mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
autoimport from embedding/controlnet/lora folders designated in startup file
This commit is contained in:
parent
f15d28d141
commit
e8ed0fad6c
@ -374,8 +374,10 @@ setting environment variables INVOKEAI_<setting>.
|
||||
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
|
||||
|
||||
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
|
||||
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
|
||||
autoconvert_dir : Path = Field(default=None, description='Deprecated configuration option.', category='Paths')
|
||||
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
|
||||
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
|
||||
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
|
||||
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
|
||||
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
|
||||
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
|
||||
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
|
||||
|
@ -442,6 +442,26 @@ to allow InvokeAI to download restricted styles & subjects from the "Concept Lib
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="Directories containing textual inversion, controlnet and LoRA models (<tab> autocompletes, ctrl-N advances):",
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.autoimport_dirs = {}
|
||||
for description, config_name, path in autoimport_paths(old_opts):
|
||||
self.autoimport_dirs[config_name] = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name=description+':',
|
||||
value=str(path),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.TitleFixedText,
|
||||
name="== LICENSE ==",
|
||||
@ -505,10 +525,6 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
||||
bad_fields.append(
|
||||
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
||||
)
|
||||
# if not Path(opt.embedding_dir).parent.exists():
|
||||
# bad_fields.append(
|
||||
# f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
|
||||
# )
|
||||
if len(bad_fields) > 0:
|
||||
message = "The following problems were detected and must be corrected:\n"
|
||||
for problem in bad_fields:
|
||||
@ -528,12 +544,15 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
||||
"max_loaded_models",
|
||||
"xformers_enabled",
|
||||
"always_use_cpu",
|
||||
# "embedding_dir",
|
||||
# "lora_dir",
|
||||
# "controlnet_dir",
|
||||
]:
|
||||
setattr(new_opts, attr, getattr(self, attr).value)
|
||||
|
||||
for attr in self.autoimport_dirs:
|
||||
directory = Path(self.autoimport_dirs[attr].value)
|
||||
if directory.is_relative_to(config.root_path):
|
||||
directory = directory.relative_to(config.root_path)
|
||||
setattr(new_opts, attr, directory)
|
||||
|
||||
new_opts.hf_token = self.hf_token.value
|
||||
new_opts.license_acceptance = self.license_acceptance.value
|
||||
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
||||
@ -595,22 +614,32 @@ def default_user_selections(program_opts: Namespace) -> InstallSelections:
|
||||
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
|
||||
if program_opts.yes_to_all
|
||||
else list(),
|
||||
scan_directory=None,
|
||||
autoscan_on_startup=None,
|
||||
# scan_directory=None,
|
||||
# autoscan_on_startup=None,
|
||||
)
|
||||
|
||||
# -------------------------------------
|
||||
def autoimport_paths(config: InvokeAIAppConfig):
|
||||
return [
|
||||
('Checkpoints & diffusers models', 'autoimport_dir', config.root_path / config.autoimport_dir),
|
||||
('LoRA/LyCORIS models', 'lora_dir', config.root_path / config.lora_dir),
|
||||
('Controlnet models', 'controlnet_dir', config.root_path / config.controlnet_dir),
|
||||
('Textual Inversion Embeddings', 'embedding_dir', config.root_path / config.embedding_dir),
|
||||
]
|
||||
|
||||
# -------------------------------------
|
||||
def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
||||
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
|
||||
for name in (
|
||||
"models",
|
||||
"databases",
|
||||
"autoimport",
|
||||
"text-inversion-output",
|
||||
"text-inversion-training-data",
|
||||
"configs"
|
||||
):
|
||||
os.makedirs(os.path.join(root, name), exist_ok=True)
|
||||
for model_type in ModelType:
|
||||
Path(root, 'autoimport', model_type.value).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
configs_src = Path(configs.__path__[0])
|
||||
configs_dest = root / "configs"
|
||||
@ -618,9 +647,8 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
||||
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
||||
|
||||
dest = root / 'models'
|
||||
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]:
|
||||
for model_type in [ModelType.Main, ModelType.Vae, ModelType.Lora,
|
||||
ModelType.ControlNet,ModelType.TextualInversion]:
|
||||
for model_base in BaseModelType:
|
||||
for model_type in ModelType:
|
||||
path = dest / model_base.value / model_type.value
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
path = dest / 'core'
|
||||
@ -632,8 +660,6 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
|
||||
}
|
||||
)
|
||||
)
|
||||
# with open(root / 'invokeai.yaml','w') as f:
|
||||
# f.write('#empty invokeai.yaml initialization file')
|
||||
|
||||
# -------------------------------------
|
||||
def run_console_ui(
|
||||
|
@ -70,8 +70,8 @@ class ModelInstallList:
|
||||
class InstallSelections():
|
||||
install_models: List[str]= field(default_factory=list)
|
||||
remove_models: List[str]=field(default_factory=list)
|
||||
scan_directory: Path = None
|
||||
autoscan_on_startup: bool=False
|
||||
# scan_directory: Path = None
|
||||
# autoscan_on_startup: bool=False
|
||||
|
||||
@dataclass
|
||||
class ModelLoadInfo():
|
||||
@ -155,8 +155,8 @@ class ModelInstall(object):
|
||||
def install(self, selections: InstallSelections):
|
||||
job = 1
|
||||
jobs = len(selections.remove_models) + len(selections.install_models)
|
||||
if selections.scan_directory:
|
||||
jobs += 1
|
||||
# if selections.scan_directory:
|
||||
# jobs += 1
|
||||
|
||||
# remove requested models
|
||||
for key in selections.remove_models:
|
||||
@ -171,18 +171,8 @@ class ModelInstall(object):
|
||||
self.heuristic_install(path)
|
||||
job += 1
|
||||
|
||||
# import from the scan directory, if any
|
||||
if path := selections.scan_directory:
|
||||
logger.info(f'Scanning and importing models from directory {path} [{job}/{jobs}]')
|
||||
self.heuristic_install(path)
|
||||
|
||||
self.mgr.commit()
|
||||
|
||||
if selections.autoscan_on_startup and Path(selections.scan_directory).is_dir():
|
||||
update_autoimport_dir(selections.scan_directory)
|
||||
else:
|
||||
update_autoimport_dir(None)
|
||||
|
||||
def heuristic_install(self,
|
||||
model_path_id_or_url: Union[str,Path],
|
||||
models_installed: Set[Path]=None)->Set[Path]:
|
||||
@ -237,7 +227,7 @@ class ModelInstall(object):
|
||||
self.mgr.add_model(model_name = model_name,
|
||||
base_model = info.base_type,
|
||||
model_type = info.model_type,
|
||||
model_attributes = attributes
|
||||
model_attributes = attributes,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f'{str(e)} Skipping registration.')
|
||||
@ -309,11 +299,11 @@ class ModelInstall(object):
|
||||
return location.stem
|
||||
|
||||
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
|
||||
# convoluted way to retrieve the description from datasets
|
||||
description = f'{info.base_type.value} {info.model_type.value} model'
|
||||
model_name = path.name if path.is_dir() else path.stem
|
||||
description = f'{info.base_type.value} {info.model_type.value} model {model_name}'
|
||||
if key := self.reverse_paths.get(self.current_id):
|
||||
if key in self.datasets:
|
||||
description = self.datasets[key]['description']
|
||||
description = self.datasets[key].get('description') or description
|
||||
|
||||
rel_path = self.relative_to_root(path)
|
||||
|
||||
@ -395,19 +385,6 @@ class ModelInstall(object):
|
||||
'''
|
||||
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()}
|
||||
|
||||
def update_autoimport_dir(autodir: Path):
|
||||
'''
|
||||
Update the "autoimport_dir" option in invokeai.yaml
|
||||
'''
|
||||
invokeai_config_path = config.init_file_path
|
||||
conf = OmegaConf.load(invokeai_config_path)
|
||||
conf.InvokeAI.Paths.autoimport_dir = str(autodir) if autodir else None
|
||||
yaml = OmegaConf.to_yaml(conf)
|
||||
tmpfile = invokeai_config_path.parent / "new_config.tmp"
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(yaml)
|
||||
tmpfile.replace(invokeai_config_path)
|
||||
|
||||
# -------------------------------------
|
||||
def yes_or_no(prompt: str, default_yes=True):
|
||||
default = "y" if default_yes else "n"
|
||||
|
@ -168,11 +168,27 @@ structure at initialization time by scanning the models directory. The
|
||||
in-memory data structure can be resynchronized by calling
|
||||
`manager.scan_models_directory()`.
|
||||
|
||||
Files and folders placed inside the `autoimport_dir` (path defined in
|
||||
`invokeai.yaml`, defaulting to `ROOTDIR/autoimport` will also be
|
||||
scanned for new models at initialization time and added to
|
||||
`models.yaml`. Files will not be moved from this location but
|
||||
preserved in-place.
|
||||
Files and folders placed inside the `autoimport` paths (paths
|
||||
defined in `invokeai.yaml`) will also be scanned for new models at
|
||||
initialization time and added to `models.yaml`. Files will not be
|
||||
moved from this location but preserved in-place. These directories
|
||||
are:
|
||||
|
||||
configuration default description
|
||||
------------- ------- -----------
|
||||
autoimport_dir autoimport/main main models
|
||||
lora_dir autoimport/lora LoRA/LyCORIS models
|
||||
embedding_dir autoimport/embedding TI embeddings
|
||||
controlnet_dir autoimport/controlnet ControlNet models
|
||||
|
||||
In actuality, models located in any of these directories are scanned
|
||||
to determine their type, so it isn't strictly necessary to organize
|
||||
the different types in this way. This entry in `invokeai.yaml` will
|
||||
recursively scan all subdirectories within `autoimport`, scan models
|
||||
files it finds, and import them if recognized.
|
||||
|
||||
Paths:
|
||||
autoimport_dir: autoimport
|
||||
|
||||
A model can be manually added using `add_model()` using the model's
|
||||
name, base model, type and a dict of model attributes. See
|
||||
@ -208,6 +224,7 @@ checkpoint or safetensors file.
|
||||
|
||||
The path points to a file or directory on disk. If a relative path,
|
||||
the root is the InvokeAI ROOTDIR.
|
||||
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
@ -720,19 +737,27 @@ class ModelManager(object):
|
||||
)
|
||||
|
||||
installed = set()
|
||||
if not self.app_config.autoimport_dir:
|
||||
return installed
|
||||
|
||||
autodir = self.app_config.root_path / self.app_config.autoimport_dir
|
||||
if not (autodir and autodir.exists()):
|
||||
return installed
|
||||
|
||||
known_paths = {(self.app_config.root_path / x['path']).resolve() for x in self.list_models()}
|
||||
config = self.app_config
|
||||
known_paths = {(self.app_config.root_path / x['path']) for x in self.list_models()}
|
||||
scanned_dirs = set()
|
||||
|
||||
for autodir in [config.autoimport_dir,
|
||||
config.lora_dir,
|
||||
config.embedding_dir,
|
||||
config.controlnet_dir]:
|
||||
if autodir is None:
|
||||
continue
|
||||
|
||||
autodir = self.app_config.root_path / autodir
|
||||
if not autodir.exists():
|
||||
continue
|
||||
|
||||
for root, dirs, files in os.walk(autodir):
|
||||
for d in dirs:
|
||||
path = Path(root) / d
|
||||
if path in known_paths:
|
||||
if path in known_paths or path.parent in scanned_dirs:
|
||||
scanned_dirs.add(path)
|
||||
continue
|
||||
if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin'}]):
|
||||
installed.update(installer.heuristic_install(path))
|
||||
@ -742,7 +767,7 @@ class ModelManager(object):
|
||||
path = Path(root) / f
|
||||
if path in known_paths or path.parent in scanned_dirs:
|
||||
continue
|
||||
if path.suffix in {'.ckpt','.bin','.pth','.safetensors'}:
|
||||
if path.suffix in {'.ckpt','.bin','.pth','.safetensors','.pt'}:
|
||||
installed.update(installer.heuristic_install(path))
|
||||
return installed
|
||||
|
||||
|
@ -22,7 +22,7 @@ class ModelProbeInfo(object):
|
||||
variant_type: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
format: Literal['diffusers','checkpoint']
|
||||
format: Literal['diffusers','checkpoint', 'lycoris']
|
||||
image_size: int
|
||||
|
||||
class ProbeBase(object):
|
||||
@ -75,22 +75,23 @@ class ModelProbe(object):
|
||||
between V2-Base and V2-768 SD models.
|
||||
'''
|
||||
if model_path:
|
||||
format = 'diffusers' if model_path.is_dir() else 'checkpoint'
|
||||
format_type = 'diffusers' if model_path.is_dir() else 'checkpoint'
|
||||
else:
|
||||
format = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
|
||||
format_type = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
|
||||
|
||||
model_info = None
|
||||
try:
|
||||
model_type = cls.get_model_type_from_folder(model_path, model) \
|
||||
if format == 'diffusers' \
|
||||
if format_type == 'diffusers' \
|
||||
else cls.get_model_type_from_checkpoint(model_path, model)
|
||||
probe_class = cls.PROBES[format].get(model_type)
|
||||
probe_class = cls.PROBES[format_type].get(model_type)
|
||||
if not probe_class:
|
||||
return None
|
||||
probe = probe_class(model_path, model, prediction_type_helper)
|
||||
base_type = probe.get_base_type()
|
||||
variant_type = probe.get_variant_type()
|
||||
prediction_type = probe.get_scheduler_prediction_type()
|
||||
format = probe.get_format()
|
||||
model_info = ModelProbeInfo(
|
||||
model_type = model_type,
|
||||
base_type = base_type,
|
||||
@ -116,10 +117,10 @@ class ModelProbe(object):
|
||||
if model_path.name == "learned_embeds.bin":
|
||||
return ModelType.TextualInversion
|
||||
|
||||
checkpoint = checkpoint or read_checkpoint_meta(model_path, scan=True)
|
||||
checkpoint = checkpoint.get("state_dict", checkpoint)
|
||||
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
|
||||
ckpt = ckpt.get("state_dict", ckpt)
|
||||
|
||||
for key in checkpoint.keys():
|
||||
for key in ckpt.keys():
|
||||
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
|
||||
return ModelType.Main
|
||||
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
|
||||
@ -133,7 +134,7 @@ class ModelProbe(object):
|
||||
|
||||
else:
|
||||
# diffusers-ti
|
||||
if len(checkpoint) < 10 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()):
|
||||
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
|
||||
return ModelType.TextualInversion
|
||||
|
||||
raise ValueError("Unable to determine model type")
|
||||
@ -201,6 +202,9 @@ class ProbeBase(object):
|
||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||
pass
|
||||
|
||||
def get_format(self)->str:
|
||||
pass
|
||||
|
||||
class CheckpointProbeBase(ProbeBase):
|
||||
def __init__(self,
|
||||
checkpoint_path: Path,
|
||||
@ -214,6 +218,9 @@ class CheckpointProbeBase(ProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
pass
|
||||
|
||||
def get_format(self)->str:
|
||||
return 'checkpoint'
|
||||
|
||||
def get_variant_type(self)-> ModelVariantType:
|
||||
model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint)
|
||||
if model_type != ModelType.Main:
|
||||
@ -267,6 +274,9 @@ class VaeCheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
|
||||
class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
def get_format(self)->str:
|
||||
return 'lycoris'
|
||||
|
||||
def get_base_type(self)->BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
|
||||
@ -286,6 +296,9 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
return None
|
||||
|
||||
class TextualInversionCheckpointProbe(CheckpointProbeBase):
|
||||
def get_format(self)->str:
|
||||
return None
|
||||
|
||||
def get_base_type(self)->BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
if 'string_to_token' in checkpoint:
|
||||
@ -332,6 +345,9 @@ class FolderProbeBase(ProbeBase):
|
||||
def get_variant_type(self)->ModelVariantType:
|
||||
return ModelVariantType.Normal
|
||||
|
||||
def get_format(self)->str:
|
||||
return 'diffusers'
|
||||
|
||||
class PipelineFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
if self.model:
|
||||
@ -387,6 +403,9 @@ class VaeFolderProbe(FolderProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
|
||||
class TextualInversionFolderProbe(FolderProbeBase):
|
||||
def get_format(self)->str:
|
||||
return None
|
||||
|
||||
def get_base_type(self)->BaseModelType:
|
||||
path = self.folder_path / 'learned_embeds.bin'
|
||||
if not path.exists():
|
||||
|
@ -397,7 +397,7 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = False):
|
||||
checkpoint = safetensors.torch.load_file(path, device="cpu")
|
||||
else:
|
||||
if scan:
|
||||
scan_result = scan_file_path(checkpoint)
|
||||
scan_result = scan_file_path(path)
|
||||
if scan_result.infected_files != 0:
|
||||
raise Exception(f"The model file \"{path}\" is potentially infected by malware. Aborting import.")
|
||||
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
||||
|
@ -131,7 +131,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
window_width=window_width,
|
||||
exclude = self.starter_models
|
||||
)
|
||||
self.pipeline_models['autoload_pending'] = True
|
||||
# self.pipeline_models['autoload_pending'] = True
|
||||
bottom_of_table = max(bottom_of_table,self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
@ -316,31 +316,31 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
||||
self.nextrely += 1
|
||||
widgets.update(
|
||||
autoload_directory = self.add_widget_intelligent(
|
||||
FileBox,
|
||||
max_height=3,
|
||||
name=label,
|
||||
value=str(config.root_path / config.autoimport_dir) if config.autoimport_dir else None,
|
||||
select_dir=True,
|
||||
must_exist=True,
|
||||
use_two_lines=False,
|
||||
labelColor="DANGER",
|
||||
begin_entry_at=len(label)+1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
)
|
||||
widgets.update(
|
||||
autoscan_on_startup = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Scan and import from this directory each time InvokeAI starts",
|
||||
value=config.autoimport_dir is not None,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
)
|
||||
# label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
||||
# self.nextrely += 1
|
||||
# widgets.update(
|
||||
# autoload_directory = self.add_widget_intelligent(
|
||||
# FileBox,
|
||||
# max_height=3,
|
||||
# name=label,
|
||||
# value=str(config.root_path / config.autoimport_dir) if config.autoimport_dir else None,
|
||||
# select_dir=True,
|
||||
# must_exist=True,
|
||||
# use_two_lines=False,
|
||||
# labelColor="DANGER",
|
||||
# begin_entry_at=len(label)+1,
|
||||
# scroll_exit=True,
|
||||
# )
|
||||
# )
|
||||
# widgets.update(
|
||||
# autoscan_on_startup = self.add_widget_intelligent(
|
||||
# npyscreen.Checkbox,
|
||||
# name="Scan and import from this directory each time InvokeAI starts",
|
||||
# value=config.autoimport_dir is not None,
|
||||
# relx=4,
|
||||
# scroll_exit=True,
|
||||
# )
|
||||
# )
|
||||
return widgets
|
||||
|
||||
def resize(self):
|
||||
@ -501,8 +501,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
|
||||
# rebuild the form, saving and restoring some of the fields that need to be preserved.
|
||||
saved_messages = self.monitor.entry_widget.values
|
||||
autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||
autoscan = self.pipeline_models['autoscan_on_startup'].value
|
||||
# autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||
# autoscan = self.pipeline_models['autoscan_on_startup'].value
|
||||
|
||||
app.main_form = app.addForm(
|
||||
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage,
|
||||
@ -511,8 +511,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
|
||||
app.main_form.monitor.entry_widget.values = saved_messages
|
||||
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
|
||||
app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
|
||||
app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
|
||||
# app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
|
||||
# app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
|
||||
|
||||
def marshall_arguments(self):
|
||||
"""
|
||||
@ -546,17 +546,17 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
selections.install_models.extend(downloads.value.split())
|
||||
|
||||
# load directory and whether to scan on startup
|
||||
if self.parentApp.autoload_pending:
|
||||
selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||
self.parentApp.autoload_pending = False
|
||||
selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
|
||||
# if self.parentApp.autoload_pending:
|
||||
# selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
||||
# self.parentApp.autoload_pending = False
|
||||
# selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
|
||||
|
||||
class AddModelApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self,opt):
|
||||
super().__init__()
|
||||
self.program_opts = opt
|
||||
self.user_cancelled = False
|
||||
self.autoload_pending = True
|
||||
# self.autoload_pending = True
|
||||
self.install_selections = InstallSelections()
|
||||
|
||||
def onStart(self):
|
||||
|
Loading…
Reference in New Issue
Block a user