Trying different places of applying batches

This commit is contained in:
Brandon Rising 2023-07-25 10:23:17 -04:00
parent e81601acf3
commit d2f968b902
4 changed files with 24 additions and 24 deletions

View File

@ -376,9 +376,8 @@ class TextToLatentsInvocation(BaseInvocation):
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu") result_latents = result_latents.to("cpu")
torch.cuda.empty_cache() import uuid
name = f'{context.graph_execution_state_id}__{self.id}_{uuid.uuid4()}'
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents) context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents) return build_latents_output(latents_name=name, latents=result_latents)

View File

@ -803,8 +803,6 @@ class GraphExecutionState(BaseModel):
# TODO: Store a reference to the graph instead of the actual graph? # TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed") graph: Graph = Field(description="The graph being executed")
batch_indices: list[int] = Field(description="Tracker for which batch is currently being processed", default_factory=list)
# The graph of materialized nodes # The graph of materialized nodes
execution_graph: Graph = Field( execution_graph: Graph = Field(
description="The expanded graph of activated and executed nodes", description="The expanded graph of activated and executed nodes",
@ -857,13 +855,14 @@ class GraphExecutionState(BaseModel):
] ]
} }
def next(self) -> Optional[BaseInvocation]: def next(self, batch_indices: list = list()) -> Optional[BaseInvocation]:
"""Gets the next node ready to execute.""" """Gets the next node ready to execute."""
# TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes # TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes
# possibly with a timeout? # possibly with a timeout?
# If there are no prepared nodes, prepare some nodes # If there are no prepared nodes, prepare some nodes
self._apply_batch_config()
next_node = self._get_next_node() next_node = self._get_next_node()
if next_node is None: if next_node is None:
prepared_id = self._prepare() prepared_id = self._prepare()
@ -872,17 +871,15 @@ class GraphExecutionState(BaseModel):
while prepared_id is not None: while prepared_id is not None:
prepared_id = self._prepare() prepared_id = self._prepare()
next_node = self._get_next_node() next_node = self._get_next_node()
# Get values from edges # Get values from edges
if next_node is not None: if next_node is not None:
self._prepare_inputs(next_node) self._prepare_inputs(next_node)
if next_node is None and sum(self.batch_indices) != 0:
if sum(self.batch_indices) != 0: for index in range(len(self.batch_indices)):
for index in self.batch_indices:
if self.batch_indices[index] > 0: if self.batch_indices[index] > 0:
self.executed.clear()
self.batch_indices[index] -= 1 self.batch_indices[index] -= 1
return self.next(self) self.executed.clear()
return self.next()
# If next is still none, there's no next node, return None # If next is still none, there's no next node, return None
return next_node return next_node
@ -912,7 +909,7 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool: def is_complete(self) -> bool:
"""Returns true if the graph is complete""" """Returns true if the graph is complete"""
node_ids = set(self.graph.nx_graph_flat().nodes) node_ids = set(self.graph.nx_graph_flat().nodes)
return self.has_error() or all((k in self.executed for k in node_ids)) return sum(self.batch_indices) == 0 and (self.has_error() or all((k in self.executed for k in node_ids)))
def has_error(self) -> bool: def has_error(self) -> bool:
"""Returns true if the graph has any errors""" """Returns true if the graph has any errors"""
@ -1020,6 +1017,20 @@ class GraphExecutionState(BaseModel):
] ]
return iterators return iterators
def _apply_batch_config(self):
g = self.graph.nx_graph_flat()
sorted_nodes = nx.topological_sort(g)
batchable_nodes = [n for n in sorted_nodes if n not in self.executed]
for npath in batchable_nodes:
node = self.graph.get_node(npath)
(index, batch) = next(((i,b) for i,b in enumerate(self.graph.batches) if b.node_id in node.id), (None, None))
if batch:
batch_index = self.batch_indices[index]
datum = batch.data[batch_index]
datum.id = node.id
self.graph.update_node(npath, datum)
def _prepare(self) -> Optional[str]: def _prepare(self) -> Optional[str]:
# Get flattened source graph # Get flattened source graph
g = self.graph.nx_graph_flat() g = self.graph.nx_graph_flat()
@ -1051,7 +1062,6 @@ class GraphExecutionState(BaseModel):
), ),
None, None,
) )
if next_node_id == None: if next_node_id == None:
return None return None

View File

@ -25,14 +25,6 @@ class Invoker:
invocation = graph_execution_state.next() invocation = graph_execution_state.next()
if not invocation: if not invocation:
return None return None
(index, batch) = next(((i,b) for i,b in enumerate(graph_execution_state.graph.batches) if b.node_id in invocation.id), (None, None))
if batch:
# assert(isinstance(invocation.type, batch.node_type), f"Type mismatch between nodes and batch config on {invocation.id}")
batch_index = graph_execution_state.batch_indices[index]
datum = batch.data[batch_index]
for param in datum.keys():
invocation[param] = datum[param]
# TODO graph.update_node
# Save the execution state # Save the execution state
self.services.graph_execution_manager.set(graph_execution_state) self.services.graph_execution_manager.set(graph_execution_state)

View File

@ -73,8 +73,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error_type=e.__class__.__name__, error_type=e.__class__.__name__,
error=traceback.format_exc(), error=traceback.format_exc(),
) )
continue continue
# get the source node id to provide to clients (the prepared node id is not as useful) # get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id] source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]