mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Create a new TextConditioningInfoWithMask type for passing conditioning info around.
This commit is contained in:
parent
4efd0f7fa9
commit
d74045d78e
@ -41,9 +41,9 @@ from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ConditioningData,
|
||||
IPAdapterConditioningInfo,
|
||||
TextConditioningInfoWithMask,
|
||||
)
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
@ -339,10 +339,20 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
if not isinstance(positive_conditioning_list, list):
|
||||
positive_conditioning_list = [positive_conditioning_list]
|
||||
|
||||
text_embeddings: list[BasicConditioningInfo] = []
|
||||
text_embeddings: list[TextConditioningInfoWithMask] = []
|
||||
for positive_conditioning in positive_conditioning_list:
|
||||
positive_cond_data = context.services.latents.get(positive_conditioning.conditioning_name)
|
||||
text_embeddings.append(positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype))
|
||||
mask_name = positive_conditioning.mask_name
|
||||
mask = None
|
||||
if mask_name is not None:
|
||||
mask = context.services.latents.get(mask_name)
|
||||
text_embeddings.append(
|
||||
TextConditioningInfoWithMask(
|
||||
text_conditioning_info=positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype),
|
||||
mask=mask,
|
||||
mask_strength=positive_conditioning.mask_strength,
|
||||
)
|
||||
)
|
||||
|
||||
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
|
||||
|
@ -403,16 +403,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
if timesteps.shape[0] == 0:
|
||||
return latents
|
||||
|
||||
extra_conditioning_info = conditioning_data.text_embeddings[0].extra_conditioning
|
||||
extra_conditioning_info = conditioning_data.text_embeddings[0].text_conditioning_info.extra_conditioning
|
||||
use_cross_attention_control = (
|
||||
extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control
|
||||
)
|
||||
use_ip_adapter = ip_adapter_data is not None
|
||||
use_regional_prompting = len(conditioning_data.text_embeddings) > 1
|
||||
if sum([use_cross_attention_control, use_ip_adapter, use_regional_prompting]) > 1:
|
||||
raise Exception(
|
||||
"Cross-attention control, IP-Adapter, and regional prompting cannot be used simultaneously (yet)."
|
||||
)
|
||||
if sum([use_cross_attention_control, use_ip_adapter]) > 1:
|
||||
raise Exception("Cross-attention control and IP-Adapter cannot be used simultaneously (yet).")
|
||||
|
||||
ip_adapter_unet_patcher = None
|
||||
if use_cross_attention_control:
|
||||
@ -427,8 +424,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
|
||||
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
|
||||
self.use_ip_adapter = True
|
||||
elif use_regional_prompting:
|
||||
raise NotImplementedError("Regional prompting is not yet supported.")
|
||||
else:
|
||||
attn_ctx = nullcontext()
|
||||
|
||||
|
@ -39,6 +39,18 @@ class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
return super().to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class TextConditioningInfoWithMask:
|
||||
def __init__(
|
||||
self,
|
||||
text_conditioning_info: Union[BasicConditioningInfo, SDXLConditioningInfo],
|
||||
mask: Optional[torch.Tensor],
|
||||
mask_strength: float,
|
||||
):
|
||||
self.text_conditioning_info = text_conditioning_info
|
||||
self.mask = mask
|
||||
self.mask_strength = mask_strength
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class PostprocessingSettings:
|
||||
threshold: float
|
||||
@ -62,7 +74,7 @@ class IPAdapterConditioningInfo:
|
||||
@dataclass
|
||||
class ConditioningData:
|
||||
unconditioned_embeddings: BasicConditioningInfo
|
||||
text_embeddings: list[BasicConditioningInfo]
|
||||
text_embeddings: list[TextConditioningInfoWithMask]
|
||||
"""
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
|
||||
|
@ -94,9 +94,9 @@ class InvokeAIDiffuserComponent:
|
||||
conditioning_data: ConditioningData,
|
||||
):
|
||||
down_block_res_samples, mid_block_res_sample = None, None
|
||||
# HACK(ryan): Currently, we just take the first text embedding if there's more than one. We should probably
|
||||
# concatenate all of the embeddings for the ControlNet, but not apply embedding masks.
|
||||
text_embeddings = conditioning_data.text_embeddings[0]
|
||||
# HACK(ryan): Currently, we just take the first text embedding if there's more than one. We should probably run
|
||||
# the controlnet separately for each conditioning input.
|
||||
text_embeddings = conditioning_data.text_embeddings[0].text_conditioning_info
|
||||
|
||||
# control_data should be type List[ControlNetData]
|
||||
# this loop covers both ControlNet (one ControlNetData in list)
|
||||
@ -325,7 +325,7 @@ class InvokeAIDiffuserComponent:
|
||||
sigma_twice = torch.cat([sigma] * 2)
|
||||
|
||||
assert len(conditioning_data.text_embeddings) == 1
|
||||
text_embeddings = conditioning_data.text_embeddings[0]
|
||||
text_embeddings = conditioning_data.text_embeddings[0].text_conditioning_info
|
||||
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
@ -391,7 +391,7 @@ class InvokeAIDiffuserComponent:
|
||||
"""
|
||||
|
||||
assert len(conditioning_data.text_embeddings) == 1
|
||||
text_embeddings = conditioning_data.text_embeddings[0]
|
||||
text_embeddings = conditioning_data.text_embeddings[0].text_conditioning_info
|
||||
|
||||
# Since we are running the conditioned and unconditioned passes sequentially, we need to split the ControlNet
|
||||
# and T2I-Adapter residuals into two chunks.
|
||||
|
Loading…
Reference in New Issue
Block a user