mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Extract TI loading logic into util, disallow it from ever failing a generation
This commit is contained in:
parent
8efd4284e9
commit
ca9b815c89
@ -16,7 +16,7 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.model_records import UnknownModelException
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager.config import ModelType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
@ -86,26 +86,7 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list: List[Tuple[str, TextualInversionModelRaw]] = []
|
||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
||||
name_or_key = trigger[1:-1]
|
||||
try:
|
||||
loaded_model = context.models.load(key=name_or_key)
|
||||
model = loaded_model.model
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
try:
|
||||
loaded_model = context.models.load_by_attrs(
|
||||
model_name=name_or_key, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
|
||||
)
|
||||
model = loaded_model.model
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
logger.warning(f'trigger: "{trigger}" not found')
|
||||
except ValueError:
|
||||
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
|
||||
|
||||
with (
|
||||
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
|
||||
@ -206,26 +187,7 @@ class SDXLPromptInvocationBase:
|
||||
|
||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list: List[Tuple[str, TextualInversionModelRaw]] = []
|
||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
||||
name_or_key = trigger[1:-1]
|
||||
try:
|
||||
loaded_model = context.models.load(key=name_or_key)
|
||||
model = loaded_model.model
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
try:
|
||||
loaded_model = context.models.load_by_attrs(
|
||||
model_name=name_or_key, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
|
||||
)
|
||||
model = loaded_model.model
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
logger.warning(f'trigger: "{trigger}" not found')
|
||||
except ValueError:
|
||||
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
|
||||
|
||||
with (
|
||||
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
|
||||
|
@ -1,8 +1,44 @@
|
||||
import re
|
||||
from typing import List, Tuple
|
||||
|
||||
from invokeai.backend.model_manager.config import BaseModelType, ModelType
|
||||
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.services.model_records import UnknownModelException
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
|
||||
def extract_ti_triggers_from_prompt(prompt: str) -> list[str]:
|
||||
ti_triggers = []
|
||||
def extract_ti_triggers_from_prompt(prompt: str) -> List[str]:
|
||||
ti_triggers: List[str] = []
|
||||
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
||||
ti_triggers.append(trigger)
|
||||
ti_triggers.append(str(trigger))
|
||||
return ti_triggers
|
||||
|
||||
def generate_ti_list(prompt: str, base: BaseModelType, context: InvocationContext) -> List[Tuple[str, TextualInversionModelRaw]]:
|
||||
ti_list: List[Tuple[str, TextualInversionModelRaw]] = []
|
||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
||||
name_or_key = trigger[1:-1]
|
||||
try:
|
||||
loaded_model = context.models.load(key=name_or_key)
|
||||
model = loaded_model.model
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
assert loaded_model.config.base == base
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
try:
|
||||
loaded_model = context.models.load_by_attrs(
|
||||
model_name=name_or_key, base_model=base, model_type=ModelType.TextualInversion
|
||||
)
|
||||
model = loaded_model.model
|
||||
assert isinstance(model, TextualInversionModelRaw)
|
||||
assert loaded_model.config.base == base
|
||||
ti_list.append((name_or_key, model))
|
||||
except UnknownModelException:
|
||||
pass
|
||||
except ValueError:
|
||||
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||
except AssertionError:
|
||||
logger.warning(f'trigger: "{trigger}" not a valid textual inversion model for this graph')
|
||||
except Exception:
|
||||
logger.warning(f'Failed to load TI model for trigger: "{trigger}"')
|
||||
return ti_list
|
Loading…
Reference in New Issue
Block a user