mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Consolidate latents_from_embeddings(...) and generate_latents_from_embeddings(...) into a single function.
This commit is contained in:
parent
80a67572f1
commit
f604575862
@ -325,17 +325,71 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
mask_guidance = AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, is_gradient_mask)
|
||||
|
||||
try:
|
||||
latents = self.generate_latents_from_embeddings(
|
||||
latents,
|
||||
timesteps,
|
||||
conditioning_data,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
mask_guidance=mask_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
t2i_adapter_data=t2i_adapter_data,
|
||||
callback=callback,
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
|
||||
batch_size = latents.shape[0]
|
||||
|
||||
if timesteps.shape[0] == 0:
|
||||
return latents
|
||||
|
||||
use_ip_adapter = ip_adapter_data is not None
|
||||
use_regional_prompting = (
|
||||
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
|
||||
)
|
||||
unet_attention_patcher = None
|
||||
attn_ctx = nullcontext()
|
||||
|
||||
if use_ip_adapter or use_regional_prompting:
|
||||
ip_adapters: Optional[List[UNetIPAdapterData]] = (
|
||||
[
|
||||
{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks}
|
||||
for ipa in ip_adapter_data
|
||||
]
|
||||
if use_ip_adapter
|
||||
else None
|
||||
)
|
||||
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
|
||||
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
|
||||
|
||||
with attn_ctx:
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
step=-1,
|
||||
order=self.scheduler.order,
|
||||
total_steps=len(timesteps),
|
||||
timestep=self.scheduler.config.num_train_timesteps,
|
||||
latents=latents,
|
||||
)
|
||||
)
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
batched_t = t.expand(batch_size)
|
||||
step_output = self.step(
|
||||
batched_t,
|
||||
latents,
|
||||
conditioning_data,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
mask_guidance=mask_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
t2i_adapter_data=t2i_adapter_data,
|
||||
)
|
||||
latents = step_output.prev_sample
|
||||
predicted_original = getattr(step_output, "pred_original_sample", None)
|
||||
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
step=i,
|
||||
order=self.scheduler.order,
|
||||
total_steps=len(timesteps),
|
||||
timestep=int(t),
|
||||
latents=latents,
|
||||
predicted_original=predicted_original,
|
||||
)
|
||||
)
|
||||
|
||||
finally:
|
||||
self.invokeai_diffuser.model_forward_callback = self._unet_forward
|
||||
|
||||
@ -351,82 +405,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
return latents
|
||||
|
||||
def generate_latents_from_embeddings(
|
||||
self,
|
||||
latents: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
conditioning_data: TextConditioningData,
|
||||
scheduler_step_kwargs: dict[str, Any],
|
||||
callback: Callable[[PipelineIntermediateState], None],
|
||||
mask_guidance: AddsMaskGuidance | None = None,
|
||||
control_data: list[ControlNetData] | None = None,
|
||||
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
||||
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
||||
) -> torch.Tensor:
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
|
||||
batch_size = latents.shape[0]
|
||||
|
||||
if timesteps.shape[0] == 0:
|
||||
return latents
|
||||
|
||||
use_ip_adapter = ip_adapter_data is not None
|
||||
use_regional_prompting = (
|
||||
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
|
||||
)
|
||||
unet_attention_patcher = None
|
||||
attn_ctx = nullcontext()
|
||||
|
||||
if use_ip_adapter or use_regional_prompting:
|
||||
ip_adapters: Optional[List[UNetIPAdapterData]] = (
|
||||
[{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data]
|
||||
if use_ip_adapter
|
||||
else None
|
||||
)
|
||||
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
|
||||
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
|
||||
|
||||
with attn_ctx:
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
step=-1,
|
||||
order=self.scheduler.order,
|
||||
total_steps=len(timesteps),
|
||||
timestep=self.scheduler.config.num_train_timesteps,
|
||||
latents=latents,
|
||||
)
|
||||
)
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
batched_t = t.expand(batch_size)
|
||||
step_output = self.step(
|
||||
batched_t,
|
||||
latents,
|
||||
conditioning_data,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
mask_guidance=mask_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
t2i_adapter_data=t2i_adapter_data,
|
||||
)
|
||||
latents = step_output.prev_sample
|
||||
predicted_original = getattr(step_output, "pred_original_sample", None)
|
||||
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
step=i,
|
||||
order=self.scheduler.order,
|
||||
total_steps=len(timesteps),
|
||||
timestep=int(t),
|
||||
latents=latents,
|
||||
predicted_original=predicted_original,
|
||||
)
|
||||
)
|
||||
|
||||
return latents
|
||||
|
||||
@torch.inference_mode()
|
||||
def step(
|
||||
self,
|
||||
|
Loading…
Reference in New Issue
Block a user