Fix handling of scales with multiple IP-Adapters.

This commit is contained in:
Ryan Dick
2023-10-06 16:55:46 -04:00
committed by Kent Keirsey
parent 9403672ac0
commit d8d0c9af09
5 changed files with 54 additions and 25 deletions

View File

@ -24,7 +24,7 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import apply_ip_adapter_attention
from invokeai.backend.ip_adapter.unet_patcher import Scales, apply_ip_adapter_attention
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
from ..util import auto_detect_slice_size, normalize_device
@ -426,7 +426,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
return latents, attention_map_saver
if conditioning_data.extra is not None and conditioning_data.extra.wants_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
attn_ctx_mgr = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
extra_conditioning_info=conditioning_data.extra,
step_count=len(self.scheduler.timesteps),
@ -435,14 +435,14 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
elif ip_adapter_data is not None:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
attn_ctx = apply_ip_adapter_attention(
attn_ctx_mgr = apply_ip_adapter_attention(
unet=self.invokeai_diffuser.model, ip_adapters=[ipa.ip_adapter_model for ipa in ip_adapter_data]
)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
attn_ctx_mgr = nullcontext()
with attn_ctx:
with attn_ctx_mgr as attn_ctx:
if callback is not None:
callback(
PipelineIntermediateState(
@ -467,6 +467,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
attn_ctx=attn_ctx,
)
latents = step_output.prev_sample
@ -514,6 +515,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
attn_ctx: Optional[Scales] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
@ -526,7 +528,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# handle IP-Adapter
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
for single_ip_adapter_data in ip_adapter_data:
for i, single_ip_adapter_data in enumerate(ip_adapter_data):
first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count)
last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count)
weight = (
@ -536,10 +538,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
single_ip_adapter_data.ip_adapter_model.attn_weights.set_scale(weight)
attn_ctx.scales[i] = weight
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
single_ip_adapter_data.ip_adapter_model.attn_weights.set_scale(0.0)
attn_ctx.scales[i] = weight
# Handle ControlNet(s) and T2I-Adapter(s)
down_block_additional_residuals = None