Add support for a list of ConditioningFields in DenoiseLatents.

This commit is contained in:
Ryan Dick 2024-02-15 14:41:54 -05:00
parent 58277c6ada
commit f590b39f88
4 changed files with 58 additions and 29 deletions

View File

@ -40,7 +40,11 @@ from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningData,
IPAdapterConditioningInfo,
)
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import BaseModelType
@ -330,15 +334,22 @@ class DenoiseLatentsInvocation(BaseInvocation):
unet,
seed,
) -> ConditioningData:
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
# self.positive_conditioning could be a list or a single ConditioningField. Normalize to a list here.
positive_conditioning_list = self.positive_conditioning
if not isinstance(positive_conditioning_list, list):
positive_conditioning_list = [positive_conditioning_list]
text_embeddings: list[BasicConditioningInfo] = []
for positive_conditioning in positive_conditioning_list:
positive_cond_data = context.services.latents.get(positive_conditioning.conditioning_name)
text_embeddings.append(positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype))
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
text_embeddings=text_embeddings,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
postprocessing_settings=PostprocessingSettings(

View File

@ -419,21 +419,33 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if timesteps.shape[0] == 0:
return latents, attention_map_saver
extra_conditioning_info = conditioning_data.text_embeddings[0].extra_conditioning
use_cross_attention_control = (
extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control
)
use_ip_adapter = ip_adapter_data is not None
use_regional_prompting = len(conditioning_data.text_embeddings) > 1
if sum([use_cross_attention_control, use_ip_adapter, use_regional_prompting]) > 1:
raise Exception(
"Cross-attention control, IP-Adapter, and regional prompting cannot be used simultaneously (yet)."
)
ip_adapter_unet_patcher = None
extra_conditioning_info = conditioning_data.text_embeddings.extra_conditioning
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
if use_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps),
)
self.use_ip_adapter = False
elif ip_adapter_data is not None:
elif use_ip_adapter:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = True
elif use_regional_prompting:
raise NotImplementedError("Regional prompting is not yet supported.")
else:
attn_ctx = nullcontext()

View File

@ -62,7 +62,7 @@ class IPAdapterConditioningInfo:
@dataclass
class ConditioningData:
unconditioned_embeddings: BasicConditioningInfo
text_embeddings: BasicConditioningInfo
text_embeddings: list[BasicConditioningInfo]
"""
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
@ -82,10 +82,6 @@ class ConditioningData:
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
@property
def dtype(self):
return self.text_embeddings.dtype
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
scheduler_args = dict(self.scheduler_args)
step_method = inspect.signature(scheduler.step)

View File

@ -116,9 +116,12 @@ class InvokeAIDiffuserComponent:
timestep: torch.Tensor,
step_index: int,
total_step_count: int,
conditioning_data,
conditioning_data: ConditioningData,
):
down_block_res_samples, mid_block_res_sample = None, None
# HACK(ryan): Currently, we just take the first text embedding if there's more than one. We should probably
# concatenate all of the embeddings for the ControlNet, but not apply embedding masks.
text_embeddings = conditioning_data.text_embeddings[0]
# control_data should be type List[ControlNetData]
# this loop covers both ControlNet (one ControlNetData in list)
@ -149,28 +152,28 @@ class InvokeAIDiffuserComponent:
added_cond_kwargs = None
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
if type(text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
"text_embeds": text_embeddings.pooled_embeds,
"time_ids": text_embeddings.add_time_ids,
}
encoder_hidden_states = conditioning_data.text_embeddings.embeds
encoder_hidden_states = text_embeddings.embeds
encoder_attention_mask = None
else:
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
if type(text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
text_embeddings.add_time_ids,
],
dim=0,
),
@ -180,7 +183,7 @@ class InvokeAIDiffuserComponent:
encoder_attention_mask,
) = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds,
conditioning_data.text_embeddings.embeds,
text_embeddings.embeds,
)
if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step
@ -346,6 +349,9 @@ class InvokeAIDiffuserComponent:
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
assert len(conditioning_data.text_embeddings) == 1
text_embeddings = conditioning_data.text_embeddings[0]
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
# Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len).
@ -359,27 +365,27 @@ class InvokeAIDiffuserComponent:
}
added_cond_kwargs = None
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
if type(text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
text_embeddings.add_time_ids,
],
dim=0,
),
}
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.text_embeddings.embeds
conditioning_data.unconditioned_embeddings.embeds, text_embeddings.embeds
)
both_results = self.model_forward_callback(
x_twice,
@ -408,6 +414,10 @@ class InvokeAIDiffuserComponent:
"""Runs the conditioned and unconditioned UNet forward passes sequentially for lower memory usage at the cost of
slower execution speed.
"""
assert len(conditioning_data.text_embeddings) == 1
text_embeddings = conditioning_data.text_embeddings[0]
# Since we are running the conditioned and unconditioned passes sequentially, we need to split the ControlNet
# and T2I-Adapter residuals into two chunks.
uncond_down_block, cond_down_block = None, None
@ -465,7 +475,7 @@ class InvokeAIDiffuserComponent:
# Prepare SDXL conditioning kwargs for the unconditioned pass.
added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
is_sdxl = type(text_embeddings) is SDXLConditioningInfo
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds,
@ -509,15 +519,15 @@ class InvokeAIDiffuserComponent:
added_cond_kwargs = None
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
"text_embeds": text_embeddings.pooled_embeds,
"time_ids": text_embeddings.add_time_ids,
}
# Run conditioned UNet denoising (i.e. positive prompt).
conditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.text_embeddings.embeds,
text_embeddings.embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,