mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix model download and autodetection bugs
- Corrected error that caused --full-precision argument to be ignored when models downloaded using the --yes argument. - Improved autodetection of v1 inpainting files; no longer relies on the file having 'inpaint' in the name.
This commit is contained in:
parent
5d617ce63d
commit
f3f4c68acc
@ -368,8 +368,11 @@ def process_and_execute(app: npyscreen.NPSAppManaged):
|
||||
# --------------------------------------------------------
|
||||
def select_and_download_models(opt: Namespace):
|
||||
if opt.default_only:
|
||||
models_to_download = default_dataset()
|
||||
install_requested_models(models_to_download)
|
||||
models_to_install = default_dataset()
|
||||
install_requested_models(
|
||||
install_initial_models = models_to_install,
|
||||
precision = 'float32' if opt.full_precision else choose_precision(torch.device(choose_torch_device())),
|
||||
)
|
||||
else:
|
||||
installApp = AddModelApplication()
|
||||
installApp.opt = opt
|
||||
|
@ -56,7 +56,6 @@ def initial_models():
|
||||
return Datasets
|
||||
return (Datasets := OmegaConf.load(Dataset_path))
|
||||
|
||||
|
||||
def install_requested_models(
|
||||
install_initial_models: List[str] = None,
|
||||
remove_models: List[str] = None,
|
||||
|
@ -711,15 +711,15 @@ class ModelManager(object):
|
||||
thing = path_url_or_repo # to save typing
|
||||
|
||||
if thing.startswith(('http:','https:','ftp:')):
|
||||
print(f'>> {thing} appears to be a URL')
|
||||
print(f' | {thing} appears to be a URL')
|
||||
model_path = self._resolve_path(thing, 'models/ldm/stable-diffusion-v1') # _resolve_path does a download if needed
|
||||
|
||||
elif Path(thing).is_file() and thing.endswith(('.ckpt','.safetensors')):
|
||||
print(f'>> {thing} appears to be a checkpoint file on disk')
|
||||
print(f' | {thing} appears to be a checkpoint file on disk')
|
||||
model_path = self._resolve_path(thing, 'models/ldm/stable-diffusion-v1')
|
||||
|
||||
elif Path(thing).is_dir() and Path(thing, 'model_index.json').exists():
|
||||
print(f'>> {thing} appears to be a diffusers file on disk')
|
||||
print(f' | {thing} appears to be a diffusers file on disk')
|
||||
model_name = self.import_diffusers_model(
|
||||
thing,
|
||||
vae=dict(repo_id='stabilityai/sd-vae-ft-mse'),
|
||||
@ -729,17 +729,16 @@ class ModelManager(object):
|
||||
elif Path(thing).is_dir():
|
||||
print(f'>> {thing} appears to be a directory. Will scan for models to import')
|
||||
for m in list(Path(thing).rglob('*.ckpt')) + list(Path(thing).rglob('*.safetensors')):
|
||||
print('***',m)
|
||||
self.heuristic_import(str(m), convert, commit_to_conf=commit_to_conf)
|
||||
return
|
||||
|
||||
elif re.match(r'^[\w.+-]+/[\w.+-]+$', thing):
|
||||
print(f'>> {thing} appears to be a HuggingFace diffusers repo_id')
|
||||
print(f' | {thing} appears to be a HuggingFace diffusers repo_id')
|
||||
model_name = self.import_diffuser_model(thing, commit_to_conf=commit_to_conf)
|
||||
pipeline,_,_,_ = self._load_diffusers_model(self.config[model_name])
|
||||
|
||||
else:
|
||||
print(f">> {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
||||
print(f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
||||
|
||||
# Model_path is set in the event of a legacy checkpoint file.
|
||||
# If not set, we're all done
|
||||
@ -747,25 +746,37 @@ class ModelManager(object):
|
||||
return
|
||||
|
||||
if model_path.stem in self.config: #already imported
|
||||
print(f' > Already imported. Skipping')
|
||||
return
|
||||
|
||||
# another round of heuristics to guess the correct config file.
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
||||
|
||||
model_config_file = None
|
||||
checkpoint = safetensors.torch.load_file(model_path) if model_path.suffix == '.safetensors' else torch.load(model_path)
|
||||
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
||||
print(f'>> {thing} appears to be an SD-v2 model; model will be converted to diffusers format')
|
||||
print(f' > SD-v2 model detected; model will be converted to diffusers format')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v2-inference-v.yaml')
|
||||
convert = True
|
||||
|
||||
elif re.search('inpaint', str(model_path), flags=re.IGNORECASE):
|
||||
print(f'>> {thing} appears to be an SD-v1 inpainting model')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inpainting-inference.yaml')
|
||||
if not model_config_file: # still trying
|
||||
in_channels = None
|
||||
try:
|
||||
state_dict = checkpoint.get('state_dict') or checkpoint
|
||||
in_channels = state_dict['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
|
||||
if in_channels == 9:
|
||||
print(f' > SD-v1 inpainting model detected')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inpainting-inference.yaml')
|
||||
elif in_channels == 4:
|
||||
print(f' > SD-v1 model detected')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
||||
else:
|
||||
print(f'** {thing} does not have an expected number of in_channels ({in_channels}). It will probably break when loaded.')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
||||
except KeyError:
|
||||
print(f'** {thing} does not have the expected SD-v1 model fields. It will probably break when loaded.')
|
||||
model_config_file = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml')
|
||||
|
||||
else:
|
||||
print(f'>> {thing} appears to be an SD-v1 model')
|
||||
|
||||
if convert:
|
||||
diffuser_path = Path(Globals.root, 'models',Globals.converted_ckpts_dir, model_path.stem)
|
||||
self.convert_and_import(
|
||||
|
Loading…
Reference in New Issue
Block a user