mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'refactor/model-manager-2' of github.com:invoke-ai/InvokeAI into refactor/model-manager-2
This commit is contained in:
commit
f2c3b7c317
@ -460,10 +460,10 @@ def get_torch_source() -> (Union[str, None], str):
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
|
||||
if device == "cuda":
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
url = "https://download.pytorch.org/whl/cu118"
|
||||
optional_modules = "[xformers,onnx-cuda]"
|
||||
if device == "cuda_and_dml":
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
url = "https://download.pytorch.org/whl/cu118"
|
||||
optional_modules = "[xformers,onnx-directml]"
|
||||
|
||||
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13
|
||||
|
@ -160,13 +160,14 @@ class CoreMetadataInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
# High resolution fix metadata.
|
||||
hrf_width: Optional[int] = InputField(
|
||||
hrf_enabled: Optional[float] = InputField(
|
||||
default=None,
|
||||
description="The high resolution fix height and width multipler.",
|
||||
description="Whether or not high resolution fix was enabled.",
|
||||
)
|
||||
hrf_height: Optional[int] = InputField(
|
||||
# TODO: should this be stricter or do we just let the UI handle it?
|
||||
hrf_method: Optional[str] = InputField(
|
||||
default=None,
|
||||
description="The high resolution fix height and width multipler.",
|
||||
description="The high resolution fix upscale method.",
|
||||
)
|
||||
hrf_strength: Optional[float] = InputField(
|
||||
default=None,
|
||||
|
@ -254,7 +254,13 @@ class ModelInstall(object):
|
||||
elif path.is_dir() and any(
|
||||
[
|
||||
(path / x).exists()
|
||||
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
|
||||
for x in {
|
||||
"config.json",
|
||||
"model_index.json",
|
||||
"learned_embeds.bin",
|
||||
"pytorch_lora_weights.bin",
|
||||
"pytorch_lora_weights.safetensors",
|
||||
}
|
||||
]
|
||||
):
|
||||
models_installed.update({str(model_path_id_or_url): self._install_path(path)})
|
||||
@ -357,7 +363,7 @@ class ModelInstall(object):
|
||||
for suffix in ["safetensors", "bin"]:
|
||||
if f"{prefix}pytorch_lora_weights.{suffix}" in files:
|
||||
location = self._download_hf_model(
|
||||
repo_id, ["pytorch_lora_weights.bin"], staging, subfolder=subfolder
|
||||
repo_id, [f"pytorch_lora_weights.{suffix}"], staging, subfolder=subfolder
|
||||
) # LoRA
|
||||
break
|
||||
elif (
|
||||
|
@ -166,6 +166,15 @@ class ModelPatcher:
|
||||
init_tokens_count = None
|
||||
new_tokens_added = None
|
||||
|
||||
# TODO: This is required since Transformers 4.32 see
|
||||
# https://github.com/huggingface/transformers/pull/25088
|
||||
# More information by NVIDIA:
|
||||
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
||||
# This value might need to be changed in the future and take the GPUs model into account as there seem
|
||||
# to be ideal values for different GPUS. This value is temporary!
|
||||
# For references to the current discussion please see https://github.com/invoke-ai/InvokeAI/pull/4817
|
||||
pad_to_multiple_of = 8
|
||||
|
||||
try:
|
||||
# HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a
|
||||
# workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after
|
||||
@ -175,7 +184,7 @@ class ModelPatcher:
|
||||
# but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs).
|
||||
ti_tokenizer = pickle.loads(pickle.dumps(tokenizer))
|
||||
ti_manager = TextualInversionManager(ti_tokenizer)
|
||||
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
|
||||
init_tokens_count = text_encoder.resize_token_embeddings(None, pad_to_multiple_of).num_embeddings
|
||||
|
||||
def _get_trigger(ti_name, index):
|
||||
trigger = ti_name
|
||||
@ -190,7 +199,7 @@ class ModelPatcher:
|
||||
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
|
||||
|
||||
# modify text_encoder
|
||||
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
|
||||
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added, pad_to_multiple_of)
|
||||
model_embeddings = text_encoder.get_input_embeddings()
|
||||
|
||||
for ti_name, ti in ti_list:
|
||||
@ -222,7 +231,7 @@ class ModelPatcher:
|
||||
|
||||
finally:
|
||||
if init_tokens_count and new_tokens_added:
|
||||
text_encoder.resize_token_embeddings(init_tokens_count)
|
||||
text_encoder.resize_token_embeddings(init_tokens_count, pad_to_multiple_of)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
|
@ -183,12 +183,13 @@ class ModelProbe(object):
|
||||
if model:
|
||||
class_name = model.__class__.__name__
|
||||
else:
|
||||
for suffix in ["bin", "safetensors"]:
|
||||
if (folder_path / f"learned_embeds.{suffix}").exists():
|
||||
return ModelType.TextualInversion
|
||||
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
|
||||
return ModelType.Lora
|
||||
if (folder_path / "unet/model.onnx").exists():
|
||||
return ModelType.ONNX
|
||||
if (folder_path / "learned_embeds.bin").exists():
|
||||
return ModelType.TextualInversion
|
||||
if (folder_path / "pytorch_lora_weights.bin").exists():
|
||||
return ModelType.Lora
|
||||
if (folder_path / "image_encoder.txt").exists():
|
||||
return ModelType.IPAdapter
|
||||
|
||||
|
@ -68,8 +68,9 @@ class LoRAModel(ModelBase):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(path):
|
||||
if os.path.exists(os.path.join(path, "pytorch_lora_weights.bin")):
|
||||
return LoRAModelFormat.Diffusers
|
||||
for ext in ["safetensors", "bin"]:
|
||||
if os.path.exists(os.path.join(path, f"pytorch_lora_weights.{ext}")):
|
||||
return LoRAModelFormat.Diffusers
|
||||
|
||||
if os.path.isfile(path):
|
||||
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
|
||||
@ -86,8 +87,10 @@ class LoRAModel(ModelBase):
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
if cls.detect_format(model_path) == LoRAModelFormat.Diffusers:
|
||||
# TODO: add diffusers lora when it stabilizes a bit
|
||||
raise NotImplementedError("Diffusers lora not supported")
|
||||
for ext in ["safetensors", "bin"]: # return path to the safetensors file inside the folder
|
||||
path = Path(model_path, f"pytorch_lora_weights.{ext}")
|
||||
if path.exists():
|
||||
return path
|
||||
else:
|
||||
return model_path
|
||||
|
||||
|
@ -221,6 +221,19 @@
|
||||
"resetIPAdapterImage": "Reset IP Adapter Image",
|
||||
"ipAdapterImageFallback": "No IP Adapter Image Selected"
|
||||
},
|
||||
"hrf": {
|
||||
"hrf": "High Resolution Fix",
|
||||
"enableHrf": "Enable High Resolution Fix",
|
||||
"enableHrfTooltip": "Generate with a lower initial resolution, upscale to the base resolution, then run Image-to-Image.",
|
||||
"upscaleMethod": "Upscale Method",
|
||||
"hrfStrength": "High Resolution Fix Strength",
|
||||
"strengthTooltip": "Lower values result in fewer details, which may reduce potential artifacts.",
|
||||
"metadata": {
|
||||
"enabled": "High Resolution Fix Enabled",
|
||||
"strength": "High Resolution Fix Strength",
|
||||
"method": "High Resolution Fix Method"
|
||||
}
|
||||
},
|
||||
"embedding": {
|
||||
"addEmbedding": "Add Embedding",
|
||||
"incompatibleModel": "Incompatible base model:",
|
||||
@ -1258,15 +1271,11 @@
|
||||
},
|
||||
"compositingBlur": {
|
||||
"heading": "Blur",
|
||||
"paragraphs": [
|
||||
"The blur radius of the mask."
|
||||
]
|
||||
"paragraphs": ["The blur radius of the mask."]
|
||||
},
|
||||
"compositingBlurMethod": {
|
||||
"heading": "Blur Method",
|
||||
"paragraphs": [
|
||||
"The method of blur applied to the masked area."
|
||||
]
|
||||
"paragraphs": ["The method of blur applied to the masked area."]
|
||||
},
|
||||
"compositingCoherencePass": {
|
||||
"heading": "Coherence Pass",
|
||||
@ -1276,9 +1285,7 @@
|
||||
},
|
||||
"compositingCoherenceMode": {
|
||||
"heading": "Mode",
|
||||
"paragraphs": [
|
||||
"The mode of the Coherence Pass."
|
||||
]
|
||||
"paragraphs": ["The mode of the Coherence Pass."]
|
||||
},
|
||||
"compositingCoherenceSteps": {
|
||||
"heading": "Steps",
|
||||
@ -1296,9 +1303,7 @@
|
||||
},
|
||||
"compositingMaskAdjustments": {
|
||||
"heading": "Mask Adjustments",
|
||||
"paragraphs": [
|
||||
"Adjust the mask."
|
||||
]
|
||||
"paragraphs": ["Adjust the mask."]
|
||||
},
|
||||
"controlNetBeginEnd": {
|
||||
"heading": "Begin / End Step Percentage",
|
||||
@ -1356,9 +1361,7 @@
|
||||
},
|
||||
"infillMethod": {
|
||||
"heading": "Infill Method",
|
||||
"paragraphs": [
|
||||
"Method to infill the selected area."
|
||||
]
|
||||
"paragraphs": ["Method to infill the selected area."]
|
||||
},
|
||||
"lora": {
|
||||
"heading": "LoRA Weight",
|
||||
|
@ -35,6 +35,9 @@ const ImageMetadataActions = (props: Props) => {
|
||||
recallWidth,
|
||||
recallHeight,
|
||||
recallStrength,
|
||||
recallHrfEnabled,
|
||||
recallHrfStrength,
|
||||
recallHrfMethod,
|
||||
recallLoRA,
|
||||
recallControlNet,
|
||||
recallIPAdapter,
|
||||
@ -81,6 +84,18 @@ const ImageMetadataActions = (props: Props) => {
|
||||
recallStrength(metadata?.strength);
|
||||
}, [metadata?.strength, recallStrength]);
|
||||
|
||||
const handleRecallHrfEnabled = useCallback(() => {
|
||||
recallHrfEnabled(metadata?.hrf_enabled);
|
||||
}, [metadata?.hrf_enabled, recallHrfEnabled]);
|
||||
|
||||
const handleRecallHrfStrength = useCallback(() => {
|
||||
recallHrfStrength(metadata?.hrf_strength);
|
||||
}, [metadata?.hrf_strength, recallHrfStrength]);
|
||||
|
||||
const handleRecallHrfMethod = useCallback(() => {
|
||||
recallHrfMethod(metadata?.hrf_method);
|
||||
}, [metadata?.hrf_method, recallHrfMethod]);
|
||||
|
||||
const handleRecallLoRA = useCallback(
|
||||
(lora: LoRAMetadataItem) => {
|
||||
recallLoRA(lora);
|
||||
@ -225,6 +240,27 @@ const ImageMetadataActions = (props: Props) => {
|
||||
onClick={handleRecallStrength}
|
||||
/>
|
||||
)}
|
||||
{metadata.hrf_enabled && (
|
||||
<ImageMetadataItem
|
||||
label={t('hrf.metadata.enabled')}
|
||||
value={metadata.hrf_enabled}
|
||||
onClick={handleRecallHrfEnabled}
|
||||
/>
|
||||
)}
|
||||
{metadata.hrf_enabled && metadata.hrf_strength && (
|
||||
<ImageMetadataItem
|
||||
label={t('hrf.metadata.strength')}
|
||||
value={metadata.hrf_strength}
|
||||
onClick={handleRecallHrfStrength}
|
||||
/>
|
||||
)}
|
||||
{metadata.hrf_enabled && metadata.hrf_method && (
|
||||
<ImageMetadataItem
|
||||
label={t('hrf.metadata.method')}
|
||||
value={metadata.hrf_method}
|
||||
onClick={handleRecallHrfMethod}
|
||||
/>
|
||||
)}
|
||||
{metadata.loras &&
|
||||
metadata.loras.map((lora, index) => {
|
||||
if (isValidLoRAModel(lora.lora)) {
|
||||
|
@ -1424,6 +1424,9 @@ export const zCoreMetadata = z
|
||||
loras: z.array(zLoRAMetadataItem).nullish().catch(null),
|
||||
vae: zVaeModelField.nullish().catch(null),
|
||||
strength: z.number().nullish().catch(null),
|
||||
hrf_enabled: z.boolean().nullish().catch(null),
|
||||
hrf_strength: z.number().nullish().catch(null),
|
||||
hrf_method: z.string().nullish().catch(null),
|
||||
init_image: z.string().nullish().catch(null),
|
||||
positive_style_prompt: z.string().nullish().catch(null),
|
||||
negative_style_prompt: z.string().nullish().catch(null),
|
||||
|
@ -1,22 +1,26 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { roundToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import {
|
||||
DenoiseLatentsInvocation,
|
||||
ESRGANInvocation,
|
||||
Edge,
|
||||
LatentsToImageInvocation,
|
||||
NoiseInvocation,
|
||||
ResizeLatentsInvocation,
|
||||
} from 'services/api/types';
|
||||
import {
|
||||
DENOISE_LATENTS,
|
||||
DENOISE_LATENTS_HRF,
|
||||
ESRGAN_HRF,
|
||||
IMAGE_TO_LATENTS_HRF,
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_IMAGE_HRF,
|
||||
LATENTS_TO_IMAGE_HRF_HR,
|
||||
LATENTS_TO_IMAGE_HRF_LR,
|
||||
MAIN_MODEL_LOADER,
|
||||
NOISE,
|
||||
NOISE_HRF,
|
||||
RESCALE_LATENTS,
|
||||
RESIZE_HRF,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
import { upsertMetadata } from './metadata';
|
||||
@ -56,6 +60,52 @@ function copyConnectionsToDenoiseLatentsHrf(graph: NonNullableGraph): void {
|
||||
graph.edges = graph.edges.concat(newEdges);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the new resolution for high-resolution features (HRF) based on base model type.
|
||||
* Adjusts the width and height to maintain the aspect ratio and constrains them by the model's dimension limits,
|
||||
* rounding down to the nearest multiple of 8.
|
||||
*
|
||||
* @param {string} baseModel The base model type, which determines the base dimension used in calculations.
|
||||
* @param {number} width The current width to be adjusted for HRF.
|
||||
* @param {number} height The current height to be adjusted for HRF.
|
||||
* @return {{newWidth: number, newHeight: number}} The new width and height, adjusted and rounded as needed.
|
||||
*/
|
||||
function calculateHrfRes(
|
||||
baseModel: string,
|
||||
width: number,
|
||||
height: number
|
||||
): { newWidth: number; newHeight: number } {
|
||||
const aspect = width / height;
|
||||
let dimension;
|
||||
if (baseModel == 'sdxl') {
|
||||
dimension = 1024;
|
||||
} else {
|
||||
dimension = 512;
|
||||
}
|
||||
|
||||
const minDimension = Math.floor(dimension * 0.5);
|
||||
const modelArea = dimension * dimension; // Assuming square images for model_area
|
||||
|
||||
let initWidth;
|
||||
let initHeight;
|
||||
|
||||
if (aspect > 1.0) {
|
||||
initHeight = Math.max(minDimension, Math.sqrt(modelArea / aspect));
|
||||
initWidth = initHeight * aspect;
|
||||
} else {
|
||||
initWidth = Math.max(minDimension, Math.sqrt(modelArea * aspect));
|
||||
initHeight = initWidth / aspect;
|
||||
}
|
||||
// Cap initial height and width to final height and width.
|
||||
initWidth = Math.min(width, initWidth);
|
||||
initHeight = Math.min(height, initHeight);
|
||||
|
||||
const newWidth = roundToMultiple(Math.floor(initWidth), 8);
|
||||
const newHeight = roundToMultiple(Math.floor(initHeight), 8);
|
||||
|
||||
return { newWidth, newHeight };
|
||||
}
|
||||
|
||||
// Adds the high-res fix feature to the given graph.
|
||||
export const addHrfToGraph = (
|
||||
state: RootState,
|
||||
@ -71,151 +121,61 @@ export const addHrfToGraph = (
|
||||
}
|
||||
const log = logger('txt2img');
|
||||
|
||||
const { vae, hrfWidth, hrfHeight, hrfStrength } = state.generation;
|
||||
const { vae, hrfStrength, hrfEnabled, hrfMethod } = state.generation;
|
||||
const isAutoVae = !vae;
|
||||
const width = state.generation.width;
|
||||
const height = state.generation.height;
|
||||
const baseModel = state.generation.model
|
||||
? state.generation.model.base_model
|
||||
: 'sd1';
|
||||
const { newWidth: hrfWidth, newHeight: hrfHeight } = calculateHrfRes(
|
||||
baseModel,
|
||||
width,
|
||||
height
|
||||
);
|
||||
|
||||
// Pre-existing (original) graph nodes.
|
||||
const originalDenoiseLatentsNode = graph.nodes[DENOISE_LATENTS] as
|
||||
| DenoiseLatentsInvocation
|
||||
| undefined;
|
||||
const originalNoiseNode = graph.nodes[NOISE] as NoiseInvocation | undefined;
|
||||
// Original latents to image should pick this up.
|
||||
const originalLatentsToImageNode = graph.nodes[LATENTS_TO_IMAGE] as
|
||||
| LatentsToImageInvocation
|
||||
| undefined;
|
||||
// Check if originalDenoiseLatentsNode is undefined and log an error
|
||||
if (!originalDenoiseLatentsNode) {
|
||||
log.error('originalDenoiseLatentsNode is undefined');
|
||||
return;
|
||||
}
|
||||
// Check if originalNoiseNode is undefined and log an error
|
||||
if (!originalNoiseNode) {
|
||||
log.error('originalNoiseNode is undefined');
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if originalLatentsToImageNode is undefined and log an error
|
||||
if (!originalLatentsToImageNode) {
|
||||
log.error('originalLatentsToImageNode is undefined');
|
||||
return;
|
||||
}
|
||||
|
||||
// Change height and width of original noise node to initial resolution.
|
||||
if (originalNoiseNode) {
|
||||
originalNoiseNode.width = hrfWidth;
|
||||
originalNoiseNode.height = hrfHeight;
|
||||
}
|
||||
|
||||
// Define new nodes.
|
||||
// Denoise latents node to be run on upscaled latents.
|
||||
const denoiseLatentsHrfNode: DenoiseLatentsInvocation = {
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS_HRF,
|
||||
is_intermediate: originalDenoiseLatentsNode?.is_intermediate,
|
||||
cfg_scale: originalDenoiseLatentsNode?.cfg_scale,
|
||||
scheduler: originalDenoiseLatentsNode?.scheduler,
|
||||
steps: originalDenoiseLatentsNode?.steps,
|
||||
denoising_start: 1 - hrfStrength,
|
||||
denoising_end: 1,
|
||||
// Define new nodes and their connections, roughly in order of operations.
|
||||
graph.nodes[LATENTS_TO_IMAGE_HRF_LR] = {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
fp32: originalLatentsToImageNode?.fp32,
|
||||
is_intermediate: true,
|
||||
};
|
||||
|
||||
// New base resolution noise node.
|
||||
const hrfNoiseNode: NoiseInvocation = {
|
||||
type: 'noise',
|
||||
id: NOISE_HRF,
|
||||
seed: originalNoiseNode?.seed,
|
||||
use_cpu: originalNoiseNode?.use_cpu,
|
||||
is_intermediate: originalNoiseNode?.is_intermediate,
|
||||
};
|
||||
|
||||
const rescaleLatentsNode: ResizeLatentsInvocation = {
|
||||
id: RESCALE_LATENTS,
|
||||
type: 'lresize',
|
||||
width: state.generation.width,
|
||||
height: state.generation.height,
|
||||
};
|
||||
|
||||
// New node to convert latents to image.
|
||||
const latentsToImageHrfNode: LatentsToImageInvocation | undefined =
|
||||
originalLatentsToImageNode
|
||||
? {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE_HRF,
|
||||
fp32: originalLatentsToImageNode?.fp32,
|
||||
is_intermediate: originalLatentsToImageNode?.is_intermediate,
|
||||
}
|
||||
: undefined;
|
||||
|
||||
// Add new nodes to graph.
|
||||
graph.nodes[LATENTS_TO_IMAGE_HRF] =
|
||||
latentsToImageHrfNode as LatentsToImageInvocation;
|
||||
graph.nodes[DENOISE_LATENTS_HRF] =
|
||||
denoiseLatentsHrfNode as DenoiseLatentsInvocation;
|
||||
graph.nodes[NOISE_HRF] = hrfNoiseNode as NoiseInvocation;
|
||||
graph.nodes[RESCALE_LATENTS] = rescaleLatentsNode as ResizeLatentsInvocation;
|
||||
|
||||
// Connect nodes.
|
||||
graph.edges.push(
|
||||
{
|
||||
// Set up rescale latents.
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: RESCALE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
// Set up new noise node
|
||||
{
|
||||
source: {
|
||||
node_id: RESCALE_LATENTS,
|
||||
field: 'height',
|
||||
},
|
||||
destination: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'height',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: RESCALE_LATENTS,
|
||||
field: 'width',
|
||||
},
|
||||
destination: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'width',
|
||||
},
|
||||
},
|
||||
// Set up new denoise node.
|
||||
{
|
||||
source: {
|
||||
node_id: RESCALE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
// Set up new latents to image node.
|
||||
{
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF,
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
@ -225,17 +185,188 @@ export const addHrfToGraph = (
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF,
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'vae',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
upsertMetadata(graph, {
|
||||
hrf_height: hrfHeight,
|
||||
hrf_width: hrfWidth,
|
||||
hrf_strength: hrfStrength,
|
||||
});
|
||||
graph.nodes[RESIZE_HRF] = {
|
||||
id: RESIZE_HRF,
|
||||
type: 'img_resize',
|
||||
is_intermediate: true,
|
||||
width: width,
|
||||
height: height,
|
||||
};
|
||||
if (hrfMethod == 'ESRGAN') {
|
||||
let model_name: ESRGANInvocation['model_name'] = 'RealESRGAN_x2plus.pth';
|
||||
if ((width * height) / (hrfWidth * hrfHeight) > 2) {
|
||||
model_name = 'RealESRGAN_x4plus.pth';
|
||||
}
|
||||
graph.nodes[ESRGAN_HRF] = {
|
||||
id: ESRGAN_HRF,
|
||||
type: 'esrgan',
|
||||
model_name,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: ESRGAN_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: ESRGAN_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
}
|
||||
);
|
||||
} else {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
graph.nodes[NOISE_HRF] = {
|
||||
type: 'noise',
|
||||
id: NOISE_HRF,
|
||||
seed: originalNoiseNode?.seed,
|
||||
use_cpu: originalNoiseNode?.use_cpu,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'height',
|
||||
},
|
||||
destination: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'height',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'width',
|
||||
},
|
||||
destination: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'width',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
graph.nodes[IMAGE_TO_LATENTS_HRF] = {
|
||||
type: 'i2l',
|
||||
id: IMAGE_TO_LATENTS_HRF,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS_HRF,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
graph.nodes[DENOISE_LATENTS_HRF] = {
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS_HRF,
|
||||
is_intermediate: true,
|
||||
cfg_scale: originalDenoiseLatentsNode?.cfg_scale,
|
||||
scheduler: originalDenoiseLatentsNode?.scheduler,
|
||||
steps: originalDenoiseLatentsNode?.steps,
|
||||
denoising_start: 1 - state.generation.hrfStrength,
|
||||
denoising_end: 1,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: IMAGE_TO_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'noise',
|
||||
},
|
||||
}
|
||||
);
|
||||
copyConnectionsToDenoiseLatentsHrf(graph);
|
||||
|
||||
graph.nodes[LATENTS_TO_IMAGE_HRF_HR] = {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
fp32: originalLatentsToImageNode?.fp32,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
field: 'latents',
|
||||
},
|
||||
}
|
||||
);
|
||||
upsertMetadata(graph, {
|
||||
hrf_strength: hrfStrength,
|
||||
hrf_enabled: hrfEnabled,
|
||||
hrf_method: hrfMethod,
|
||||
});
|
||||
};
|
||||
|
@ -5,7 +5,7 @@ import { SaveImageInvocation } from 'services/api/types';
|
||||
import {
|
||||
CANVAS_OUTPUT,
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_IMAGE_HRF,
|
||||
LATENTS_TO_IMAGE_HRF_HR,
|
||||
NSFW_CHECKER,
|
||||
SAVE_IMAGE,
|
||||
WATERMARKER,
|
||||
@ -62,10 +62,10 @@ export const addSaveImageNode = (
|
||||
},
|
||||
destination,
|
||||
});
|
||||
} else if (LATENTS_TO_IMAGE_HRF in graph.nodes) {
|
||||
} else if (LATENTS_TO_IMAGE_HRF_HR in graph.nodes) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF,
|
||||
node_id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
field: 'image',
|
||||
},
|
||||
destination,
|
||||
|
@ -4,7 +4,11 @@ export const NEGATIVE_CONDITIONING = 'negative_conditioning';
|
||||
export const DENOISE_LATENTS = 'denoise_latents';
|
||||
export const DENOISE_LATENTS_HRF = 'denoise_latents_hrf';
|
||||
export const LATENTS_TO_IMAGE = 'latents_to_image';
|
||||
export const LATENTS_TO_IMAGE_HRF = 'latents_to_image_hrf';
|
||||
export const LATENTS_TO_IMAGE_HRF_HR = 'latents_to_image_hrf_hr';
|
||||
export const LATENTS_TO_IMAGE_HRF_LR = 'latents_to_image_hrf_lr';
|
||||
export const IMAGE_TO_LATENTS_HRF = 'image_to_latents_hrf';
|
||||
export const RESIZE_HRF = 'resize_hrf';
|
||||
export const ESRGAN_HRF = 'esrgan_hrf';
|
||||
export const SAVE_IMAGE = 'save_image';
|
||||
export const NSFW_CHECKER = 'nsfw_checker';
|
||||
export const WATERMARKER = 'invisible_watermark';
|
||||
@ -21,7 +25,6 @@ export const CLIP_SKIP = 'clip_skip';
|
||||
export const IMAGE_TO_LATENTS = 'image_to_latents';
|
||||
export const LATENTS_TO_LATENTS = 'latents_to_latents';
|
||||
export const RESIZE = 'resize_image';
|
||||
export const RESCALE_LATENTS = 'rescale_latents';
|
||||
export const IMG2IMG_RESIZE = 'img2img_resize';
|
||||
export const CANVAS_OUTPUT = 'canvas_output';
|
||||
export const INPAINT_IMAGE = 'inpaint_image';
|
||||
|
@ -7,10 +7,9 @@ import IAICollapse from 'common/components/IAICollapse';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import ParamHrfHeight from './ParamHrfHeight';
|
||||
import ParamHrfStrength from './ParamHrfStrength';
|
||||
import ParamHrfToggle from './ParamHrfToggle';
|
||||
import ParamHrfWidth from './ParamHrfWidth';
|
||||
import ParamHrfMethod from './ParamHrfMethod';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
@ -37,28 +36,11 @@ export default function ParamHrfCollapse() {
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse label="High Resolution Fix" activeLabel={activeLabel}>
|
||||
<IAICollapse label={t('hrf.hrf')} activeLabel={activeLabel}>
|
||||
<Flex sx={{ flexDir: 'column', gap: 2 }}>
|
||||
<ParamHrfToggle />
|
||||
{hrfEnabled && (
|
||||
<Flex
|
||||
sx={{
|
||||
gap: 2,
|
||||
p: 4,
|
||||
borderRadius: 4,
|
||||
flexDirection: 'column',
|
||||
w: 'full',
|
||||
bg: 'base.100',
|
||||
_dark: {
|
||||
bg: 'base.750',
|
||||
},
|
||||
}}
|
||||
>
|
||||
<ParamHrfWidth />
|
||||
<ParamHrfHeight />
|
||||
</Flex>
|
||||
)}
|
||||
{hrfEnabled && <ParamHrfStrength />}
|
||||
<ParamHrfStrength />
|
||||
<ParamHrfMethod />
|
||||
</Flex>
|
||||
</IAICollapse>
|
||||
);
|
||||
|
@ -1,87 +0,0 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAISlider, { IAIFullSliderProps } from 'common/components/IAISlider';
|
||||
import { roundToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import {
|
||||
setHrfHeight,
|
||||
setHrfWidth,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
|
||||
function findPrevMultipleOfEight(n: number): number {
|
||||
return Math.floor((n - 1) / 8) * 8;
|
||||
}
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ generation, hotkeys, config }) => {
|
||||
const { min, fineStep, coarseStep } = config.sd.height;
|
||||
const { model, height, hrfHeight, aspectRatio, hrfEnabled } = generation;
|
||||
|
||||
const step = hotkeys.shift ? fineStep : coarseStep;
|
||||
|
||||
return {
|
||||
model,
|
||||
height,
|
||||
hrfHeight,
|
||||
min,
|
||||
step,
|
||||
aspectRatio,
|
||||
hrfEnabled,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
type ParamHeightProps = Omit<
|
||||
IAIFullSliderProps,
|
||||
'label' | 'value' | 'onChange'
|
||||
>;
|
||||
|
||||
const ParamHrfHeight = (props: ParamHeightProps) => {
|
||||
const { height, hrfHeight, min, step, aspectRatio, hrfEnabled } =
|
||||
useAppSelector(selector);
|
||||
const dispatch = useAppDispatch();
|
||||
const maxHrfHeight = Math.max(findPrevMultipleOfEight(height), min);
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(setHrfHeight(v));
|
||||
if (aspectRatio) {
|
||||
const newWidth = roundToMultiple(v * aspectRatio, 8);
|
||||
dispatch(setHrfWidth(newWidth));
|
||||
}
|
||||
},
|
||||
[dispatch, aspectRatio]
|
||||
);
|
||||
|
||||
const handleReset = useCallback(() => {
|
||||
dispatch(setHrfHeight(maxHrfHeight));
|
||||
if (aspectRatio) {
|
||||
const newWidth = roundToMultiple(maxHrfHeight * aspectRatio, 8);
|
||||
dispatch(setHrfWidth(newWidth));
|
||||
}
|
||||
}, [dispatch, maxHrfHeight, aspectRatio]);
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label="Initial Height"
|
||||
value={hrfHeight}
|
||||
min={min}
|
||||
step={step}
|
||||
max={maxHrfHeight}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderNumberInputProps={{ max: maxHrfHeight }}
|
||||
isDisabled={!hrfEnabled}
|
||||
{...props}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamHrfHeight);
|
@ -0,0 +1,49 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import { setHrfMethod } from 'features/parameters/store/generationSlice';
|
||||
import { HrfMethodParam } from 'features/parameters/types/parameterSchemas';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
({ generation }) => {
|
||||
const { hrfMethod, hrfEnabled } = generation;
|
||||
return { hrfMethod, hrfEnabled };
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const DATA = ['ESRGAN', 'bilinear'];
|
||||
|
||||
// Dropdown selection for the type of high resolution fix method to use.
|
||||
const ParamHrfMethodSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const { hrfMethod, hrfEnabled } = useAppSelector(selector);
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: HrfMethodParam | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
dispatch(setHrfMethod(v));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return (
|
||||
<IAIMantineSelect
|
||||
label={t('hrf.upscaleMethod')}
|
||||
value={hrfMethod}
|
||||
data={DATA}
|
||||
onChange={handleChange}
|
||||
disabled={!hrfEnabled}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamHrfMethodSelect);
|
@ -5,6 +5,8 @@ import { memo, useCallback } from 'react';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { setHrfStrength } from 'features/parameters/store/generationSlice';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { Tooltip } from '@chakra-ui/react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
@ -31,6 +33,7 @@ const ParamHrfStrength = () => {
|
||||
const { hrfStrength, initial, min, sliderMax, step, hrfEnabled } =
|
||||
useAppSelector(selector);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleHrfStrengthReset = useCallback(() => {
|
||||
dispatch(setHrfStrength(initial));
|
||||
@ -44,20 +47,21 @@ const ParamHrfStrength = () => {
|
||||
);
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label="Denoising Strength"
|
||||
aria-label="High Resolution Denoising Strength"
|
||||
min={min}
|
||||
max={sliderMax}
|
||||
step={step}
|
||||
value={hrfStrength}
|
||||
onChange={handleHrfStrengthChange}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
handleReset={handleHrfStrengthReset}
|
||||
isDisabled={!hrfEnabled}
|
||||
/>
|
||||
<Tooltip label={t('hrf.strengthTooltip')} placement="right" hasArrow>
|
||||
<IAISlider
|
||||
label={t('parameters.denoisingStrength')}
|
||||
min={min}
|
||||
max={sliderMax}
|
||||
step={step}
|
||||
value={hrfStrength}
|
||||
onChange={handleHrfStrengthChange}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
handleReset={handleHrfStrengthReset}
|
||||
isDisabled={!hrfEnabled}
|
||||
/>
|
||||
</Tooltip>
|
||||
);
|
||||
};
|
||||
|
||||
|
@ -3,9 +3,11 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISwitch from 'common/components/IAISwitch';
|
||||
import { setHrfEnabled } from 'features/parameters/store/generationSlice';
|
||||
import { ChangeEvent, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function ParamHrfToggle() {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const hrfEnabled = useAppSelector(
|
||||
(state: RootState) => state.generation.hrfEnabled
|
||||
@ -19,9 +21,10 @@ export default function ParamHrfToggle() {
|
||||
|
||||
return (
|
||||
<IAISwitch
|
||||
label="Enable High Resolution Fix"
|
||||
label={t('hrf.enableHrf')}
|
||||
isChecked={hrfEnabled}
|
||||
onChange={handleHrfEnabled}
|
||||
tooltip={t('hrf.enableHrfTooltip')}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -1,84 +0,0 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAISlider, { IAIFullSliderProps } from 'common/components/IAISlider';
|
||||
import { roundToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import {
|
||||
setHrfHeight,
|
||||
setHrfWidth,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
|
||||
function findPrevMultipleOfEight(n: number): number {
|
||||
return Math.floor((n - 1) / 8) * 8;
|
||||
}
|
||||
|
||||
const selector = createSelector(
|
||||
[stateSelector],
|
||||
({ generation, hotkeys, config }) => {
|
||||
const { min, fineStep, coarseStep } = config.sd.width;
|
||||
const { model, width, hrfWidth, aspectRatio, hrfEnabled } = generation;
|
||||
|
||||
const step = hotkeys.shift ? fineStep : coarseStep;
|
||||
|
||||
return {
|
||||
model,
|
||||
width,
|
||||
hrfWidth,
|
||||
min,
|
||||
step,
|
||||
aspectRatio,
|
||||
hrfEnabled,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
type ParamWidthProps = Omit<IAIFullSliderProps, 'label' | 'value' | 'onChange'>;
|
||||
|
||||
const ParamHrfWidth = (props: ParamWidthProps) => {
|
||||
const { width, hrfWidth, min, step, aspectRatio, hrfEnabled } =
|
||||
useAppSelector(selector);
|
||||
const dispatch = useAppDispatch();
|
||||
const maxHrfWidth = Math.max(findPrevMultipleOfEight(width), min);
|
||||
|
||||
const handleChange = useCallback(
|
||||
(v: number) => {
|
||||
dispatch(setHrfWidth(v));
|
||||
if (aspectRatio) {
|
||||
const newHeight = roundToMultiple(v / aspectRatio, 8);
|
||||
dispatch(setHrfHeight(newHeight));
|
||||
}
|
||||
},
|
||||
[dispatch, aspectRatio]
|
||||
);
|
||||
|
||||
const handleReset = useCallback(() => {
|
||||
dispatch(setHrfWidth(maxHrfWidth));
|
||||
if (aspectRatio) {
|
||||
const newHeight = roundToMultiple(maxHrfWidth / aspectRatio, 8);
|
||||
dispatch(setHrfHeight(newHeight));
|
||||
}
|
||||
}, [dispatch, maxHrfWidth, aspectRatio]);
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label="Initial Width"
|
||||
value={hrfWidth}
|
||||
min={min}
|
||||
step={step}
|
||||
max={maxHrfWidth}
|
||||
onChange={handleChange}
|
||||
handleReset={handleReset}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderNumberInputProps={{ max: maxHrfWidth }}
|
||||
isDisabled={!hrfEnabled}
|
||||
{...props}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamHrfWidth);
|
@ -55,6 +55,9 @@ import { initialImageSelected, modelSelected } from '../store/actions';
|
||||
import {
|
||||
setCfgScale,
|
||||
setHeight,
|
||||
setHrfEnabled,
|
||||
setHrfMethod,
|
||||
setHrfStrength,
|
||||
setImg2imgStrength,
|
||||
setNegativePrompt,
|
||||
setPositivePrompt,
|
||||
@ -67,6 +70,7 @@ import {
|
||||
isValidCfgScale,
|
||||
isValidControlNetModel,
|
||||
isValidHeight,
|
||||
isValidHrfMethod,
|
||||
isValidIPAdapterModel,
|
||||
isValidLoRAModel,
|
||||
isValidMainModel,
|
||||
@ -83,6 +87,7 @@ import {
|
||||
isValidSteps,
|
||||
isValidStrength,
|
||||
isValidWidth,
|
||||
isValidBoolean,
|
||||
} from '../types/parameterSchemas';
|
||||
|
||||
const selector = createSelector(
|
||||
@ -361,6 +366,51 @@ export const useRecallParameters = () => {
|
||||
[dispatch, parameterSetToast, parameterNotSetToast]
|
||||
);
|
||||
|
||||
/**
|
||||
* Recall high resolution enabled with toast
|
||||
*/
|
||||
const recallHrfEnabled = useCallback(
|
||||
(hrfEnabled: unknown) => {
|
||||
if (!isValidBoolean(hrfEnabled)) {
|
||||
parameterNotSetToast();
|
||||
return;
|
||||
}
|
||||
dispatch(setHrfEnabled(hrfEnabled));
|
||||
parameterSetToast();
|
||||
},
|
||||
[dispatch, parameterSetToast, parameterNotSetToast]
|
||||
);
|
||||
|
||||
/**
|
||||
* Recall high resolution strength with toast
|
||||
*/
|
||||
const recallHrfStrength = useCallback(
|
||||
(hrfStrength: unknown) => {
|
||||
if (!isValidStrength(hrfStrength)) {
|
||||
parameterNotSetToast();
|
||||
return;
|
||||
}
|
||||
dispatch(setHrfStrength(hrfStrength));
|
||||
parameterSetToast();
|
||||
},
|
||||
[dispatch, parameterSetToast, parameterNotSetToast]
|
||||
);
|
||||
|
||||
/**
|
||||
* Recall high resolution method with toast
|
||||
*/
|
||||
const recallHrfMethod = useCallback(
|
||||
(hrfMethod: unknown) => {
|
||||
if (!isValidHrfMethod(hrfMethod)) {
|
||||
parameterNotSetToast();
|
||||
return;
|
||||
}
|
||||
dispatch(setHrfMethod(hrfMethod));
|
||||
parameterSetToast();
|
||||
},
|
||||
[dispatch, parameterSetToast, parameterNotSetToast]
|
||||
);
|
||||
|
||||
/**
|
||||
* Recall LoRA with toast
|
||||
*/
|
||||
@ -711,6 +761,9 @@ export const useRecallParameters = () => {
|
||||
steps,
|
||||
width,
|
||||
strength,
|
||||
hrf_enabled,
|
||||
hrf_strength,
|
||||
hrf_method,
|
||||
positive_style_prompt,
|
||||
negative_style_prompt,
|
||||
refiner_model,
|
||||
@ -729,34 +782,55 @@ export const useRecallParameters = () => {
|
||||
if (isValidCfgScale(cfg_scale)) {
|
||||
dispatch(setCfgScale(cfg_scale));
|
||||
}
|
||||
|
||||
if (isValidMainModel(model)) {
|
||||
dispatch(modelSelected(model));
|
||||
}
|
||||
|
||||
if (isValidPositivePrompt(positive_prompt)) {
|
||||
dispatch(setPositivePrompt(positive_prompt));
|
||||
}
|
||||
|
||||
if (isValidNegativePrompt(negative_prompt)) {
|
||||
dispatch(setNegativePrompt(negative_prompt));
|
||||
}
|
||||
|
||||
if (isValidScheduler(scheduler)) {
|
||||
dispatch(setScheduler(scheduler));
|
||||
}
|
||||
|
||||
if (isValidSeed(seed)) {
|
||||
dispatch(setSeed(seed));
|
||||
}
|
||||
|
||||
if (isValidSteps(steps)) {
|
||||
dispatch(setSteps(steps));
|
||||
}
|
||||
|
||||
if (isValidWidth(width)) {
|
||||
dispatch(setWidth(width));
|
||||
}
|
||||
|
||||
if (isValidHeight(height)) {
|
||||
dispatch(setHeight(height));
|
||||
}
|
||||
|
||||
if (isValidStrength(strength)) {
|
||||
dispatch(setImg2imgStrength(strength));
|
||||
}
|
||||
|
||||
if (isValidBoolean(hrf_enabled)) {
|
||||
dispatch(setHrfEnabled(hrf_enabled));
|
||||
}
|
||||
|
||||
if (isValidStrength(hrf_strength)) {
|
||||
dispatch(setHrfStrength(hrf_strength));
|
||||
}
|
||||
|
||||
if (isValidHrfMethod(hrf_method)) {
|
||||
dispatch(setHrfMethod(hrf_method));
|
||||
}
|
||||
|
||||
if (isValidSDXLPositiveStylePrompt(positive_style_prompt)) {
|
||||
dispatch(setPositiveStylePromptSDXL(positive_style_prompt));
|
||||
}
|
||||
@ -862,6 +936,9 @@ export const useRecallParameters = () => {
|
||||
recallWidth,
|
||||
recallHeight,
|
||||
recallStrength,
|
||||
recallHrfEnabled,
|
||||
recallHrfStrength,
|
||||
recallHrfMethod,
|
||||
recallLoRA,
|
||||
recallControlNet,
|
||||
recallIPAdapter,
|
||||
|
@ -11,6 +11,7 @@ import {
|
||||
CanvasCoherenceModeParam,
|
||||
CfgScaleParam,
|
||||
HeightParam,
|
||||
HrfMethodParam,
|
||||
MainModelParam,
|
||||
MaskBlurMethodParam,
|
||||
NegativePromptParam,
|
||||
@ -27,10 +28,9 @@ import {
|
||||
} from '../types/parameterSchemas';
|
||||
|
||||
export interface GenerationState {
|
||||
hrfHeight: HeightParam;
|
||||
hrfWidth: WidthParam;
|
||||
hrfEnabled: boolean;
|
||||
hrfStrength: StrengthParam;
|
||||
hrfMethod: HrfMethodParam;
|
||||
cfgScale: CfgScaleParam;
|
||||
height: HeightParam;
|
||||
img2imgStrength: StrengthParam;
|
||||
@ -73,10 +73,9 @@ export interface GenerationState {
|
||||
}
|
||||
|
||||
export const initialGenerationState: GenerationState = {
|
||||
hrfHeight: 64,
|
||||
hrfWidth: 64,
|
||||
hrfStrength: 0.75,
|
||||
hrfStrength: 0.45,
|
||||
hrfEnabled: false,
|
||||
hrfMethod: 'ESRGAN',
|
||||
cfgScale: 7.5,
|
||||
height: 512,
|
||||
img2imgStrength: 0.75,
|
||||
@ -279,18 +278,15 @@ export const generationSlice = createSlice({
|
||||
setClipSkip: (state, action: PayloadAction<number>) => {
|
||||
state.clipSkip = action.payload;
|
||||
},
|
||||
setHrfHeight: (state, action: PayloadAction<number>) => {
|
||||
state.hrfHeight = action.payload;
|
||||
},
|
||||
setHrfWidth: (state, action: PayloadAction<number>) => {
|
||||
state.hrfWidth = action.payload;
|
||||
},
|
||||
setHrfStrength: (state, action: PayloadAction<number>) => {
|
||||
state.hrfStrength = action.payload;
|
||||
},
|
||||
setHrfEnabled: (state, action: PayloadAction<boolean>) => {
|
||||
state.hrfEnabled = action.payload;
|
||||
},
|
||||
setHrfMethod: (state, action: PayloadAction<HrfMethodParam>) => {
|
||||
state.hrfMethod = action.payload;
|
||||
},
|
||||
shouldUseCpuNoiseChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldUseCpuNoise = action.payload;
|
||||
},
|
||||
@ -375,10 +371,9 @@ export const {
|
||||
setSeamlessXAxis,
|
||||
setSeamlessYAxis,
|
||||
setClipSkip,
|
||||
setHrfHeight,
|
||||
setHrfWidth,
|
||||
setHrfStrength,
|
||||
setHrfEnabled,
|
||||
setHrfStrength,
|
||||
setHrfMethod,
|
||||
shouldUseCpuNoiseChanged,
|
||||
setAspectRatio,
|
||||
setShouldLockAspectRatio,
|
||||
|
@ -400,6 +400,20 @@ export type PrecisionParam = z.infer<typeof zPrecision>;
|
||||
export const isValidPrecision = (val: unknown): val is PrecisionParam =>
|
||||
zPrecision.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for a high resolution fix method parameter.
|
||||
*/
|
||||
export const zHrfMethod = z.enum(['ESRGAN', 'bilinear']);
|
||||
/**
|
||||
* Type alias for high resolution fix method parameter, inferred from its zod schema
|
||||
*/
|
||||
export type HrfMethodParam = z.infer<typeof zHrfMethod>;
|
||||
/**
|
||||
* Validates/type-guards a value as a high resolution fix method parameter
|
||||
*/
|
||||
export const isValidHrfMethod = (val: unknown): val is HrfMethodParam =>
|
||||
zHrfMethod.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for SDXL refiner positive aesthetic score parameter
|
||||
*/
|
||||
@ -482,6 +496,17 @@ export const isValidCoherenceModeParam = (
|
||||
): val is CanvasCoherenceModeParam =>
|
||||
zCanvasCoherenceMode.safeParse(val).success;
|
||||
|
||||
/**
|
||||
* Zod schema for a boolean.
|
||||
*/
|
||||
export const zBoolean = z.boolean();
|
||||
|
||||
/**
|
||||
* Validates/type-guards a value as a boolean parameter
|
||||
*/
|
||||
export const isValidBoolean = (val: unknown): val is boolean =>
|
||||
zBoolean.safeParse(val).success && val !== null && val !== undefined;
|
||||
|
||||
// /**
|
||||
// * Zod schema for BaseModelType
|
||||
// */
|
||||
|
@ -70,7 +70,7 @@ export const initialConfigState: AppConfig = {
|
||||
coarseStep: 0.05,
|
||||
},
|
||||
hrfStrength: {
|
||||
initial: 0.7,
|
||||
initial: 0.45,
|
||||
min: 0,
|
||||
sliderMax: 1,
|
||||
inputMax: 1,
|
||||
|
136
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
136
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
File diff suppressed because one or more lines are too long
@ -127,7 +127,6 @@ export type CompelInvocation = s['CompelInvocation'];
|
||||
export type DynamicPromptInvocation = s['DynamicPromptInvocation'];
|
||||
export type NoiseInvocation = s['NoiseInvocation'];
|
||||
export type DenoiseLatentsInvocation = s['DenoiseLatentsInvocation'];
|
||||
export type ResizeLatentsInvocation = s['ResizeLatentsInvocation'];
|
||||
export type ONNXTextToLatentsInvocation = s['ONNXTextToLatentsInvocation'];
|
||||
export type SDXLLoraLoaderInvocation = s['SDXLLoraLoaderInvocation'];
|
||||
export type ImageToLatentsInvocation = s['ImageToLatentsInvocation'];
|
||||
|
@ -83,7 +83,7 @@ dependencies = [
|
||||
"torchvision~=0.16",
|
||||
"torchmetrics~=0.11.0",
|
||||
"torchsde~=0.2.5",
|
||||
"transformers~=4.31.0",
|
||||
"transformers~=4.35.0",
|
||||
"uvicorn[standard]~=0.21.1",
|
||||
"windows-curses; sys_platform=='win32'",
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user