what have i done

This commit is contained in:
maryhipp 2024-02-27 15:41:03 -05:00
parent 16b3718d6a
commit ef474a3196

View File

@ -1,40 +1,43 @@
from dataclasses import dataclass
from typing import List, Optional, Union
from typing import Iterator, List, Optional, Tuple, Union
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTokenizer
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
from invokeai.app.shared.fields import FieldDescriptions
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
OutputField,
UIComponent,
)
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.model_records import UnknownModelException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import ModelType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
ExtraConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.textual_inversion import TextualInversionModelRaw
from invokeai.backend.util.devices import torch_dtype
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import ModelNotFoundException, ModelType
from ...backend.util.devices import torch_dtype
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation,
invocation_output,
)
from .model import ClipField
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo]
# unconditioned: Optional[torch.Tensor]
# unconditioned: Optional[torch.Tensor]
# class ConditioningAlgo(str, Enum):
@ -48,7 +51,7 @@ class ConditioningFieldData:
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.0.0",
version="1.0.1",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
@ -66,49 +69,34 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.model_dump(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.model_dump(),
context=context,
)
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
def _lora_loader():
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight)
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
loaded_model = context.models.load(key=name).model
assert isinstance(loaded_model, TextualInversionModelRaw)
ti_list.append((name, loaded_model))
except UnknownModelException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with (
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
tokenizer,
ti_manager,
),
@ -116,7 +104,7 @@ class CompelInvocation(BaseInvocation):
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_info.model, self.clip.skipped_layers),
):
compel = Compel(
tokenizer=tokenizer,
@ -128,7 +116,7 @@ class CompelInvocation(BaseInvocation):
conjunction = Compel.parse_prompt_string(self.prompt)
if context.services.configuration.log_tokenization:
if context.config.get().log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
@ -149,17 +137,14 @@ class CompelInvocation(BaseInvocation):
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
return ConditioningOutput.build(conditioning_name)
class SDXLPromptInvocationBase:
"""Prompt processor for SDXL models."""
def run_clip_compel(
self,
context: InvocationContext,
@ -168,26 +153,21 @@ class SDXLPromptInvocationBase:
get_pooled: bool,
lora_prefix: str,
zero_on_empty: bool,
):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.model_dump(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.model_dump(),
context=context,
)
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
# return zero on empty
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.context.model
cpu_text_encoder = text_encoder_info.model
assert isinstance(cpu_text_encoder, torch.nn.Module)
c = torch.zeros(
(
1,
cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size,
),
dtype=text_encoder_info.context.cache.precision,
dtype=cpu_text_encoder.dtype,
)
if get_pooled:
c_pooled = torch.zeros(
@ -198,40 +178,36 @@ class SDXLPromptInvocationBase:
c_pooled = None
return c, c_pooled, None
def _lora_loader():
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight)
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
lora_model = lora_info.model
assert isinstance(lora_model, LoRAModelRaw)
yield (lora_model, lora.weight)
del lora_info
return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
ti_model = context.models.load_by_attrs(
model_name=name, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
).model
assert isinstance(ti_model, TextualInversionModelRaw)
ti_list.append((name, ti_model))
except UnknownModelException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
logger.warning(f'trigger: "{trigger}" not found')
except ValueError:
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
with (
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
tokenizer,
ti_manager,
),
@ -239,7 +215,7 @@ class SDXLPromptInvocationBase:
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_info.model, clip_field.skipped_layers),
):
compel = Compel(
tokenizer=tokenizer,
@ -253,7 +229,7 @@ class SDXLPromptInvocationBase:
conjunction = Compel.parse_prompt_string(prompt)
if context.services.configuration.log_tokenization:
if context.config.get().log_tokenization:
# TODO: better logging for and syntax
log_tokenization_for_conjunction(conjunction, tokenizer)
@ -286,7 +262,7 @@ class SDXLPromptInvocationBase:
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.0.0",
version="1.0.1",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@ -357,6 +333,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
dim=1,
)
assert c2_pooled is not None
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
@ -368,14 +345,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
return ConditioningOutput.build(conditioning_name)
@invocation(
@ -383,7 +355,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
title="SDXL Refiner Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.0.0",
version="1.0.1",
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@ -410,6 +382,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
assert c2_pooled is not None
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
@ -421,14 +394,9 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
return ConditioningOutput.build(conditioning_name)
@invocation_output("clip_skip_output")
@ -449,7 +417,7 @@ class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
@ -459,9 +427,9 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count(
tokenizer,
tokenizer: CLIPTokenizer,
prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False,
truncate_if_too_long: bool = False,
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
@ -473,7 +441,9 @@ def get_max_token_count(
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
def get_tokens_for_prompt_object(
tokenizer: CLIPTokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long: bool = True
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
@ -486,24 +456,29 @@ def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, trun
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
tokens: List[str] = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
assert display_label_prefix is not None
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
@ -543,7 +518,12 @@ def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokeniz
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
def log_tokenization_for_text(
text: str,
tokenizer: CLIPTokenizer,
display_label: Optional[str] = None,
truncate_if_too_long: Optional[bool] = False,
) -> None:
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '