feat(nodes): added gradient mask node

This commit is contained in:
dunkeroni 2024-02-20 21:13:19 -05:00 committed by Brandon Rising
parent 550f6cb437
commit dcca220885
4 changed files with 80 additions and 11 deletions

View File

@ -199,6 +199,7 @@ class DenoiseMaskField(BaseModel):
mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents")
gradient: Optional[bool] = Field(default=False, description="Used for gradient inpainting")
class LatentsField(BaseModel):

View File

@ -23,7 +23,7 @@ from diffusers.models.attention_processor import (
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
from PIL import Image
from PIL import Image, ImageFilter
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
@ -128,7 +128,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
ui_order=4,
)
def prep_mask_tensor(self, mask_image: Image) -> torch.Tensor:
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
@ -169,6 +169,62 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
gradient=False,
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the edges are 0 and blur out to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is masked to any degree, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
# multiply original mask to force actually masked regions to 0
blur_tensor = mask_tensor * blur_tensor
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=None,
gradient=True,
)
@ -606,9 +662,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
if self.denoise_mask is None:
return None, None
return None, None, False
mask = context.tensors.load(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
@ -617,7 +673,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
else:
masked_latents = None
return 1 - mask, masked_latents
return 1 - mask, masked_latents, self.denoise_mask.gradient
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
@ -644,7 +700,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if seed is None:
seed = 0
mask, masked_latents = self.prep_inpaint_mask(context, latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
@ -732,6 +788,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed=seed,
mask=mask,
masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps,
conditioning_data=conditioning_data,
control_data=controlnet_data,

View File

@ -299,9 +299,13 @@ class DenoiseMaskOutput(BaseInvocationOutput):
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
@classmethod
def build(cls, mask_name: str, masked_latents_name: Optional[str] = None) -> "DenoiseMaskOutput":
def build(
cls, mask_name: str, masked_latents_name: Optional[str] = None, gradient: Optional[bool] = False
) -> "DenoiseMaskOutput":
return cls(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name),
denoise_mask=DenoiseMaskField(
mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=gradient
),
)

View File

@ -86,6 +86,7 @@ class AddsMaskGuidance:
mask_latents: torch.FloatTensor
scheduler: SchedulerMixin
noise: torch.Tensor
gradient_mask: bool
def __call__(self, step_output: Union[BaseOutput, SchedulerOutput], t: torch.Tensor, conditioning) -> BaseOutput:
output_class = step_output.__class__ # We'll create a new one with masked data.
@ -121,7 +122,12 @@ class AddsMaskGuidance:
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
if self.gradient_mask:
threshhold = (t.item()) / self.scheduler.config.num_train_timesteps
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
masked_input = torch.where(mask_bool, latents, mask_latents)
else:
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
return masked_input
@ -335,6 +341,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None,
gradient_mask: Optional[bool] = False,
seed: Optional[int] = None,
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if init_timestep.shape[0] == 0:
@ -375,7 +382,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self._unet_forward, mask, masked_latents
)
else:
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise))
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask))
try:
latents, attention_map_saver = self.generate_latents_from_embeddings(
@ -392,7 +399,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self.invokeai_diffuser.model_forward_callback = self._unet_forward
# restore unmasked part
if mask is not None:
if mask is not None and not gradient_mask:
latents = torch.lerp(orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype))
return latents, attention_map_saver