mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Enable users to set sampler using prompts
This commit is contained in:
parent
38ed6393fa
commit
d1551b1bd4
@ -133,7 +133,8 @@ class T2I:
|
||||
full_precision=False,
|
||||
strength=0.75, # default in scripts/img2img.py
|
||||
embedding_path=None,
|
||||
latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
|
||||
# just to keep track of this parameter when regenerating prompt
|
||||
latent_diffusion_weights=False,
|
||||
device='cuda',
|
||||
gfpgan=None,
|
||||
):
|
||||
@ -175,7 +176,8 @@ class T2I:
|
||||
outdir, prompt, kwargs.get('batch_size', self.batch_size)
|
||||
)
|
||||
for r in results:
|
||||
metadata_str = f'prompt2png("{prompt}" {kwargs} seed={r[1]}' # gets written into the PNG
|
||||
# gets written into the PNG
|
||||
metadata_str = f'prompt2png("{prompt}" {kwargs} seed={r[1]}'
|
||||
pngwriter.write_image(r[0], r[1])
|
||||
return pngwriter.files_written
|
||||
|
||||
@ -210,6 +212,7 @@ class T2I:
|
||||
strength=None,
|
||||
gfpgan_strength=None,
|
||||
variants=None,
|
||||
user_sampler=None,
|
||||
**args,
|
||||
): # eat up additional cruft
|
||||
"""
|
||||
@ -269,6 +272,10 @@ class T2I:
|
||||
|
||||
scope = autocast if self.precision == 'autocast' else nullcontext
|
||||
|
||||
if user_sampler and (user_sampler != self.sampler_name):
|
||||
self.sampler_name = user_sampler
|
||||
self._set_sampler()
|
||||
|
||||
tic = time.time()
|
||||
results = list()
|
||||
|
||||
@ -305,12 +312,15 @@ class T2I:
|
||||
iter_images = next(images_iterator)
|
||||
for image in iter_images:
|
||||
try:
|
||||
# if gfpgan strength is none or less than or equal to 0.0 then
|
||||
# if gfpgan strength is none or less than or equal to 0.0 then
|
||||
# don't even attempt to use GFPGAN.
|
||||
# if the user specified a value of -G that satisifies the condition and
|
||||
# if the user specified a value of -G that satisifies the condition and
|
||||
# --gfpgan wasn't specified, at startup then
|
||||
# the net result is a message gets printed - nothing else happens.
|
||||
if gfpgan_strength is not None and gfpgan_strength > 0.0:
|
||||
if (
|
||||
gfpgan_strength is not None
|
||||
and gfpgan_strength > 0.0
|
||||
):
|
||||
image = self._run_gfpgan(
|
||||
image, gfpgan_strength
|
||||
)
|
||||
@ -499,39 +509,38 @@ class T2I:
|
||||
except AttributeError:
|
||||
raise SystemExit
|
||||
|
||||
msg = f'setting sampler to {self.sampler_name}'
|
||||
if self.sampler_name == 'plms':
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'ddim':
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_dpm_2':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_heun':
|
||||
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||||
elif self.sampler_name == 'k_lms':
|
||||
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
||||
else:
|
||||
msg = f'unsupported sampler {self.sampler_name}, defaulting to plms'
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
|
||||
print(msg)
|
||||
self._set_sampler()
|
||||
|
||||
return self.model
|
||||
|
||||
def _set_sampler(self):
|
||||
msg = f'>> Setting Sampler to {self.sampler_name}'
|
||||
if self.sampler_name == 'plms':
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'ddim':
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_dpm_2':
|
||||
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
|
||||
elif self.sampler_name == 'k_euler_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler':
|
||||
self.sampler = KSampler(self.model, 'euler', device=self.device)
|
||||
elif self.sampler_name == 'k_heun':
|
||||
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||||
elif self.sampler_name == 'k_lms':
|
||||
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
||||
else:
|
||||
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
|
||||
print(msg)
|
||||
|
||||
def _load_model_from_config(self, config, ckpt):
|
||||
print(f'Loading model from {ckpt}')
|
||||
pl_sd = torch.load(ckpt, map_location='cpu')
|
||||
|
@ -52,7 +52,8 @@ def main():
|
||||
weights=weights,
|
||||
full_precision=opt.full_precision,
|
||||
config=config,
|
||||
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
||||
# this is solely for recreating the prompt
|
||||
latent_diffusion_weights=opt.laion400m,
|
||||
embedding_path=opt.embedding_path,
|
||||
device=opt.device,
|
||||
)
|
||||
@ -508,6 +509,23 @@ def create_cmd_parser():
|
||||
action='store_true',
|
||||
help='skip subprompt weight normalization',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-m',
|
||||
'--user_sampler',
|
||||
default=None,
|
||||
type=str,
|
||||
choices=[
|
||||
'ddim',
|
||||
'k_dpm_2_a',
|
||||
'k_dpm_2',
|
||||
'k_euler_a',
|
||||
'k_euler',
|
||||
'k_heun',
|
||||
'k_lms',
|
||||
'plms',
|
||||
],
|
||||
help='Change to another supported sampler using this command',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user