chore: ruff

This commit is contained in:
psychedelicious
2025-06-25 14:03:45 +10:00
parent d74d079356
commit e164451dfe
7 changed files with 36 additions and 36 deletions

View File

@ -587,9 +587,9 @@ def invocation(
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation {invocation_type} has no type annotation."
assert isinstance(
field_info.json_schema_extra, dict
), f"{field_name} on invocation {invocation_type} has a non-dict json_schema_extra, did you forget to use InputField?"
assert isinstance(field_info.json_schema_extra, dict), (
f"{field_name} on invocation {invocation_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
@ -712,9 +712,9 @@ def invocation_output(
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation output {output_type} has no type annotation."
assert isinstance(
field_info.json_schema_extra, dict
), f"{field_name} on invocation output {output_type} has a non-dict json_schema_extra, did you forget to use InputField?"
assert isinstance(field_info.json_schema_extra, dict), (
f"{field_name} on invocation output {output_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
cls._original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)

View File

@ -184,9 +184,9 @@ class SegmentAnythingInvocation(BaseInvocation):
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
assert (
bounding_boxes is not None
), "Bounding boxes must be provided to use the 'highest_box_score' mask filter."
assert bounding_boxes is not None, (
"Bounding boxes must be provided to use the 'highest_box_score' mask filter."
)
assert len(masks) == len(bounding_boxes)
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most

View File

@ -482,9 +482,9 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
try:
# Meta is not included in the model fields, so we need to validate it separately
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
assert (
config.schema_version == CONFIG_SCHEMA_VERSION
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
assert config.schema_version == CONFIG_SCHEMA_VERSION, (
f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
)
return config
except Exception as e:
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e

View File

@ -379,13 +379,13 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
bytes_ = path.read_bytes()
workflow_from_file = WorkflowValidator.validate_json(bytes_)
assert workflow_from_file.id.startswith(
"default_"
), f'Invalid default workflow ID (must start with "default_"): {workflow_from_file.id}'
assert workflow_from_file.id.startswith("default_"), (
f'Invalid default workflow ID (must start with "default_"): {workflow_from_file.id}'
)
assert (
workflow_from_file.meta.category is WorkflowCategory.Default
), f"Invalid default workflow category: {workflow_from_file.meta.category}"
assert workflow_from_file.meta.category is WorkflowCategory.Default, (
f"Invalid default workflow category: {workflow_from_file.meta.category}"
)
workflows_from_file.append(workflow_from_file)

View File

@ -115,19 +115,19 @@ class ModelMerger(object):
base_models: Set[BaseModelType] = set()
variant = None if self._installer.app_config.precision == "float32" else "fp16"
assert (
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
), "When merging three models, only the 'add_difference' merge method is supported"
assert len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference, (
"When merging three models, only the 'add_difference' merge method is supported"
)
for key in model_keys:
info = store.get_model(key)
model_names.append(info.name)
assert isinstance(
info, MainDiffusersConfig
), f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
assert info.variant == ModelVariantType(
"normal"
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
assert isinstance(info, MainDiffusersConfig), (
f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
)
assert info.variant == ModelVariantType("normal"), (
f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
)
# tally base models used
base_models.add(info.base)

View File

@ -211,12 +211,12 @@ def test_multifile_download(tmp_path: Path, mm2_session: Session) -> None:
assert job.bytes > 0, "expected download bytes to be positive"
assert job.bytes == job.total_bytes, "expected download bytes to equal total bytes"
assert job.download_path == tmp_path / "sdxl-turbo"
assert Path(
tmp_path, "sdxl-turbo/model_index.json"
).exists(), f"expected {tmp_path}/sdxl-turbo/model_inded.json to exist"
assert Path(
tmp_path, "sdxl-turbo/text_encoder/config.json"
).exists(), f"expected {tmp_path}/sdxl-turbo/text_encoder/config.json to exist"
assert Path(tmp_path, "sdxl-turbo/model_index.json").exists(), (
f"expected {tmp_path}/sdxl-turbo/model_inded.json to exist"
)
assert Path(tmp_path, "sdxl-turbo/text_encoder/config.json").exists(), (
f"expected {tmp_path}/sdxl-turbo/text_encoder/config.json to exist"
)
assert events == {DownloadJobStatus.RUNNING, DownloadJobStatus.COMPLETED}
queue.stop()

View File

@ -48,9 +48,9 @@ def test_flux_aitoolkit_transformer_state_dict_is_in_invoke_format():
model_keys = set(model.state_dict().keys())
for converted_key_prefix in converted_key_prefixes:
assert any(
model_key.startswith(converted_key_prefix) for model_key in model_keys
), f"'{converted_key_prefix}' did not match any model keys."
assert any(model_key.startswith(converted_key_prefix) for model_key in model_keys), (
f"'{converted_key_prefix}' did not match any model keys."
)
def test_lora_model_from_flux_aitoolkit_state_dict():