mirror of
https://github.com/invoke-ai/InvokeAI
synced 2025-07-26 05:17:55 +00:00
Formatting
This commit is contained in:
@ -417,7 +417,7 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
|
||||
|
||||
ui_type = field.json_schema_extra.get("ui_type", None)
|
||||
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
|
||||
logger.warn(f"\"UIType.{ui_type.split('_')[-1]}\" is deprecated, ignoring")
|
||||
logger.warn(f'"UIType.{ui_type.split("_")[-1]}" is deprecated, ignoring')
|
||||
field.json_schema_extra.pop("ui_type")
|
||||
return None
|
||||
|
||||
|
@ -513,7 +513,7 @@ def log_tokenization_for_text(
|
||||
usedTokens += 1
|
||||
|
||||
if usedTokens > 0:
|
||||
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||
print(f"\n>> [TOKENLOG] Tokens {display_label or ''} ({usedTokens}):")
|
||||
print(f"{tokenized}\x1b[0m")
|
||||
|
||||
if discarded != "":
|
||||
|
@ -185,9 +185,9 @@ class SegmentAnythingInvocation(BaseInvocation):
|
||||
# Find the largest mask.
|
||||
return [max(masks, key=lambda x: float(x.sum()))]
|
||||
elif self.mask_filter == "highest_box_score":
|
||||
assert (
|
||||
bounding_boxes is not None
|
||||
), "Bounding boxes must be provided to use the 'highest_box_score' mask filter."
|
||||
assert bounding_boxes is not None, (
|
||||
"Bounding boxes must be provided to use the 'highest_box_score' mask filter."
|
||||
)
|
||||
assert len(masks) == len(bounding_boxes)
|
||||
# Find the index of the bounding box with the highest score.
|
||||
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
|
||||
|
@ -476,9 +476,9 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
try:
|
||||
# Meta is not included in the model fields, so we need to validate it separately
|
||||
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
assert (
|
||||
config.schema_version == CONFIG_SCHEMA_VERSION
|
||||
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
|
||||
assert config.schema_version == CONFIG_SCHEMA_VERSION, (
|
||||
f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
|
||||
)
|
||||
return config
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e
|
||||
|
@ -91,10 +91,10 @@ class PromptFormatter:
|
||||
|
||||
switches = []
|
||||
switches.append(f'"{opt.prompt}"')
|
||||
switches.append(f"-s{opt.steps or t2i.steps}")
|
||||
switches.append(f"-W{opt.width or t2i.width}")
|
||||
switches.append(f"-H{opt.height or t2i.height}")
|
||||
switches.append(f"-C{opt.cfg_scale or t2i.cfg_scale}")
|
||||
switches.append(f"-s{opt.steps or t2i.steps}")
|
||||
switches.append(f"-W{opt.width or t2i.width}")
|
||||
switches.append(f"-H{opt.height or t2i.height}")
|
||||
switches.append(f"-C{opt.cfg_scale or t2i.cfg_scale}")
|
||||
switches.append(f"-A{opt.sampler_name or t2i.sampler_name}")
|
||||
# to do: put model name into the t2i object
|
||||
# switches.append(f'--model{t2i.model_name}')
|
||||
@ -109,7 +109,7 @@ class PromptFormatter:
|
||||
if opt.gfpgan_strength:
|
||||
switches.append(f"-G{opt.gfpgan_strength}")
|
||||
if opt.upscale:
|
||||
switches.append(f'-U {" ".join([str(u) for u in opt.upscale])}')
|
||||
switches.append(f"-U {' '.join([str(u) for u in opt.upscale])}")
|
||||
if opt.variation_amount > 0:
|
||||
switches.append(f"-v{opt.variation_amount}")
|
||||
if opt.with_variations:
|
||||
|
@ -70,7 +70,7 @@ def get_pretty_snapshot_diff(snapshot_1: Optional[MemorySnapshot], snapshot_2: O
|
||||
|
||||
def get_msg_line(prefix: str, val1: int, val2: int) -> str:
|
||||
diff = val2 - val1
|
||||
return f"{prefix: <30} ({(diff/GB):+5.3f}): {(val1/GB):5.3f}GB -> {(val2/GB):5.3f}GB\n"
|
||||
return f"{prefix: <30} ({(diff / GB):+5.3f}): {(val1 / GB):5.3f}GB -> {(val2 / GB):5.3f}GB\n"
|
||||
|
||||
msg = ""
|
||||
|
||||
|
@ -192,7 +192,7 @@ class ModelCache:
|
||||
self._cached_models[key] = cache_record
|
||||
self._cache_stack.append(key)
|
||||
self._logger.debug(
|
||||
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size/MB:.2f}MB)"
|
||||
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size / MB:.2f}MB)"
|
||||
)
|
||||
|
||||
@synchronized
|
||||
@ -303,7 +303,7 @@ class ModelCache:
|
||||
# 2. If the model can't fit fully into VRAM, then unload all other models and load as much of the model as
|
||||
# possible.
|
||||
vram_bytes_freed = self._offload_unlocked_models(model_vram_needed, working_mem_bytes)
|
||||
self._logger.debug(f"Unloaded models (if necessary): vram_bytes_freed={(vram_bytes_freed/MB):.2f}MB")
|
||||
self._logger.debug(f"Unloaded models (if necessary): vram_bytes_freed={(vram_bytes_freed / MB):.2f}MB")
|
||||
|
||||
# Check the updated vram_available after offloading.
|
||||
vram_available = self._get_vram_available(working_mem_bytes)
|
||||
@ -317,7 +317,7 @@ class ModelCache:
|
||||
vram_bytes_freed_from_own_model = self._move_model_to_ram(cache_entry, -vram_available)
|
||||
vram_available = self._get_vram_available(working_mem_bytes)
|
||||
self._logger.debug(
|
||||
f"Unloaded {vram_bytes_freed_from_own_model/MB:.2f}MB from the model being locked ({cache_entry.key})."
|
||||
f"Unloaded {vram_bytes_freed_from_own_model / MB:.2f}MB from the model being locked ({cache_entry.key})."
|
||||
)
|
||||
|
||||
# Move as much of the model as possible into VRAM.
|
||||
@ -333,10 +333,12 @@ class ModelCache:
|
||||
self._logger.info(
|
||||
f"Loaded model '{cache_entry.key}' ({cache_entry.cached_model.model.__class__.__name__}) onto "
|
||||
f"{self._execution_device.type} device in {(time.time() - start_time):.2f}s. "
|
||||
f"Total model size: {model_total_bytes/MB:.2f}MB, "
|
||||
f"VRAM: {model_cur_vram_bytes/MB:.2f}MB ({loaded_percent:.1%})"
|
||||
f"Total model size: {model_total_bytes / MB:.2f}MB, "
|
||||
f"VRAM: {model_cur_vram_bytes / MB:.2f}MB ({loaded_percent:.1%})"
|
||||
)
|
||||
self._logger.debug(
|
||||
f"Loaded model onto execution device: model_bytes_loaded={(model_bytes_loaded / MB):.2f}MB, "
|
||||
)
|
||||
self._logger.debug(f"Loaded model onto execution device: model_bytes_loaded={(model_bytes_loaded/MB):.2f}MB, ")
|
||||
self._logger.debug(
|
||||
f"After loading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
|
||||
)
|
||||
@ -495,10 +497,10 @@ class ModelCache:
|
||||
"""Helper function for preparing a VRAM state log string."""
|
||||
model_cur_vram_bytes_percent = model_cur_vram_bytes / model_total_bytes if model_total_bytes > 0 else 0
|
||||
return (
|
||||
f"model_total={model_total_bytes/MB:.0f} MB, "
|
||||
+ f"model_vram={model_cur_vram_bytes/MB:.0f} MB ({model_cur_vram_bytes_percent:.1%} %), "
|
||||
f"model_total={model_total_bytes / MB:.0f} MB, "
|
||||
+ f"model_vram={model_cur_vram_bytes / MB:.0f} MB ({model_cur_vram_bytes_percent:.1%} %), "
|
||||
# + f"vram_total={int(self._max_vram_cache_size * GB)/MB:.0f} MB, "
|
||||
+ f"vram_available={(vram_available/MB):.0f} MB, "
|
||||
+ f"vram_available={(vram_available / MB):.0f} MB, "
|
||||
)
|
||||
|
||||
def _offload_unlocked_models(self, vram_bytes_required: int, working_mem_bytes: Optional[int] = None) -> int:
|
||||
@ -509,7 +511,7 @@ class ModelCache:
|
||||
int: The number of bytes freed based on believed model sizes. The actual change in VRAM may be different.
|
||||
"""
|
||||
self._logger.debug(
|
||||
f"Offloading unlocked models with goal of making room for {vram_bytes_required/MB:.2f}MB of VRAM."
|
||||
f"Offloading unlocked models with goal of making room for {vram_bytes_required / MB:.2f}MB of VRAM."
|
||||
)
|
||||
vram_bytes_freed = 0
|
||||
# TODO(ryand): Give more thought to the offloading policy used here.
|
||||
@ -527,7 +529,7 @@ class ModelCache:
|
||||
cache_entry_bytes_freed = self._move_model_to_ram(cache_entry, vram_bytes_to_free)
|
||||
if cache_entry_bytes_freed > 0:
|
||||
self._logger.debug(
|
||||
f"Unloaded {cache_entry.key} from VRAM to free {(cache_entry_bytes_freed/MB):.0f} MB."
|
||||
f"Unloaded {cache_entry.key} from VRAM to free {(cache_entry_bytes_freed / MB):.0f} MB."
|
||||
)
|
||||
vram_bytes_freed += cache_entry_bytes_freed
|
||||
|
||||
@ -609,7 +611,7 @@ class ModelCache:
|
||||
external references to the model, there's nothing that the cache can do about it, and those models will not be
|
||||
garbage-collected.
|
||||
"""
|
||||
self._logger.debug(f"Making room for {bytes_needed/MB:.2f}MB of RAM.")
|
||||
self._logger.debug(f"Making room for {bytes_needed / MB:.2f}MB of RAM.")
|
||||
self._log_cache_state(title="Before dropping models:")
|
||||
|
||||
ram_bytes_available = self._get_ram_available()
|
||||
@ -625,7 +627,7 @@ class ModelCache:
|
||||
if not cache_entry.is_locked:
|
||||
ram_bytes_freed += cache_entry.cached_model.total_bytes()
|
||||
self._logger.debug(
|
||||
f"Dropping {model_key} from RAM cache to free {(cache_entry.cached_model.total_bytes()/MB):.2f}MB."
|
||||
f"Dropping {model_key} from RAM cache to free {(cache_entry.cached_model.total_bytes() / MB):.2f}MB."
|
||||
)
|
||||
self._delete_cache_entry(cache_entry)
|
||||
del cache_entry
|
||||
@ -650,7 +652,7 @@ class ModelCache:
|
||||
gc.collect()
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
self._logger.debug(f"Dropped {models_cleared} models to free {ram_bytes_freed/MB:.2f}MB of RAM.")
|
||||
self._logger.debug(f"Dropped {models_cleared} models to free {ram_bytes_freed / MB:.2f}MB of RAM.")
|
||||
self._log_cache_state(title="After dropping models:")
|
||||
|
||||
def _delete_cache_entry(self, cache_entry: CacheRecord) -> None:
|
||||
|
@ -115,19 +115,19 @@ class ModelMerger(object):
|
||||
base_models: Set[BaseModelType] = set()
|
||||
variant = None if self._installer.app_config.precision == "float32" else "fp16"
|
||||
|
||||
assert (
|
||||
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
|
||||
), "When merging three models, only the 'add_difference' merge method is supported"
|
||||
assert len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference, (
|
||||
"When merging three models, only the 'add_difference' merge method is supported"
|
||||
)
|
||||
|
||||
for key in model_keys:
|
||||
info = store.get_model(key)
|
||||
model_names.append(info.name)
|
||||
assert isinstance(
|
||||
info, MainDiffusersConfig
|
||||
), f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
|
||||
assert info.variant == ModelVariantType(
|
||||
"normal"
|
||||
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
|
||||
assert isinstance(info, MainDiffusersConfig), (
|
||||
f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
|
||||
)
|
||||
assert info.variant == ModelVariantType("normal"), (
|
||||
f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
|
||||
)
|
||||
|
||||
# tally base models used
|
||||
base_models.add(info.base)
|
||||
|
@ -37,19 +37,21 @@ class Struct_mallinfo2(ctypes.Structure):
|
||||
|
||||
def __str__(self) -> str:
|
||||
s = ""
|
||||
s += f"{'arena': <10}= {(self.arena/2**30):15.5f} # Non-mmapped space allocated (GB) (uordblks + fordblks)\n"
|
||||
s += (
|
||||
f"{'arena': <10}= {(self.arena / 2**30):15.5f} # Non-mmapped space allocated (GB) (uordblks + fordblks)\n"
|
||||
)
|
||||
s += f"{'ordblks': <10}= {(self.ordblks): >15} # Number of free chunks\n"
|
||||
s += f"{'smblks': <10}= {(self.smblks): >15} # Number of free fastbin blocks \n"
|
||||
s += f"{'hblks': <10}= {(self.hblks): >15} # Number of mmapped regions \n"
|
||||
s += f"{'hblkhd': <10}= {(self.hblkhd/2**30):15.5f} # Space allocated in mmapped regions (GB)\n"
|
||||
s += f"{'hblkhd': <10}= {(self.hblkhd / 2**30):15.5f} # Space allocated in mmapped regions (GB)\n"
|
||||
s += f"{'usmblks': <10}= {(self.usmblks): >15} # Unused\n"
|
||||
s += f"{'fsmblks': <10}= {(self.fsmblks/2**30):15.5f} # Space in freed fastbin blocks (GB)\n"
|
||||
s += f"{'fsmblks': <10}= {(self.fsmblks / 2**30):15.5f} # Space in freed fastbin blocks (GB)\n"
|
||||
s += (
|
||||
f"{'uordblks': <10}= {(self.uordblks/2**30):15.5f} # Space used by in-use allocations (non-mmapped)"
|
||||
f"{'uordblks': <10}= {(self.uordblks / 2**30):15.5f} # Space used by in-use allocations (non-mmapped)"
|
||||
" (GB)\n"
|
||||
)
|
||||
s += f"{'fordblks': <10}= {(self.fordblks/2**30):15.5f} # Space in free blocks (non-mmapped) (GB)\n"
|
||||
s += f"{'keepcost': <10}= {(self.keepcost/2**30):15.5f} # Top-most, releasable space (GB)\n"
|
||||
s += f"{'fordblks': <10}= {(self.fordblks / 2**30):15.5f} # Space in free blocks (non-mmapped) (GB)\n"
|
||||
s += f"{'keepcost': <10}= {(self.keepcost / 2**30):15.5f} # Top-most, releasable space (GB)\n"
|
||||
return s
|
||||
|
||||
|
||||
|
@ -73,36 +73,36 @@ def _make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
@ -111,7 +111,7 @@ def _make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
@ -133,13 +133,13 @@ def _make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j + 1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j * 2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j + 1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j * 2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
|
@ -212,12 +212,12 @@ def test_multifile_download(tmp_path: Path, mm2_session: Session) -> None:
|
||||
assert job.bytes > 0, "expected download bytes to be positive"
|
||||
assert job.bytes == job.total_bytes, "expected download bytes to equal total bytes"
|
||||
assert job.download_path == tmp_path / "sdxl-turbo"
|
||||
assert Path(
|
||||
tmp_path, "sdxl-turbo/model_index.json"
|
||||
).exists(), f"expected {tmp_path}/sdxl-turbo/model_inded.json to exist"
|
||||
assert Path(
|
||||
tmp_path, "sdxl-turbo/text_encoder/config.json"
|
||||
).exists(), f"expected {tmp_path}/sdxl-turbo/text_encoder/config.json to exist"
|
||||
assert Path(tmp_path, "sdxl-turbo/model_index.json").exists(), (
|
||||
f"expected {tmp_path}/sdxl-turbo/model_inded.json to exist"
|
||||
)
|
||||
assert Path(tmp_path, "sdxl-turbo/text_encoder/config.json").exists(), (
|
||||
f"expected {tmp_path}/sdxl-turbo/text_encoder/config.json to exist"
|
||||
)
|
||||
|
||||
assert events == {DownloadJobStatus.RUNNING, DownloadJobStatus.COMPLETED}
|
||||
queue.stop()
|
||||
|
Reference in New Issue
Block a user