mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
This commit is contained in:
parent
efbb807905
commit
ceb53ccdfb
@ -11,7 +11,7 @@ dependencies:
|
||||
- --extra-index-url https://download.pytorch.org/whl/rocm5.2/
|
||||
- albumentations==0.4.3
|
||||
- dependency_injector==4.40.0
|
||||
- diffusers==0.6.0
|
||||
- diffusers~=0.8
|
||||
- einops==0.3.0
|
||||
- eventlet
|
||||
- flask==2.1.3
|
||||
|
@ -15,7 +15,7 @@ dependencies:
|
||||
- accelerate~=0.13
|
||||
- albumentations==0.4.3
|
||||
- dependency_injector==4.40.0
|
||||
- diffusers==0.6.0
|
||||
- diffusers~=0.8
|
||||
- einops==0.3.0
|
||||
- eventlet
|
||||
- flask==2.1.3
|
||||
|
@ -22,7 +22,7 @@ dependencies:
|
||||
|
||||
- albumentations=1.2
|
||||
- coloredlogs=15.0
|
||||
- diffusers~=0.7
|
||||
- diffusers~=0.8
|
||||
- einops=0.3
|
||||
- eventlet
|
||||
- grpcio=1.46
|
||||
|
@ -15,7 +15,7 @@ dependencies:
|
||||
- albumentations==0.4.3
|
||||
- basicsr==1.4.1
|
||||
- dependency_injector==4.40.0
|
||||
- diffusers==0.6.0
|
||||
- diffusers~=0.8
|
||||
- einops==0.3.0
|
||||
- eventlet
|
||||
- flask==2.1.3
|
||||
|
@ -1,7 +1,7 @@
|
||||
# pip will resolve the version which matches torch
|
||||
albumentations
|
||||
dependency_injector==4.40.0
|
||||
diffusers[torch]~=0.7
|
||||
diffusers[torch]~=0.8
|
||||
einops
|
||||
eventlet
|
||||
facexlib
|
||||
|
@ -5,8 +5,8 @@ from typing import List, Optional, Union, Callable
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import preprocess
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
@ -26,7 +26,7 @@ class PipelineIntermediateState:
|
||||
predicted_original: Optional[torch.Tensor] = None
|
||||
|
||||
|
||||
class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion.
|
||||
|
||||
@ -67,10 +67,10 @@ class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
safety_checker: Optional[StableDiffusionSafetyChecker],
|
||||
feature_extractor: Optional[CLIPFeatureExtractor],
|
||||
):
|
||||
super().__init__()
|
||||
super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor)
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
@ -88,51 +88,6 @@ class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
||||
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
||||
|
||||
Args:
|
||||
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
||||
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
||||
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
||||
`attention_head_dim` must be a multiple of `slice_size`.
|
||||
"""
|
||||
if slice_size == "auto":
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = self.unet.config.attention_head_dim // 2
|
||||
self.unet.set_attention_slice(slice_size)
|
||||
|
||||
def disable_attention_slicing(self):
|
||||
r"""
|
||||
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
||||
back to computing attention in one step.
|
||||
"""
|
||||
# set slice_size = `None` to disable `attention slicing`
|
||||
self.enable_attention_slicing(None)
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.unet.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
||||
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
|
||||
guidance_scale: float,
|
||||
@ -195,10 +150,17 @@ class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
text_embeddings, unconditioned_embeddings = self.get_text_embeddings(prompt, opposing_prompt, do_classifier_free_guidance, batch_size)\
|
||||
.to(self.unet.device)
|
||||
|
||||
combined_embeddings = self._encode_prompt(prompt, device=self._execution_device, num_images_per_prompt=1,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
negative_prompt=opposing_prompt)
|
||||
text_embeddings, unconditioned_embeddings = combined_embeddings.chunk(2)
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
latents = self.prepare_latents(latents, batch_size, height, width, generator, self.unet.dtype)
|
||||
latents = self.prepare_latents(batch_size=batch_size, num_channels_latents=self.unet.in_channels,
|
||||
height=height, width=width,
|
||||
dtype=self.unet.dtype, device=self._execution_device,
|
||||
generator=generator,
|
||||
latents=latents)
|
||||
|
||||
yield from self.generate_from_embeddings(latents, text_embeddings, unconditioned_embeddings,
|
||||
guidance_scale, run_id=run_id, **extra_step_kwargs)
|
||||
@ -248,9 +210,10 @@ class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
image = self.decode_to_image(latents)
|
||||
output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[])
|
||||
yield self.check_for_safety(output)
|
||||
with torch.inference_mode():
|
||||
image = self.decode_latents(latents)
|
||||
output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[])
|
||||
yield self.check_for_safety(output, dtype=text_embeddings.dtype)
|
||||
|
||||
@torch.inference_mode()
|
||||
def step(self, t: torch.Tensor, latents: torch.Tensor, guidance_scale: float,
|
||||
@ -340,46 +303,12 @@ class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
|
||||
return timesteps
|
||||
|
||||
@torch.inference_mode()
|
||||
def check_for_safety(self, output):
|
||||
if not getattr(self, 'feature_extractor') or not getattr(self, 'safety_checker'):
|
||||
return output
|
||||
images = output.images
|
||||
safety_checker_output = self.feature_extractor(self.numpy_to_pil(images),
|
||||
return_tensors="pt").to(self.device)
|
||||
screened_images, has_nsfw_concept = self.safety_checker(
|
||||
images=images, clip_input=safety_checker_output.pixel_values)
|
||||
def check_for_safety(self, output, dtype):
|
||||
with torch.inference_mode():
|
||||
screened_images, has_nsfw_concept = self.run_safety_checker(
|
||||
output.images, device=self._execution_device, dtype=dtype)
|
||||
return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept)
|
||||
|
||||
@torch.inference_mode()
|
||||
def decode_to_image(self, latents):
|
||||
# scale and decode the image latents with vae
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||
return image
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_text_embeddings(self,
|
||||
prompt: Union[str, List[str]],
|
||||
opposing_prompt: Union[str, List[str]],
|
||||
do_classifier_free_guidance: bool,
|
||||
batch_size: int):
|
||||
# get prompt text embeddings
|
||||
text_input = self._tokenize(prompt)
|
||||
|
||||
text_embeddings = self.text_encoder(text_input.input_ids)[0]
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
# opposing prompt defaults to blank caption for everything in the batch
|
||||
text_anti_input = self._tokenize(opposing_prompt or [""] * batch_size)
|
||||
uncond_embeddings = self.text_encoder(text_anti_input.input_ids)[0]
|
||||
else:
|
||||
uncond_embeddings = None
|
||||
|
||||
return text_embeddings, uncond_embeddings
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None):
|
||||
"""
|
||||
@ -406,28 +335,3 @@ class StableDiffusionGeneratorPipeline(DiffusionPipeline):
|
||||
def channels(self) -> int:
|
||||
"""Compatible with DiffusionWrapper"""
|
||||
return self.unet.in_channels
|
||||
|
||||
def prepare_latents(self, latents, batch_size, height, width, generator, dtype):
|
||||
# get the initial random noise unless the user supplied it
|
||||
# Unlike in other pipelines, latents need to be generated in the target device
|
||||
# for 1-to-1 results reproducibility with the CompVis implementation.
|
||||
# However this currently doesn't work in `mps`.
|
||||
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
||||
if latents is None:
|
||||
latents = torch.randn(
|
||||
latents_shape,
|
||||
generator=generator,
|
||||
device=self.unet.device,
|
||||
dtype=dtype
|
||||
)
|
||||
else:
|
||||
if latents.shape != latents_shape:
|
||||
raise ValueError(
|
||||
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
if latents.device != self.unet.device:
|
||||
raise ValueError(f"Unexpected latents device, got {latents.device}, "
|
||||
f"expected {self.unet.device}")
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents *= self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
Loading…
Reference in New Issue
Block a user