mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
autoimport from embedding/controlnet/lora folders designated in startup file
This commit is contained in:
parent
f15d28d141
commit
e8ed0fad6c
@ -374,8 +374,10 @@ setting environment variables INVOKEAI_<setting>.
|
|||||||
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
|
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
|
||||||
|
|
||||||
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
|
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
|
||||||
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
|
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
|
||||||
autoconvert_dir : Path = Field(default=None, description='Deprecated configuration option.', category='Paths')
|
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
|
||||||
|
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
|
||||||
|
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
|
||||||
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
|
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
|
||||||
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
|
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
|
||||||
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
|
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
|
||||||
|
@ -442,6 +442,26 @@ to allow InvokeAI to download restricted styles & subjects from the "Concept Lib
|
|||||||
scroll_exit=True,
|
scroll_exit=True,
|
||||||
)
|
)
|
||||||
self.nextrely += 1
|
self.nextrely += 1
|
||||||
|
self.add_widget_intelligent(
|
||||||
|
npyscreen.FixedText,
|
||||||
|
value="Directories containing textual inversion, controlnet and LoRA models (<tab> autocompletes, ctrl-N advances):",
|
||||||
|
editable=False,
|
||||||
|
color="CONTROL",
|
||||||
|
)
|
||||||
|
self.autoimport_dirs = {}
|
||||||
|
for description, config_name, path in autoimport_paths(old_opts):
|
||||||
|
self.autoimport_dirs[config_name] = self.add_widget_intelligent(
|
||||||
|
npyscreen.TitleFilename,
|
||||||
|
name=description+':',
|
||||||
|
value=str(path),
|
||||||
|
select_dir=True,
|
||||||
|
must_exist=False,
|
||||||
|
use_two_lines=False,
|
||||||
|
labelColor="GOOD",
|
||||||
|
begin_entry_at=32,
|
||||||
|
scroll_exit=True
|
||||||
|
)
|
||||||
|
self.nextrely += 1
|
||||||
self.add_widget_intelligent(
|
self.add_widget_intelligent(
|
||||||
npyscreen.TitleFixedText,
|
npyscreen.TitleFixedText,
|
||||||
name="== LICENSE ==",
|
name="== LICENSE ==",
|
||||||
@ -505,10 +525,6 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
|||||||
bad_fields.append(
|
bad_fields.append(
|
||||||
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
||||||
)
|
)
|
||||||
# if not Path(opt.embedding_dir).parent.exists():
|
|
||||||
# bad_fields.append(
|
|
||||||
# f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
|
|
||||||
# )
|
|
||||||
if len(bad_fields) > 0:
|
if len(bad_fields) > 0:
|
||||||
message = "The following problems were detected and must be corrected:\n"
|
message = "The following problems were detected and must be corrected:\n"
|
||||||
for problem in bad_fields:
|
for problem in bad_fields:
|
||||||
@ -528,12 +544,15 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
|||||||
"max_loaded_models",
|
"max_loaded_models",
|
||||||
"xformers_enabled",
|
"xformers_enabled",
|
||||||
"always_use_cpu",
|
"always_use_cpu",
|
||||||
# "embedding_dir",
|
|
||||||
# "lora_dir",
|
|
||||||
# "controlnet_dir",
|
|
||||||
]:
|
]:
|
||||||
setattr(new_opts, attr, getattr(self, attr).value)
|
setattr(new_opts, attr, getattr(self, attr).value)
|
||||||
|
|
||||||
|
for attr in self.autoimport_dirs:
|
||||||
|
directory = Path(self.autoimport_dirs[attr].value)
|
||||||
|
if directory.is_relative_to(config.root_path):
|
||||||
|
directory = directory.relative_to(config.root_path)
|
||||||
|
setattr(new_opts, attr, directory)
|
||||||
|
|
||||||
new_opts.hf_token = self.hf_token.value
|
new_opts.hf_token = self.hf_token.value
|
||||||
new_opts.license_acceptance = self.license_acceptance.value
|
new_opts.license_acceptance = self.license_acceptance.value
|
||||||
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
||||||
@ -595,22 +614,32 @@ def default_user_selections(program_opts: Namespace) -> InstallSelections:
|
|||||||
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
|
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
|
||||||
if program_opts.yes_to_all
|
if program_opts.yes_to_all
|
||||||
else list(),
|
else list(),
|
||||||
scan_directory=None,
|
# scan_directory=None,
|
||||||
autoscan_on_startup=None,
|
# autoscan_on_startup=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
def autoimport_paths(config: InvokeAIAppConfig):
|
||||||
|
return [
|
||||||
|
('Checkpoints & diffusers models', 'autoimport_dir', config.root_path / config.autoimport_dir),
|
||||||
|
('LoRA/LyCORIS models', 'lora_dir', config.root_path / config.lora_dir),
|
||||||
|
('Controlnet models', 'controlnet_dir', config.root_path / config.controlnet_dir),
|
||||||
|
('Textual Inversion Embeddings', 'embedding_dir', config.root_path / config.embedding_dir),
|
||||||
|
]
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
||||||
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
||||||
for name in (
|
for name in (
|
||||||
"models",
|
"models",
|
||||||
"databases",
|
"databases",
|
||||||
"autoimport",
|
|
||||||
"text-inversion-output",
|
"text-inversion-output",
|
||||||
"text-inversion-training-data",
|
"text-inversion-training-data",
|
||||||
"configs"
|
"configs"
|
||||||
):
|
):
|
||||||
os.makedirs(os.path.join(root, name), exist_ok=True)
|
os.makedirs(os.path.join(root, name), exist_ok=True)
|
||||||
|
for model_type in ModelType:
|
||||||
|
Path(root, 'autoimport', model_type.value).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
configs_src = Path(configs.__path__[0])
|
configs_src = Path(configs.__path__[0])
|
||||||
configs_dest = root / "configs"
|
configs_dest = root / "configs"
|
||||||
@ -618,9 +647,8 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
|||||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||||
|
|
||||||
dest = root / 'models'
|
dest = root / 'models'
|
||||||
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]:
|
for model_base in BaseModelType:
|
||||||
for model_type in [ModelType.Main, ModelType.Vae, ModelType.Lora,
|
for model_type in ModelType:
|
||||||
ModelType.ControlNet,ModelType.TextualInversion]:
|
|
||||||
path = dest / model_base.value / model_type.value
|
path = dest / model_base.value / model_type.value
|
||||||
path.mkdir(parents=True, exist_ok=True)
|
path.mkdir(parents=True, exist_ok=True)
|
||||||
path = dest / 'core'
|
path = dest / 'core'
|
||||||
@ -632,9 +660,7 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
# with open(root / 'invokeai.yaml','w') as f:
|
|
||||||
# f.write('#empty invokeai.yaml initialization file')
|
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
def run_console_ui(
|
def run_console_ui(
|
||||||
program_opts: Namespace, initfile: Path = None
|
program_opts: Namespace, initfile: Path = None
|
||||||
|
@ -70,8 +70,8 @@ class ModelInstallList:
|
|||||||
class InstallSelections():
|
class InstallSelections():
|
||||||
install_models: List[str]= field(default_factory=list)
|
install_models: List[str]= field(default_factory=list)
|
||||||
remove_models: List[str]=field(default_factory=list)
|
remove_models: List[str]=field(default_factory=list)
|
||||||
scan_directory: Path = None
|
# scan_directory: Path = None
|
||||||
autoscan_on_startup: bool=False
|
# autoscan_on_startup: bool=False
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModelLoadInfo():
|
class ModelLoadInfo():
|
||||||
@ -155,8 +155,8 @@ class ModelInstall(object):
|
|||||||
def install(self, selections: InstallSelections):
|
def install(self, selections: InstallSelections):
|
||||||
job = 1
|
job = 1
|
||||||
jobs = len(selections.remove_models) + len(selections.install_models)
|
jobs = len(selections.remove_models) + len(selections.install_models)
|
||||||
if selections.scan_directory:
|
# if selections.scan_directory:
|
||||||
jobs += 1
|
# jobs += 1
|
||||||
|
|
||||||
# remove requested models
|
# remove requested models
|
||||||
for key in selections.remove_models:
|
for key in selections.remove_models:
|
||||||
@ -171,18 +171,8 @@ class ModelInstall(object):
|
|||||||
self.heuristic_install(path)
|
self.heuristic_install(path)
|
||||||
job += 1
|
job += 1
|
||||||
|
|
||||||
# import from the scan directory, if any
|
|
||||||
if path := selections.scan_directory:
|
|
||||||
logger.info(f'Scanning and importing models from directory {path} [{job}/{jobs}]')
|
|
||||||
self.heuristic_install(path)
|
|
||||||
|
|
||||||
self.mgr.commit()
|
self.mgr.commit()
|
||||||
|
|
||||||
if selections.autoscan_on_startup and Path(selections.scan_directory).is_dir():
|
|
||||||
update_autoimport_dir(selections.scan_directory)
|
|
||||||
else:
|
|
||||||
update_autoimport_dir(None)
|
|
||||||
|
|
||||||
def heuristic_install(self,
|
def heuristic_install(self,
|
||||||
model_path_id_or_url: Union[str,Path],
|
model_path_id_or_url: Union[str,Path],
|
||||||
models_installed: Set[Path]=None)->Set[Path]:
|
models_installed: Set[Path]=None)->Set[Path]:
|
||||||
@ -237,7 +227,7 @@ class ModelInstall(object):
|
|||||||
self.mgr.add_model(model_name = model_name,
|
self.mgr.add_model(model_name = model_name,
|
||||||
base_model = info.base_type,
|
base_model = info.base_type,
|
||||||
model_type = info.model_type,
|
model_type = info.model_type,
|
||||||
model_attributes = attributes
|
model_attributes = attributes,
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.warning(f'{str(e)} Skipping registration.')
|
logger.warning(f'{str(e)} Skipping registration.')
|
||||||
@ -309,11 +299,11 @@ class ModelInstall(object):
|
|||||||
return location.stem
|
return location.stem
|
||||||
|
|
||||||
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
|
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
|
||||||
# convoluted way to retrieve the description from datasets
|
model_name = path.name if path.is_dir() else path.stem
|
||||||
description = f'{info.base_type.value} {info.model_type.value} model'
|
description = f'{info.base_type.value} {info.model_type.value} model {model_name}'
|
||||||
if key := self.reverse_paths.get(self.current_id):
|
if key := self.reverse_paths.get(self.current_id):
|
||||||
if key in self.datasets:
|
if key in self.datasets:
|
||||||
description = self.datasets[key]['description']
|
description = self.datasets[key].get('description') or description
|
||||||
|
|
||||||
rel_path = self.relative_to_root(path)
|
rel_path = self.relative_to_root(path)
|
||||||
|
|
||||||
@ -395,19 +385,6 @@ class ModelInstall(object):
|
|||||||
'''
|
'''
|
||||||
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()}
|
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()}
|
||||||
|
|
||||||
def update_autoimport_dir(autodir: Path):
|
|
||||||
'''
|
|
||||||
Update the "autoimport_dir" option in invokeai.yaml
|
|
||||||
'''
|
|
||||||
invokeai_config_path = config.init_file_path
|
|
||||||
conf = OmegaConf.load(invokeai_config_path)
|
|
||||||
conf.InvokeAI.Paths.autoimport_dir = str(autodir) if autodir else None
|
|
||||||
yaml = OmegaConf.to_yaml(conf)
|
|
||||||
tmpfile = invokeai_config_path.parent / "new_config.tmp"
|
|
||||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
|
||||||
outfile.write(yaml)
|
|
||||||
tmpfile.replace(invokeai_config_path)
|
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
def yes_or_no(prompt: str, default_yes=True):
|
def yes_or_no(prompt: str, default_yes=True):
|
||||||
default = "y" if default_yes else "n"
|
default = "y" if default_yes else "n"
|
||||||
|
@ -168,11 +168,27 @@ structure at initialization time by scanning the models directory. The
|
|||||||
in-memory data structure can be resynchronized by calling
|
in-memory data structure can be resynchronized by calling
|
||||||
`manager.scan_models_directory()`.
|
`manager.scan_models_directory()`.
|
||||||
|
|
||||||
Files and folders placed inside the `autoimport_dir` (path defined in
|
Files and folders placed inside the `autoimport` paths (paths
|
||||||
`invokeai.yaml`, defaulting to `ROOTDIR/autoimport` will also be
|
defined in `invokeai.yaml`) will also be scanned for new models at
|
||||||
scanned for new models at initialization time and added to
|
initialization time and added to `models.yaml`. Files will not be
|
||||||
`models.yaml`. Files will not be moved from this location but
|
moved from this location but preserved in-place. These directories
|
||||||
preserved in-place.
|
are:
|
||||||
|
|
||||||
|
configuration default description
|
||||||
|
------------- ------- -----------
|
||||||
|
autoimport_dir autoimport/main main models
|
||||||
|
lora_dir autoimport/lora LoRA/LyCORIS models
|
||||||
|
embedding_dir autoimport/embedding TI embeddings
|
||||||
|
controlnet_dir autoimport/controlnet ControlNet models
|
||||||
|
|
||||||
|
In actuality, models located in any of these directories are scanned
|
||||||
|
to determine their type, so it isn't strictly necessary to organize
|
||||||
|
the different types in this way. This entry in `invokeai.yaml` will
|
||||||
|
recursively scan all subdirectories within `autoimport`, scan models
|
||||||
|
files it finds, and import them if recognized.
|
||||||
|
|
||||||
|
Paths:
|
||||||
|
autoimport_dir: autoimport
|
||||||
|
|
||||||
A model can be manually added using `add_model()` using the model's
|
A model can be manually added using `add_model()` using the model's
|
||||||
name, base model, type and a dict of model attributes. See
|
name, base model, type and a dict of model attributes. See
|
||||||
@ -208,6 +224,7 @@ checkpoint or safetensors file.
|
|||||||
|
|
||||||
The path points to a file or directory on disk. If a relative path,
|
The path points to a file or directory on disk. If a relative path,
|
||||||
the root is the InvokeAI ROOTDIR.
|
the root is the InvokeAI ROOTDIR.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
@ -660,7 +677,7 @@ class ModelManager(object):
|
|||||||
):
|
):
|
||||||
loaded_files = set()
|
loaded_files = set()
|
||||||
new_models_found = False
|
new_models_found = False
|
||||||
|
|
||||||
with Chdir(self.app_config.root_path):
|
with Chdir(self.app_config.root_path):
|
||||||
for model_key, model_config in list(self.models.items()):
|
for model_key, model_config in list(self.models.items()):
|
||||||
model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
|
model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
|
||||||
@ -720,30 +737,38 @@ class ModelManager(object):
|
|||||||
)
|
)
|
||||||
|
|
||||||
installed = set()
|
installed = set()
|
||||||
if not self.app_config.autoimport_dir:
|
|
||||||
return installed
|
config = self.app_config
|
||||||
|
known_paths = {(self.app_config.root_path / x['path']) for x in self.list_models()}
|
||||||
autodir = self.app_config.root_path / self.app_config.autoimport_dir
|
|
||||||
if not (autodir and autodir.exists()):
|
|
||||||
return installed
|
|
||||||
|
|
||||||
known_paths = {(self.app_config.root_path / x['path']).resolve() for x in self.list_models()}
|
|
||||||
scanned_dirs = set()
|
scanned_dirs = set()
|
||||||
for root, dirs, files in os.walk(autodir):
|
|
||||||
for d in dirs:
|
for autodir in [config.autoimport_dir,
|
||||||
path = Path(root) / d
|
config.lora_dir,
|
||||||
if path in known_paths:
|
config.embedding_dir,
|
||||||
continue
|
config.controlnet_dir]:
|
||||||
if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin'}]):
|
if autodir is None:
|
||||||
installed.update(installer.heuristic_install(path))
|
continue
|
||||||
scanned_dirs.add(path)
|
|
||||||
|
autodir = self.app_config.root_path / autodir
|
||||||
for f in files:
|
if not autodir.exists():
|
||||||
path = Path(root) / f
|
continue
|
||||||
if path in known_paths or path.parent in scanned_dirs:
|
|
||||||
continue
|
for root, dirs, files in os.walk(autodir):
|
||||||
if path.suffix in {'.ckpt','.bin','.pth','.safetensors'}:
|
for d in dirs:
|
||||||
installed.update(installer.heuristic_install(path))
|
path = Path(root) / d
|
||||||
|
if path in known_paths or path.parent in scanned_dirs:
|
||||||
|
scanned_dirs.add(path)
|
||||||
|
continue
|
||||||
|
if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin'}]):
|
||||||
|
installed.update(installer.heuristic_install(path))
|
||||||
|
scanned_dirs.add(path)
|
||||||
|
|
||||||
|
for f in files:
|
||||||
|
path = Path(root) / f
|
||||||
|
if path in known_paths or path.parent in scanned_dirs:
|
||||||
|
continue
|
||||||
|
if path.suffix in {'.ckpt','.bin','.pth','.safetensors','.pt'}:
|
||||||
|
installed.update(installer.heuristic_install(path))
|
||||||
return installed
|
return installed
|
||||||
|
|
||||||
def heuristic_import(self,
|
def heuristic_import(self,
|
||||||
|
@ -22,7 +22,7 @@ class ModelProbeInfo(object):
|
|||||||
variant_type: ModelVariantType
|
variant_type: ModelVariantType
|
||||||
prediction_type: SchedulerPredictionType
|
prediction_type: SchedulerPredictionType
|
||||||
upcast_attention: bool
|
upcast_attention: bool
|
||||||
format: Literal['diffusers','checkpoint']
|
format: Literal['diffusers','checkpoint', 'lycoris']
|
||||||
image_size: int
|
image_size: int
|
||||||
|
|
||||||
class ProbeBase(object):
|
class ProbeBase(object):
|
||||||
@ -75,22 +75,23 @@ class ModelProbe(object):
|
|||||||
between V2-Base and V2-768 SD models.
|
between V2-Base and V2-768 SD models.
|
||||||
'''
|
'''
|
||||||
if model_path:
|
if model_path:
|
||||||
format = 'diffusers' if model_path.is_dir() else 'checkpoint'
|
format_type = 'diffusers' if model_path.is_dir() else 'checkpoint'
|
||||||
else:
|
else:
|
||||||
format = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
|
format_type = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
|
||||||
|
|
||||||
model_info = None
|
model_info = None
|
||||||
try:
|
try:
|
||||||
model_type = cls.get_model_type_from_folder(model_path, model) \
|
model_type = cls.get_model_type_from_folder(model_path, model) \
|
||||||
if format == 'diffusers' \
|
if format_type == 'diffusers' \
|
||||||
else cls.get_model_type_from_checkpoint(model_path, model)
|
else cls.get_model_type_from_checkpoint(model_path, model)
|
||||||
probe_class = cls.PROBES[format].get(model_type)
|
probe_class = cls.PROBES[format_type].get(model_type)
|
||||||
if not probe_class:
|
if not probe_class:
|
||||||
return None
|
return None
|
||||||
probe = probe_class(model_path, model, prediction_type_helper)
|
probe = probe_class(model_path, model, prediction_type_helper)
|
||||||
base_type = probe.get_base_type()
|
base_type = probe.get_base_type()
|
||||||
variant_type = probe.get_variant_type()
|
variant_type = probe.get_variant_type()
|
||||||
prediction_type = probe.get_scheduler_prediction_type()
|
prediction_type = probe.get_scheduler_prediction_type()
|
||||||
|
format = probe.get_format()
|
||||||
model_info = ModelProbeInfo(
|
model_info = ModelProbeInfo(
|
||||||
model_type = model_type,
|
model_type = model_type,
|
||||||
base_type = base_type,
|
base_type = base_type,
|
||||||
@ -116,10 +117,10 @@ class ModelProbe(object):
|
|||||||
if model_path.name == "learned_embeds.bin":
|
if model_path.name == "learned_embeds.bin":
|
||||||
return ModelType.TextualInversion
|
return ModelType.TextualInversion
|
||||||
|
|
||||||
checkpoint = checkpoint or read_checkpoint_meta(model_path, scan=True)
|
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
|
||||||
checkpoint = checkpoint.get("state_dict", checkpoint)
|
ckpt = ckpt.get("state_dict", ckpt)
|
||||||
|
|
||||||
for key in checkpoint.keys():
|
for key in ckpt.keys():
|
||||||
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
|
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
|
||||||
return ModelType.Main
|
return ModelType.Main
|
||||||
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
|
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
|
||||||
@ -133,7 +134,7 @@ class ModelProbe(object):
|
|||||||
|
|
||||||
else:
|
else:
|
||||||
# diffusers-ti
|
# diffusers-ti
|
||||||
if len(checkpoint) < 10 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()):
|
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
|
||||||
return ModelType.TextualInversion
|
return ModelType.TextualInversion
|
||||||
|
|
||||||
raise ValueError("Unable to determine model type")
|
raise ValueError("Unable to determine model type")
|
||||||
@ -201,6 +202,9 @@ class ProbeBase(object):
|
|||||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def get_format(self)->str:
|
||||||
|
pass
|
||||||
|
|
||||||
class CheckpointProbeBase(ProbeBase):
|
class CheckpointProbeBase(ProbeBase):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
checkpoint_path: Path,
|
checkpoint_path: Path,
|
||||||
@ -214,6 +218,9 @@ class CheckpointProbeBase(ProbeBase):
|
|||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def get_format(self)->str:
|
||||||
|
return 'checkpoint'
|
||||||
|
|
||||||
def get_variant_type(self)-> ModelVariantType:
|
def get_variant_type(self)-> ModelVariantType:
|
||||||
model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint)
|
model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint)
|
||||||
if model_type != ModelType.Main:
|
if model_type != ModelType.Main:
|
||||||
@ -267,6 +274,9 @@ class VaeCheckpointProbe(CheckpointProbeBase):
|
|||||||
return BaseModelType.StableDiffusion1
|
return BaseModelType.StableDiffusion1
|
||||||
|
|
||||||
class LoRACheckpointProbe(CheckpointProbeBase):
|
class LoRACheckpointProbe(CheckpointProbeBase):
|
||||||
|
def get_format(self)->str:
|
||||||
|
return 'lycoris'
|
||||||
|
|
||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
checkpoint = self.checkpoint
|
checkpoint = self.checkpoint
|
||||||
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
|
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
|
||||||
@ -286,6 +296,9 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
class TextualInversionCheckpointProbe(CheckpointProbeBase):
|
class TextualInversionCheckpointProbe(CheckpointProbeBase):
|
||||||
|
def get_format(self)->str:
|
||||||
|
return None
|
||||||
|
|
||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
checkpoint = self.checkpoint
|
checkpoint = self.checkpoint
|
||||||
if 'string_to_token' in checkpoint:
|
if 'string_to_token' in checkpoint:
|
||||||
@ -332,6 +345,9 @@ class FolderProbeBase(ProbeBase):
|
|||||||
def get_variant_type(self)->ModelVariantType:
|
def get_variant_type(self)->ModelVariantType:
|
||||||
return ModelVariantType.Normal
|
return ModelVariantType.Normal
|
||||||
|
|
||||||
|
def get_format(self)->str:
|
||||||
|
return 'diffusers'
|
||||||
|
|
||||||
class PipelineFolderProbe(FolderProbeBase):
|
class PipelineFolderProbe(FolderProbeBase):
|
||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
if self.model:
|
if self.model:
|
||||||
@ -387,6 +403,9 @@ class VaeFolderProbe(FolderProbeBase):
|
|||||||
return BaseModelType.StableDiffusion1
|
return BaseModelType.StableDiffusion1
|
||||||
|
|
||||||
class TextualInversionFolderProbe(FolderProbeBase):
|
class TextualInversionFolderProbe(FolderProbeBase):
|
||||||
|
def get_format(self)->str:
|
||||||
|
return None
|
||||||
|
|
||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
path = self.folder_path / 'learned_embeds.bin'
|
path = self.folder_path / 'learned_embeds.bin'
|
||||||
if not path.exists():
|
if not path.exists():
|
||||||
|
@ -397,7 +397,7 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = False):
|
|||||||
checkpoint = safetensors.torch.load_file(path, device="cpu")
|
checkpoint = safetensors.torch.load_file(path, device="cpu")
|
||||||
else:
|
else:
|
||||||
if scan:
|
if scan:
|
||||||
scan_result = scan_file_path(checkpoint)
|
scan_result = scan_file_path(path)
|
||||||
if scan_result.infected_files != 0:
|
if scan_result.infected_files != 0:
|
||||||
raise Exception(f"The model file \"{path}\" is potentially infected by malware. Aborting import.")
|
raise Exception(f"The model file \"{path}\" is potentially infected by malware. Aborting import.")
|
||||||
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
||||||
|
@ -131,7 +131,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|||||||
window_width=window_width,
|
window_width=window_width,
|
||||||
exclude = self.starter_models
|
exclude = self.starter_models
|
||||||
)
|
)
|
||||||
self.pipeline_models['autoload_pending'] = True
|
# self.pipeline_models['autoload_pending'] = True
|
||||||
bottom_of_table = max(bottom_of_table,self.nextrely)
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
||||||
|
|
||||||
self.nextrely = top_of_table
|
self.nextrely = top_of_table
|
||||||
@ -316,31 +316,31 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
# label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
||||||
self.nextrely += 1
|
# self.nextrely += 1
|
||||||
widgets.update(
|
# widgets.update(
|
||||||
autoload_directory = self.add_widget_intelligent(
|
# autoload_directory = self.add_widget_intelligent(
|
||||||
FileBox,
|
# FileBox,
|
||||||
max_height=3,
|
# max_height=3,
|
||||||
name=label,
|
# name=label,
|
||||||
value=str(config.root_path / config.autoimport_dir) if config.autoimport_dir else None,
|
# value=str(config.root_path / config.autoimport_dir) if config.autoimport_dir else None,
|
||||||
select_dir=True,
|
# select_dir=True,
|
||||||
must_exist=True,
|
# must_exist=True,
|
||||||
use_two_lines=False,
|
# use_two_lines=False,
|
||||||
labelColor="DANGER",
|
# labelColor="DANGER",
|
||||||
begin_entry_at=len(label)+1,
|
# begin_entry_at=len(label)+1,
|
||||||
scroll_exit=True,
|
# scroll_exit=True,
|
||||||
)
|
# )
|
||||||
)
|
# )
|
||||||
widgets.update(
|
# widgets.update(
|
||||||
autoscan_on_startup = self.add_widget_intelligent(
|
# autoscan_on_startup = self.add_widget_intelligent(
|
||||||
npyscreen.Checkbox,
|
# npyscreen.Checkbox,
|
||||||
name="Scan and import from this directory each time InvokeAI starts",
|
# name="Scan and import from this directory each time InvokeAI starts",
|
||||||
value=config.autoimport_dir is not None,
|
# value=config.autoimport_dir is not None,
|
||||||
relx=4,
|
# relx=4,
|
||||||
scroll_exit=True,
|
# scroll_exit=True,
|
||||||
)
|
# )
|
||||||
)
|
# )
|
||||||
return widgets
|
return widgets
|
||||||
|
|
||||||
def resize(self):
|
def resize(self):
|
||||||
@ -501,8 +501,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|||||||
|
|
||||||
# rebuild the form, saving and restoring some of the fields that need to be preserved.
|
# rebuild the form, saving and restoring some of the fields that need to be preserved.
|
||||||
saved_messages = self.monitor.entry_widget.values
|
saved_messages = self.monitor.entry_widget.values
|
||||||
autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
# autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||||
autoscan = self.pipeline_models['autoscan_on_startup'].value
|
# autoscan = self.pipeline_models['autoscan_on_startup'].value
|
||||||
|
|
||||||
app.main_form = app.addForm(
|
app.main_form = app.addForm(
|
||||||
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage,
|
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage,
|
||||||
@ -511,8 +511,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|||||||
|
|
||||||
app.main_form.monitor.entry_widget.values = saved_messages
|
app.main_form.monitor.entry_widget.values = saved_messages
|
||||||
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
|
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
|
||||||
app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
|
# app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
|
||||||
app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
|
# app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
|
||||||
|
|
||||||
def marshall_arguments(self):
|
def marshall_arguments(self):
|
||||||
"""
|
"""
|
||||||
@ -546,17 +546,17 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|||||||
selections.install_models.extend(downloads.value.split())
|
selections.install_models.extend(downloads.value.split())
|
||||||
|
|
||||||
# load directory and whether to scan on startup
|
# load directory and whether to scan on startup
|
||||||
if self.parentApp.autoload_pending:
|
# if self.parentApp.autoload_pending:
|
||||||
selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
# selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||||
self.parentApp.autoload_pending = False
|
# self.parentApp.autoload_pending = False
|
||||||
selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
|
# selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
|
||||||
|
|
||||||
class AddModelApplication(npyscreen.NPSAppManaged):
|
class AddModelApplication(npyscreen.NPSAppManaged):
|
||||||
def __init__(self,opt):
|
def __init__(self,opt):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.program_opts = opt
|
self.program_opts = opt
|
||||||
self.user_cancelled = False
|
self.user_cancelled = False
|
||||||
self.autoload_pending = True
|
# self.autoload_pending = True
|
||||||
self.install_selections = InstallSelections()
|
self.install_selections = InstallSelections()
|
||||||
|
|
||||||
def onStart(self):
|
def onStart(self):
|
||||||
|
Loading…
Reference in New Issue
Block a user