mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
small bug fixes in prompt generation
- fixes no closing quote in pretty-printed dream_prompt string - removes unecessary -f switch when txt2img used In addition, this commit does an experimental commenting-out of the random.seed() call in the variation-generating part of ldm.dream.generator.base. This fixes the problem of two calls that use the same seed and -v0.1 generating different images (#641). However, it does not fix the issue of two images generated using the same seed and -VXXXXXX being different.
This commit is contained in:
parent
34fa6e38e7
commit
c94b8cd959
@ -143,7 +143,7 @@ class Args(object):
|
||||
a = vars(self)
|
||||
a.update(kwargs)
|
||||
switches = list()
|
||||
switches.append(f'"{a["prompt"]}')
|
||||
switches.append(f'"{a["prompt"]}"')
|
||||
switches.append(f'-s {a["steps"]}')
|
||||
switches.append(f'-W {a["width"]}')
|
||||
switches.append(f'-H {a["height"]}')
|
||||
@ -152,15 +152,13 @@ class Args(object):
|
||||
switches.append(f'-S {a["seed"]}')
|
||||
if a['grid']:
|
||||
switches.append('--grid')
|
||||
if a['iterations'] and a['iterations']>0:
|
||||
switches.append(f'-n {a["iterations"]}')
|
||||
if a['seamless']:
|
||||
switches.append('--seamless')
|
||||
if a['init_img'] and len(a['init_img'])>0:
|
||||
switches.append(f'-I {a["init_img"]}')
|
||||
if a['fit']:
|
||||
switches.append(f'--fit')
|
||||
if a['strength'] and a['strength']>0:
|
||||
if a['init_img'] and a['strength'] and a['strength']>0:
|
||||
switches.append(f'-f {a["strength"]}')
|
||||
if a['gfpgan_strength']:
|
||||
switches.append(f'-G {a["gfpgan_strength"]}')
|
||||
|
@ -101,7 +101,7 @@ class Generator():
|
||||
next_noise = self.get_noise(width,height)
|
||||
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
||||
if self.variation_amount > 0:
|
||||
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
# random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
return (seed, initial_noise)
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user