Fix handling of scales with multiple IP-Adapters.

This commit is contained in:
Ryan Dick 2023-10-06 16:55:46 -04:00 committed by Kent Keirsey
parent 9403672ac0
commit d8d0c9af09
5 changed files with 54 additions and 25 deletions

View File

@ -9,6 +9,7 @@ import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
from invokeai.backend.ip_adapter.scales import Scales
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
@ -47,13 +48,16 @@ class IPAttnProcessor2_0(torch.nn.Module):
the weight scale of image prompt.
"""
def __init__(self, weights: list[IPAttentionProcessorWeights]):
def __init__(self, weights: list[IPAttentionProcessorWeights], scales: Scales):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.weights = weights
assert len(weights) == len(scales)
self._weights = weights
self._scales = scales
def __call__(
self,
@ -119,9 +123,11 @@ class IPAttnProcessor2_0(torch.nn.Module):
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self.weights)
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
for ipa_embed, ipa_weights in zip(ip_adapter_image_prompt_embeds, self.weights):
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._weights, self._scales.scales
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The channel dimensions should match.
@ -144,7 +150,7 @@ class IPAttnProcessor2_0(torch.nn.Module):
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + ipa_weights.scale * ip_hidden_states
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)

View File

@ -8,9 +8,8 @@ class IPAttentionProcessorWeights(torch.nn.Module):
method.
"""
def __init__(self, in_dim: int, out_dim: int, scale: float = 1.0):
def __init__(self, in_dim: int, out_dim: int):
super().__init__()
self.scale = scale
self.to_k_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
self.to_v_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
@ -26,11 +25,6 @@ class IPAttentionWeights(torch.nn.Module):
super().__init__()
self._weights = weights
def set_scale(self, scale: float):
"""Set the scale (a.k.a. 'weight') for all of the `IPAttentionProcessorWeights` in this collection."""
for w in self._weights.values():
w.scale = scale
def get_attention_processor_weights(self, idx: int) -> IPAttentionProcessorWeights:
"""Get the `IPAttentionProcessorWeights` for the idx'th attention processor."""
# Cast to int first, because we expect the key to represent an int. Then cast back to str, because

View File

@ -0,0 +1,19 @@
class Scales:
"""The IP-Adapter scales for a patched UNet. This object can be used to dynamically change the scales for a patched
UNet.
"""
def __init__(self, scales: list[float]):
self._scales = scales
@property
def scales(self):
return self._scales
@scales.setter
def scales(self, scales: list[float]):
assert len(scales) == len(self._scales)
self._scales = scales
def __len__(self):
return len(self._scales)

View File

@ -4,9 +4,10 @@ from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.scales import Scales
def _prepare_attention_processors(unet: UNet2DConditionModel, ip_adapters: list[IPAdapter]):
def _prepare_attention_processors(unet: UNet2DConditionModel, ip_adapters: list[IPAdapter], scales: Scales):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them.
@ -32,15 +33,22 @@ def _prepare_attention_processors(unet: UNet2DConditionModel, ip_adapters: list[
else:
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = IPAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in ip_adapters]
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in ip_adapters], scales
)
return attn_procs
@contextmanager
def apply_ip_adapter_attention(unet: UNet2DConditionModel, ip_adapters: list[IPAdapter]):
"""A context manager that patches `unet` with IP-Adapter attention processors."""
attn_procs = _prepare_attention_processors(unet, ip_adapters)
"""A context manager that patches `unet` with IP-Adapter attention processors.
Yields:
Scales: The Scales object, which can be used to dynamically alter the scales of the
IP-Adapters.
"""
scales = Scales([1.0] * len(ip_adapters))
attn_procs = _prepare_attention_processors(unet, ip_adapters, scales)
orig_attn_processors = unet.attn_processors
@ -49,6 +57,6 @@ def apply_ip_adapter_attention(unet: UNet2DConditionModel, ip_adapters: list[IPA
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs)
yield None
yield scales
finally:
unet.set_attn_processor(orig_attn_processors)

View File

@ -24,7 +24,7 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import apply_ip_adapter_attention
from invokeai.backend.ip_adapter.unet_patcher import Scales, apply_ip_adapter_attention
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
from ..util import auto_detect_slice_size, normalize_device
@ -426,7 +426,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
return latents, attention_map_saver
if conditioning_data.extra is not None and conditioning_data.extra.wants_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
attn_ctx_mgr = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
extra_conditioning_info=conditioning_data.extra,
step_count=len(self.scheduler.timesteps),
@ -435,14 +435,14 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
elif ip_adapter_data is not None:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
attn_ctx = apply_ip_adapter_attention(
attn_ctx_mgr = apply_ip_adapter_attention(
unet=self.invokeai_diffuser.model, ip_adapters=[ipa.ip_adapter_model for ipa in ip_adapter_data]
)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
attn_ctx_mgr = nullcontext()
with attn_ctx:
with attn_ctx_mgr as attn_ctx:
if callback is not None:
callback(
PipelineIntermediateState(
@ -467,6 +467,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
attn_ctx=attn_ctx,
)
latents = step_output.prev_sample
@ -514,6 +515,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
attn_ctx: Optional[Scales] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
@ -526,7 +528,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# handle IP-Adapter
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
for single_ip_adapter_data in ip_adapter_data:
for i, single_ip_adapter_data in enumerate(ip_adapter_data):
first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count)
last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count)
weight = (
@ -536,10 +538,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
single_ip_adapter_data.ip_adapter_model.attn_weights.set_scale(weight)
attn_ctx.scales[i] = weight
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
single_ip_adapter_data.ip_adapter_model.attn_weights.set_scale(0.0)
attn_ctx.scales[i] = weight
# Handle ControlNet(s) and T2I-Adapter(s)
down_block_additional_residuals = None