d_loss
|
||||
else:
|
||||
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
||||
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
||||
self.disc_factor = disc_factor
|
||||
self.discriminator_weight = disc_weight
|
||||
self.disc_conditional = disc_conditional
|
||||
self.n_classes = n_classes
|
||||
|
||||
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||
if last_layer is not None:
|
||||
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||
else:
|
||||
nll_grads = torch.autograd.grad(
|
||||
nll_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
g_grads = torch.autograd.grad(
|
||||
g_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
|
||||
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||
d_weight = d_weight * self.discriminator_weight
|
||||
return d_weight
|
||||
|
||||
def forward(
|
||||
self,
|
||||
codebook_loss,
|
||||
inputs,
|
||||
reconstructions,
|
||||
optimizer_idx,
|
||||
global_step,
|
||||
last_layer=None,
|
||||
cond=None,
|
||||
split="train",
|
||||
predicted_indices=None,
|
||||
):
|
||||
if not exists(codebook_loss):
|
||||
codebook_loss = torch.tensor([0.0]).to(inputs.device)
|
||||
# rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||
if self.perceptual_weight > 0:
|
||||
p_loss = self.perceptual_loss(
|
||||
inputs.contiguous(), reconstructions.contiguous()
|
||||
)
|
||||
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||
else:
|
||||
p_loss = torch.tensor([0.0])
|
||||
|
||||
nll_loss = rec_loss
|
||||
# nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||
nll_loss = torch.mean(nll_loss)
|
||||
|
||||
# now the GAN part
|
||||
if optimizer_idx == 0:
|
||||
# generator update
|
||||
if cond is None:
|
||||
assert not self.disc_conditional
|
||||
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||
else:
|
||||
assert self.disc_conditional
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat((reconstructions.contiguous(), cond), dim=1)
|
||||
)
|
||||
g_loss = -torch.mean(logits_fake)
|
||||
|
||||
try:
|
||||
d_weight = self.calculate_adaptive_weight(
|
||||
nll_loss, g_loss, last_layer=last_layer
|
||||
)
|
||||
except RuntimeError:
|
||||
assert not self.training
|
||||
d_weight = torch.tensor(0.0)
|
||||
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
loss = (
|
||||
nll_loss
|
||||
+ d_weight * disc_factor * g_loss
|
||||
+ self.codebook_weight * codebook_loss.mean()
|
||||
)
|
||||
|
||||
log = {
|
||||
"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
||||
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||
"{}/p_loss".format(split): p_loss.detach().mean(),
|
||||
"{}/d_weight".format(split): d_weight.detach(),
|
||||
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||
}
|
||||
if predicted_indices is not None:
|
||||
assert self.n_classes is not None
|
||||
with torch.no_grad():
|
||||
perplexity, cluster_usage = measure_perplexity(
|
||||
predicted_indices, self.n_classes
|
||||
)
|
||||
log[f"{split}/perplexity"] = perplexity
|
||||
log[f"{split}/cluster_usage"] = cluster_usage
|
||||
return loss, log
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# second pass for discriminator update
|
||||
if cond is None:
|
||||
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||
else:
|
||||
logits_real = self.discriminator(
|
||||
torch.cat((inputs.contiguous().detach(), cond), dim=1)
|
||||
)
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat((reconstructions.contiguous().detach(), cond), dim=1)
|
||||
)
|
||||
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||
|
||||
log = {
|
||||
"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||
"{}/logits_fake".format(split): logits_fake.detach().mean(),
|
||||
}
|
||||
return d_loss, log
|
@ -1,729 +0,0 @@
|
||||
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
||||
from collections import namedtuple
|
||||
from functools import partial
|
||||
from inspect import isfunction
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, reduce, repeat
|
||||
from torch import einsum, nn
|
||||
|
||||
# constants
|
||||
|
||||
DEFAULT_DIM_HEAD = 64
|
||||
|
||||
Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"])
|
||||
|
||||
LayerIntermediates = namedtuple("Intermediates", ["hiddens", "attn_intermediates"])
|
||||
|
||||
|
||||
class AbsolutePositionalEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_seq_len):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(max_seq_len, dim)
|
||||
self.init_()
|
||||
|
||||
def init_(self):
|
||||
nn.init.normal_(self.emb.weight, std=0.02)
|
||||
|
||||
def forward(self, x):
|
||||
n = torch.arange(x.shape[1], device=x.device)
|
||||
return self.emb(n)[None, :, :]
|
||||
|
||||
|
||||
class FixedPositionalEmbedding(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer("inv_freq", inv_freq)
|
||||
|
||||
def forward(self, x, seq_dim=1, offset=0):
|
||||
t = (
|
||||
torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
|
||||
+ offset
|
||||
)
|
||||
sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq)
|
||||
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
||||
return emb[None, :, :]
|
||||
|
||||
|
||||
# helpers
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def always(val):
|
||||
def inner(*args, **kwargs):
|
||||
return val
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
def not_equals(val):
|
||||
def inner(x):
|
||||
return x != val
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
def equals(val):
|
||||
def inner(x):
|
||||
return x == val
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
def max_neg_value(tensor):
|
||||
return -torch.finfo(tensor.dtype).max
|
||||
|
||||
|
||||
# keyword argument helpers
|
||||
|
||||
|
||||
def pick_and_pop(keys, d):
|
||||
values = list(map(lambda key: d.pop(key), keys))
|
||||
return dict(zip(keys, values))
|
||||
|
||||
|
||||
def group_dict_by_key(cond, d):
|
||||
return_val = [dict(), dict()]
|
||||
for key in d.keys():
|
||||
match = bool(cond(key))
|
||||
ind = int(not match)
|
||||
return_val[ind][key] = d[key]
|
||||
return (*return_val,)
|
||||
|
||||
|
||||
def string_begins_with(prefix, str):
|
||||
return str.startswith(prefix)
|
||||
|
||||
|
||||
def group_by_key_prefix(prefix, d):
|
||||
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
||||
|
||||
|
||||
def groupby_prefix_and_trim(prefix, d):
|
||||
kwargs_with_prefix, kwargs = group_dict_by_key(
|
||||
partial(string_begins_with, prefix), d
|
||||
)
|
||||
kwargs_without_prefix = dict(
|
||||
map(
|
||||
lambda x: (x[0][len(prefix) :], x[1]),
|
||||
tuple(kwargs_with_prefix.items()),
|
||||
)
|
||||
)
|
||||
return kwargs_without_prefix, kwargs
|
||||
|
||||
|
||||
# classes
|
||||
class Scale(nn.Module):
|
||||
def __init__(self, value, fn):
|
||||
super().__init__()
|
||||
self.value = value
|
||||
self.fn = fn
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
x, *rest = self.fn(x, **kwargs)
|
||||
return (x * self.value, *rest)
|
||||
|
||||
|
||||
class Rezero(nn.Module):
|
||||
def __init__(self, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
self.g = nn.Parameter(torch.zeros(1))
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
x, *rest = self.fn(x, **kwargs)
|
||||
return (x * self.g, *rest)
|
||||
|
||||
|
||||
class ScaleNorm(nn.Module):
|
||||
def __init__(self, dim, eps=1e-5):
|
||||
super().__init__()
|
||||
self.scale = dim**-0.5
|
||||
self.eps = eps
|
||||
self.g = nn.Parameter(torch.ones(1))
|
||||
|
||||
def forward(self, x):
|
||||
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
||||
return x / norm.clamp(min=self.eps) * self.g
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim, eps=1e-8):
|
||||
super().__init__()
|
||||
self.scale = dim**-0.5
|
||||
self.eps = eps
|
||||
self.g = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
||||
return x / norm.clamp(min=self.eps) * self.g
|
||||
|
||||
|
||||
class Residual(nn.Module):
|
||||
def forward(self, x, residual):
|
||||
return x + residual
|
||||
|
||||
|
||||
class GRUGating(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.gru = nn.GRUCell(dim, dim)
|
||||
|
||||
def forward(self, x, residual):
|
||||
gated_output = self.gru(
|
||||
rearrange(x, "b n d -> (b n) d"),
|
||||
rearrange(residual, "b n d -> (b n) d"),
|
||||
)
|
||||
|
||||
return gated_output.reshape_as(x)
|
||||
|
||||
|
||||
# feedforward
|
||||
|
||||
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = (
|
||||
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
||||
if not glu
|
||||
else GEGLU(dim, inner_dim)
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
# attention.
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_head=DEFAULT_DIM_HEAD,
|
||||
heads=8,
|
||||
causal=False,
|
||||
mask=None,
|
||||
talking_heads=False,
|
||||
sparse_topk=None,
|
||||
use_entmax15=False,
|
||||
num_mem_kv=0,
|
||||
dropout=0.0,
|
||||
on_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
if use_entmax15:
|
||||
raise NotImplementedError(
|
||||
"Check out entmax activation instead of softmax activation!"
|
||||
)
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
self.causal = causal
|
||||
self.mask = mask
|
||||
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
# talking heads
|
||||
self.talking_heads = talking_heads
|
||||
if talking_heads:
|
||||
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
||||
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
||||
|
||||
# explicit topk sparse attention
|
||||
self.sparse_topk = sparse_topk
|
||||
|
||||
# entmax
|
||||
# self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
||||
self.attn_fn = F.softmax
|
||||
|
||||
# add memory key / values
|
||||
self.num_mem_kv = num_mem_kv
|
||||
if num_mem_kv > 0:
|
||||
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
||||
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
||||
|
||||
# attention on attention
|
||||
self.attn_on_attn = on_attn
|
||||
self.to_out = (
|
||||
nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU())
|
||||
if on_attn
|
||||
else nn.Linear(inner_dim, dim)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
context=None,
|
||||
mask=None,
|
||||
context_mask=None,
|
||||
rel_pos=None,
|
||||
sinusoidal_emb=None,
|
||||
prev_attn=None,
|
||||
mem=None,
|
||||
):
|
||||
b, n, _, h, talking_heads, device = (
|
||||
*x.shape,
|
||||
self.heads,
|
||||
self.talking_heads,
|
||||
x.device,
|
||||
)
|
||||
kv_input = default(context, x)
|
||||
|
||||
q_input = x
|
||||
k_input = kv_input
|
||||
v_input = kv_input
|
||||
|
||||
if exists(mem):
|
||||
k_input = torch.cat((mem, k_input), dim=-2)
|
||||
v_input = torch.cat((mem, v_input), dim=-2)
|
||||
|
||||
if exists(sinusoidal_emb):
|
||||
# in shortformer, the query would start at a position offset depending on the past cached memory
|
||||
offset = k_input.shape[-2] - q_input.shape[-2]
|
||||
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
||||
k_input = k_input + sinusoidal_emb(k_input)
|
||||
|
||||
q = self.to_q(q_input)
|
||||
k = self.to_k(k_input)
|
||||
v = self.to_v(v_input)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
||||
|
||||
input_mask = None
|
||||
if any(map(exists, (mask, context_mask))):
|
||||
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
||||
k_mask = q_mask if not exists(context) else context_mask
|
||||
k_mask = default(
|
||||
k_mask,
|
||||
lambda: torch.ones((b, k.shape[-2]), device=device).bool(),
|
||||
)
|
||||
q_mask = rearrange(q_mask, "b i -> b () i ()")
|
||||
k_mask = rearrange(k_mask, "b j -> b () () j")
|
||||
input_mask = q_mask * k_mask
|
||||
|
||||
if self.num_mem_kv > 0:
|
||||
mem_k, mem_v = map(
|
||||
lambda t: repeat(t, "h n d -> b h n d", b=b),
|
||||
(self.mem_k, self.mem_v),
|
||||
)
|
||||
k = torch.cat((mem_k, k), dim=-2)
|
||||
v = torch.cat((mem_v, v), dim=-2)
|
||||
if exists(input_mask):
|
||||
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
||||
|
||||
dots = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
|
||||
mask_value = max_neg_value(dots)
|
||||
|
||||
if exists(prev_attn):
|
||||
dots = dots + prev_attn
|
||||
|
||||
pre_softmax_attn = dots
|
||||
|
||||
if talking_heads:
|
||||
dots = einsum(
|
||||
"b h i j, h k -> b k i j", dots, self.pre_softmax_proj
|
||||
).contiguous()
|
||||
|
||||
if exists(rel_pos):
|
||||
dots = rel_pos(dots)
|
||||
|
||||
if exists(input_mask):
|
||||
dots.masked_fill_(~input_mask, mask_value)
|
||||
del input_mask
|
||||
|
||||
if self.causal:
|
||||
i, j = dots.shape[-2:]
|
||||
r = torch.arange(i, device=device)
|
||||
mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j")
|
||||
mask = F.pad(mask, (j - i, 0), value=False)
|
||||
dots.masked_fill_(mask, mask_value)
|
||||
del mask
|
||||
|
||||
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
||||
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
||||
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
||||
mask = dots < vk
|
||||
dots.masked_fill_(mask, mask_value)
|
||||
del mask
|
||||
|
||||
attn = self.attn_fn(dots, dim=-1)
|
||||
post_softmax_attn = attn
|
||||
|
||||
attn = self.dropout(attn)
|
||||
|
||||
if talking_heads:
|
||||
attn = einsum(
|
||||
"b h i j, h k -> b k i j", attn, self.post_softmax_proj
|
||||
).contiguous()
|
||||
|
||||
out = einsum("b h i j, b h j d -> b h i d", attn, v)
|
||||
out = rearrange(out, "b h n d -> b n (h d)")
|
||||
|
||||
intermediates = Intermediates(
|
||||
pre_softmax_attn=pre_softmax_attn,
|
||||
post_softmax_attn=post_softmax_attn,
|
||||
)
|
||||
|
||||
return self.to_out(out), intermediates
|
||||
|
||||
|
||||
class AttentionLayers(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth,
|
||||
heads=8,
|
||||
causal=False,
|
||||
cross_attend=False,
|
||||
only_cross=False,
|
||||
use_scalenorm=False,
|
||||
use_rmsnorm=False,
|
||||
use_rezero=False,
|
||||
rel_pos_num_buckets=32,
|
||||
rel_pos_max_distance=128,
|
||||
position_infused_attn=False,
|
||||
custom_layers=None,
|
||||
sandwich_coef=None,
|
||||
par_ratio=None,
|
||||
residual_attn=False,
|
||||
cross_residual_attn=False,
|
||||
macaron=False,
|
||||
pre_norm=True,
|
||||
gate_residual=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs)
|
||||
attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs)
|
||||
|
||||
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD)
|
||||
|
||||
self.dim = dim
|
||||
self.depth = depth
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
self.has_pos_emb = position_infused_attn
|
||||
self.pia_pos_emb = (
|
||||
FixedPositionalEmbedding(dim) if position_infused_attn else None
|
||||
)
|
||||
self.rotary_pos_emb = always(None)
|
||||
|
||||
assert (
|
||||
rel_pos_num_buckets <= rel_pos_max_distance
|
||||
), "number of relative position buckets must be less than the relative position max distance"
|
||||
self.rel_pos = None
|
||||
|
||||
self.pre_norm = pre_norm
|
||||
|
||||
self.residual_attn = residual_attn
|
||||
self.cross_residual_attn = cross_residual_attn
|
||||
|
||||
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
||||
norm_class = RMSNorm if use_rmsnorm else norm_class
|
||||
norm_fn = partial(norm_class, dim)
|
||||
|
||||
norm_fn = nn.Identity if use_rezero else norm_fn
|
||||
branch_fn = Rezero if use_rezero else None
|
||||
|
||||
if cross_attend and not only_cross:
|
||||
default_block = ("a", "c", "f")
|
||||
elif cross_attend and only_cross:
|
||||
default_block = ("c", "f")
|
||||
else:
|
||||
default_block = ("a", "f")
|
||||
|
||||
if macaron:
|
||||
default_block = ("f",) + default_block
|
||||
|
||||
if exists(custom_layers):
|
||||
layer_types = custom_layers
|
||||
elif exists(par_ratio):
|
||||
par_depth = depth * len(default_block)
|
||||
assert 1 < par_ratio <= par_depth, "par ratio out of range"
|
||||
default_block = tuple(filter(not_equals("f"), default_block))
|
||||
par_attn = par_depth // par_ratio
|
||||
depth_cut = (
|
||||
par_depth * 2 // 3
|
||||
) # 2 / 3 attention layer cutoff suggested by PAR paper
|
||||
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
||||
assert (
|
||||
len(default_block) <= par_width
|
||||
), "default block is too large for par_ratio"
|
||||
par_block = default_block + ("f",) * (par_width - len(default_block))
|
||||
par_head = par_block * par_attn
|
||||
layer_types = par_head + ("f",) * (par_depth - len(par_head))
|
||||
elif exists(sandwich_coef):
|
||||
assert (
|
||||
sandwich_coef > 0 and sandwich_coef <= depth
|
||||
), "sandwich coefficient should be less than the depth"
|
||||
layer_types = (
|
||||
("a",) * sandwich_coef
|
||||
+ default_block * (depth - sandwich_coef)
|
||||
+ ("f",) * sandwich_coef
|
||||
)
|
||||
else:
|
||||
layer_types = default_block * depth
|
||||
|
||||
self.layer_types = layer_types
|
||||
self.num_attn_layers = len(list(filter(equals("a"), layer_types)))
|
||||
|
||||
for layer_type in self.layer_types:
|
||||
if layer_type == "a":
|
||||
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
||||
elif layer_type == "c":
|
||||
layer = Attention(dim, heads=heads, **attn_kwargs)
|
||||
elif layer_type == "f":
|
||||
layer = FeedForward(dim, **ff_kwargs)
|
||||
layer = layer if not macaron else Scale(0.5, layer)
|
||||
else:
|
||||
raise Exception(f"invalid layer type {layer_type}")
|
||||
|
||||
if isinstance(layer, Attention) and exists(branch_fn):
|
||||
layer = branch_fn(layer)
|
||||
|
||||
if gate_residual:
|
||||
residual_fn = GRUGating(dim)
|
||||
else:
|
||||
residual_fn = Residual()
|
||||
|
||||
self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn]))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
context=None,
|
||||
mask=None,
|
||||
context_mask=None,
|
||||
mems=None,
|
||||
return_hiddens=False,
|
||||
**kwargs,
|
||||
):
|
||||
hiddens = []
|
||||
intermediates = []
|
||||
prev_attn = None
|
||||
prev_cross_attn = None
|
||||
|
||||
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
||||
|
||||
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(
|
||||
zip(self.layer_types, self.layers)
|
||||
):
|
||||
is_last = ind == (len(self.layers) - 1)
|
||||
|
||||
if layer_type == "a":
|
||||
hiddens.append(x)
|
||||
layer_mem = mems.pop(0)
|
||||
|
||||
residual = x
|
||||
|
||||
if self.pre_norm:
|
||||
x = norm(x)
|
||||
|
||||
if layer_type == "a":
|
||||
out, inter = block(
|
||||
x,
|
||||
mask=mask,
|
||||
sinusoidal_emb=self.pia_pos_emb,
|
||||
rel_pos=self.rel_pos,
|
||||
prev_attn=prev_attn,
|
||||
mem=layer_mem,
|
||||
)
|
||||
elif layer_type == "c":
|
||||
out, inter = block(
|
||||
x,
|
||||
context=context,
|
||||
mask=mask,
|
||||
context_mask=context_mask,
|
||||
prev_attn=prev_cross_attn,
|
||||
)
|
||||
elif layer_type == "f":
|
||||
out = block(x)
|
||||
|
||||
x = residual_fn(out, residual)
|
||||
|
||||
if layer_type in ("a", "c"):
|
||||
intermediates.append(inter)
|
||||
|
||||
if layer_type == "a" and self.residual_attn:
|
||||
prev_attn = inter.pre_softmax_attn
|
||||
elif layer_type == "c" and self.cross_residual_attn:
|
||||
prev_cross_attn = inter.pre_softmax_attn
|
||||
|
||||
if not self.pre_norm and not is_last:
|
||||
x = norm(x)
|
||||
|
||||
if return_hiddens:
|
||||
intermediates = LayerIntermediates(
|
||||
hiddens=hiddens, attn_intermediates=intermediates
|
||||
)
|
||||
|
||||
return x, intermediates
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(AttentionLayers):
|
||||
def __init__(self, **kwargs):
|
||||
assert "causal" not in kwargs, "cannot set causality on encoder"
|
||||
super().__init__(causal=False, **kwargs)
|
||||
|
||||
|
||||
class TransformerWrapper(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_tokens,
|
||||
max_seq_len,
|
||||
attn_layers,
|
||||
emb_dim=None,
|
||||
max_mem_len=0.0,
|
||||
emb_dropout=0.0,
|
||||
num_memory_tokens=None,
|
||||
tie_embedding=False,
|
||||
use_pos_emb=True,
|
||||
):
|
||||
super().__init__()
|
||||
assert isinstance(
|
||||
attn_layers, AttentionLayers
|
||||
), "attention layers must be one of Encoder or Decoder"
|
||||
|
||||
dim = attn_layers.dim
|
||||
emb_dim = default(emb_dim, dim)
|
||||
|
||||
self.max_seq_len = max_seq_len
|
||||
self.max_mem_len = max_mem_len
|
||||
self.num_tokens = num_tokens
|
||||
|
||||
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
||||
self.pos_emb = (
|
||||
AbsolutePositionalEmbedding(emb_dim, max_seq_len)
|
||||
if (use_pos_emb and not attn_layers.has_pos_emb)
|
||||
else always(0)
|
||||
)
|
||||
self.emb_dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
||||
self.attn_layers = attn_layers
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
|
||||
self.init_()
|
||||
|
||||
self.to_logits = (
|
||||
nn.Linear(dim, num_tokens)
|
||||
if not tie_embedding
|
||||
else lambda t: t @ self.token_emb.weight.t()
|
||||
)
|
||||
|
||||
# memory tokens (like [cls]) from Memory Transformers paper
|
||||
num_memory_tokens = default(num_memory_tokens, 0)
|
||||
self.num_memory_tokens = num_memory_tokens
|
||||
if num_memory_tokens > 0:
|
||||
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
||||
|
||||
# let funnel encoder know number of memory tokens, if specified
|
||||
if hasattr(attn_layers, "num_memory_tokens"):
|
||||
attn_layers.num_memory_tokens = num_memory_tokens
|
||||
|
||||
def init_(self):
|
||||
nn.init.normal_(self.token_emb.weight, std=0.02)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
return_embeddings=False,
|
||||
mask=None,
|
||||
return_mems=False,
|
||||
return_attn=False,
|
||||
mems=None,
|
||||
embedding_manager=None,
|
||||
**kwargs,
|
||||
):
|
||||
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
||||
|
||||
embedded_x = self.token_emb(x)
|
||||
|
||||
if embedding_manager:
|
||||
x = embedding_manager(x, embedded_x)
|
||||
else:
|
||||
x = embedded_x
|
||||
|
||||
x = x + self.pos_emb(x)
|
||||
x = self.emb_dropout(x)
|
||||
|
||||
x = self.project_emb(x)
|
||||
|
||||
if num_mem > 0:
|
||||
mem = repeat(self.memory_tokens, "n d -> b n d", b=b)
|
||||
x = torch.cat((mem, x), dim=1)
|
||||
|
||||
# auto-handle masking after appending memory tokens
|
||||
if exists(mask):
|
||||
mask = F.pad(mask, (num_mem, 0), value=True)
|
||||
|
||||
x, intermediates = self.attn_layers(
|
||||
x, mask=mask, mems=mems, return_hiddens=True, **kwargs
|
||||
)
|
||||
x = self.norm(x)
|
||||
|
||||
mem, x = x[:, :num_mem], x[:, num_mem:]
|
||||
|
||||
out = self.to_logits(x) if not return_embeddings else x
|
||||
|
||||
if return_mems:
|
||||
hiddens = intermediates.hiddens
|
||||
new_mems = (
|
||||
list(
|
||||
map(
|
||||
lambda pair: torch.cat(pair, dim=-2),
|
||||
zip(mems, hiddens),
|
||||
)
|
||||
)
|
||||
if exists(mems)
|
||||
else hiddens
|
||||
)
|
||||
new_mems = list(
|
||||
map(lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems)
|
||||
)
|
||||
return out, new_mems
|
||||
|
||||
if return_attn:
|
||||
attn_maps = list(
|
||||
map(
|
||||
lambda t: t.post_softmax_attn,
|
||||
intermediates.attn_intermediates,
|
||||
)
|
||||
)
|
||||
return out, attn_maps
|
||||
|
||||
return out
|
@ -52,37 +52,25 @@ dependencies = [
|
||||
"flask_cors==3.0.10",
|
||||
"flask_socketio==5.3.0",
|
||||
"flaskwebgui==1.0.3",
|
||||
"getpass_asterisk",
|
||||
"gfpgan==1.3.8",
|
||||
"huggingface-hub>=0.11.1",
|
||||
"imageio",
|
||||
"imageio-ffmpeg",
|
||||
"k-diffusion", # replacing "k-diffusion @ https://github.com/Birch-san/k-diffusion/archive/refs/heads/mps.zip",
|
||||
"kornia",
|
||||
"npyscreen",
|
||||
"numpy<1.24",
|
||||
"omegaconf",
|
||||
"opencv-python",
|
||||
"picklescan",
|
||||
"pillow",
|
||||
"pudb",
|
||||
"prompt-toolkit",
|
||||
"pypatchmatch",
|
||||
"pyreadline3",
|
||||
"python-multipart==0.0.5",
|
||||
"pytorch-lightning==1.7.7",
|
||||
"realesrgan",
|
||||
"requests==2.28.2",
|
||||
"safetensors",
|
||||
"scikit-image>=0.19",
|
||||
"send2trash",
|
||||
"streamlit",
|
||||
"taming-transformers-rom1504",
|
||||
"test-tube>=0.7.5",
|
||||
"torch>=1.13.1",
|
||||
"torch-fidelity",
|
||||
"torchvision>=0.14.1",
|
||||
"torchmetrics",
|
||||
"transformers~=4.25",
|
||||
"uvicorn[standard]==0.20.0",
|
||||
"windows-curses; sys_platform=='win32'",
|
||||
@ -95,6 +83,9 @@ dependencies = [
|
||||
"mkdocs-git-revision-date-localized-plugin",
|
||||
"mkdocs-redirects==1.2.0",
|
||||
]
|
||||
"dev" = [
|
||||
"pudb",
|
||||
]
|
||||
"test" = ["pytest>6.0.0", "pytest-cov"]
|
||||
"xformers" = [
|
||||
"xformers~=0.0.16; sys_platform!='darwin'",
|
||||
@ -132,7 +123,7 @@ version = { attr = "invokeai.version.__version__" }
|
||||
[tool.setuptools.packages.find]
|
||||
"where" = ["."]
|
||||
"include" = [
|
||||
"invokeai.assets.web*","invokeai.version*",
|
||||
"invokeai.assets.web*","invokeai.version*",
|
||||
"invokeai.generator*","invokeai.backend*",
|
||||
"invokeai.frontend*", "invokeai.frontend.web.dist*",
|
||||
"invokeai.configs*",
|
||||
|
Loading…
Reference in New Issue
Block a user