Connect TiledMultiDiffusionDenoiseLatents to the MultiDiffusionPipeline backend.

This commit is contained in:
Ryan Dick 2024-06-17 16:30:34 -04:00 committed by Kent Keirsey
parent 36473fc52a
commit c881882f73
2 changed files with 132 additions and 158 deletions

View File

@ -1,10 +1,10 @@
import copy
from contextlib import ExitStack
from typing import Iterator, Tuple
import numpy as np
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from PIL import Image
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
@ -19,21 +19,38 @@ from invokeai.app.invocations.fields import (
LatentsField,
UIType,
)
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.noise import get_noise
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
MultiDiffusionRegionConditioning,
)
from invokeai.backend.tiles.tiles import (
calc_tiles_min_overlap,
merge_tiles_with_linear_blending,
)
from invokeai.backend.tiles.utils import TBLR
from invokeai.backend.util.devices import TorchDevice
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
"""Crop a ControlNetData object to a region."""
# Create a shallow copy of the control_data object.
control_data_copy = copy.copy(control_data)
# The ControlNet reference image is the only attribute that needs to be cropped.
control_data_copy.image_tensor = control_data.image_tensor[
:,
:,
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
]
return control_data_copy
@invocation(
"tiled_multi_diffusion_denoise_latents",
title="Tiled Multi-Diffusion Denoise Latents",
@ -119,8 +136,33 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def create_pipeline(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
) -> MultiDiffusionPipeline:
# TODO(ryand): Get rid of this FakeVae hack.
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return MultiDiffusionPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
@ -149,15 +191,6 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
min_overlap=self.tile_min_overlap,
)
# Split the noise and latents into tiles.
noise_tiles: list[torch.Tensor] = []
latent_tiles: list[torch.Tensor] = []
for tile in tiles:
noise_tile = noise[..., tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
latent_tile = latents[..., tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
noise_tiles.append(noise_tile)
latent_tiles.append(latent_tile)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
@ -169,7 +202,6 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
refined_latent_tiles: list[torch.Tensor] = []
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
scheduler = get_scheduler(
@ -178,7 +210,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
@ -203,95 +235,47 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
)
# Split the controlnet_data into tiles.
if controlnet_data is not None:
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
controlnet_data_tiles: list[list[ControlNetData]] = []
for tile in tiles:
# To split the controlnet_data into tiles, we simply need to crop each image_tensor. All other
# params can be copied unmodified.
tile_controlnet_data = [
ControlNetData(
model=cn.model,
image_tensor=cn.image_tensor[
:,
:,
tile.coords.top * LATENT_SCALE_FACTOR : tile.coords.bottom * LATENT_SCALE_FACTOR,
tile.coords.left * LATENT_SCALE_FACTOR : tile.coords.right * LATENT_SCALE_FACTOR,
],
weight=cn.weight,
begin_step_percent=cn.begin_step_percent,
end_step_percent=cn.end_step_percent,
control_mode=cn.control_mode,
resize_mode=cn.resize_mode,
)
for cn in controlnet_data
]
controlnet_data_tiles.append(tile_controlnet_data)
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
controlnet_data_tiles: list[list[ControlNetData]] = []
for tile in tiles:
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
controlnet_data_tiles.append(tile_controlnet_data)
# Denoise (i.e. "refine") each tile independently.
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
assert latent_tile.shape == noise_tile.shape
# Prepare a PIL Image for ControlNet processing.
# TODO(ryand): This is a bit awkward that we have to prepare both torch.Tensor and PIL.Image versions of
# the tiles. Ideally, the ControlNet code should be able to work with Tensors.
image_tile_pil = Image.fromarray(image_tile_np)
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
# Prepare the MultiDiffusionRegionConditioning list.
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
multi_diffusion_conditioning.append(
MultiDiffusionRegionConditioning(
region=tile.coords,
text_conditioning_data=conditioning_data,
control_data=tile_controlnet_data,
)
)
# TODO(ryand): Think about when/if latents/noise should be moved off of the device to save VRAM.
latent_tile = latent_tile.to(device=unet.device, dtype=unet.dtype)
noise_tile = noise_tile.to(device=unet.device, dtype=unet.dtype)
refined_latent_tile = pipeline.latents_from_embeddings(
latents=latent_tile,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise_tile,
seed=seed,
mask=None,
masked_latents=None,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=[controlnet_data],
ip_adapter_data=None,
t2i_adapter_data=None,
callback=lambda x: None,
)
refined_latent_tiles.append(refined_latent_tile)
# VAE-decode each refined latent tile independently.
refined_image_tiles: list[Image.Image] = []
for refined_latent_tile in refined_latent_tiles:
refined_image_tile = LatentsToImageInvocation.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=refined_latent_tile,
use_fp32=self.vae_fp32,
use_tiling=False,
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
# Run Multi-Diffusion denoising.
result_latents = pipeline.multi_diffusion_denoise(
multi_diffusion_conditioning=multi_diffusion_conditioning,
latents=latents,
scheduler_step_kwargs=scheduler_step_kwargs,
noise=noise,
timesteps=timesteps,
init_timestep=init_timestep,
# TODO(ryand): Add proper callback.
callback=lambda x: None,
)
refined_image_tiles.append(refined_image_tile)
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
result_latents = result_latents.to("cpu")
TorchDevice.empty_cache()
# Merge the refined image tiles back into a single image.
refined_image_tiles_np = [np.array(t) for t in refined_image_tiles]
merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8)
# TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter?
merge_tiles_with_linear_blending(
dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap
)
# Save the refined image and return its reference.
merged_image_pil = Image.fromarray(merged_image_np)
image_dto = context.images.save(image=merged_image_pil)
return ImageOutput.build(image_dto)
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)

View File

@ -1,6 +1,6 @@
from __future__ import annotations
import copy
from dataclasses import dataclass
from typing import Any, Callable, Optional
import torch
@ -11,7 +11,15 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import (
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.tiles.utils import Tile
from invokeai.backend.tiles.utils import TBLR
@dataclass
class MultiDiffusionRegionConditioning:
# Region coords in latent space.
region: TBLR
text_conditioning_data: TextConditioningData
control_data: list[ControlNetData]
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
@ -45,15 +53,13 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
def multi_diffusion_denoise(
self,
regions: list[Tile],
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning],
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
control_data: list[ControlNetData] | None = None,
) -> torch.Tensor:
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
@ -74,21 +80,14 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
if use_regional_prompting:
raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.")
# Populate a weighted mask that will be used to combine the results from each region after every step.
# For now, we assume that each regions has the same weight (1.0).
region_weight_mask = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
for region in regions:
region_weight_mask[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += 1.0
for region_conditioning in multi_diffusion_conditioning:
region = region_conditioning.region
region_weight_mask[:, :, region.top : region.bottom, region.left : region.right] += 1.0
callback(
PipelineIntermediateState(
@ -103,39 +102,36 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
prev_samples_by_region: list[torch.Tensor] = []
pred_original_by_region: list[torch.Tensor | None] = []
for region in regions:
merged_latents = torch.zeros_like(latents)
merged_pred_original: torch.Tensor | None = None
for region_conditioning in multi_diffusion_conditioning:
# Run a denoising step on the region.
step_output = self._region_step(
region=region,
region_conditioning=region_conditioning,
t=batched_t,
latents=latents,
conditioning_data=conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
control_data=control_data,
)
prev_samples_by_region.append(step_output.prev_sample)
pred_original_by_region.append(getattr(step_output, "pred_original_sample", None))
# Merge the prev_sample results from each region.
merged_latents = torch.zeros_like(latents)
for region_idx, region in enumerate(regions):
merged_latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += prev_samples_by_region[region_idx]
# Store the results from the region.
region = region_conditioning.region
merged_latents[:, :, region.top : region.bottom, region.left : region.right] += step_output.prev_sample
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
# If one region has pred_original_sample, then we can assume that all regions will have it, because
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region.top : region.bottom, region.left : region.right] += (
pred_orig_sample
)
# Normalize the merged results.
latents = merged_latents / region_weight_mask
# Merge the predicted_original results from each region.
predicted_original = None
if all(pred_original_by_region):
merged_pred_original = torch.zeros_like(latents)
for region_idx, region in enumerate(regions):
merged_pred_original[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += pred_original_by_region[region_idx]
if merged_pred_original is not None:
predicted_original = merged_pred_original / region_weight_mask
callback(
@ -154,44 +150,38 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
@torch.inference_mode()
def _region_step(
self,
region: Tile,
region_conditioning: MultiDiffusionRegionConditioning,
t: torch.Tensor,
latents: torch.Tensor,
conditioning_data: TextConditioningData,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
control_data: list[ControlNetData] | None = None,
):
use_regional_prompting = (
region_conditioning.text_conditioning_data.cond_regions is not None
or region_conditioning.text_conditioning_data.uncond_regions is not None
)
if use_regional_prompting:
raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.")
# Crop the inputs to the region.
region_latents = latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
:,
:,
region_conditioning.region.top : region_conditioning.region.bottom,
region_conditioning.region.left : region_conditioning.region.right,
]
region_control_data: list[ControlNetData] | None = None
if control_data is not None:
region_control_data = [self._crop_controlnet_data(c, region) for c in control_data]
# Run the denoising step on the region.
return self.step(
t=t,
latents=region_latents,
conditioning_data=conditioning_data,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=step_index,
total_step_count=total_step_count,
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_control_data,
control_data=region_conditioning.control_data,
)
def _crop_controlnet_data(self, control_data: ControlNetData, region: Tile) -> ControlNetData:
"""Crop a ControlNetData object to a region."""
# Create a shallow copy of the control_data object.
control_data_copy = copy.copy(control_data)
# The ControlNet reference image is the only attribute that needs to be cropped.
control_data_copy.image_tensor = control_data.image_tensor[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
]
return control_data_copy