mirror of
https://github.com/invoke-ai/InvokeAI
synced 2025-07-26 05:17:55 +00:00
Add CachedModelOnlyFullLoad to mirror the CachedModelWithPartialLoad for models that cannot or should not be partially loaded.
This commit is contained in:
@ -0,0 +1,93 @@
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class CachedModelOnlyFullLoad:
|
||||
"""A wrapper around a PyTorch model to handle full loads and unloads between the CPU and the compute device.
|
||||
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
|
||||
MPS memory, etc.
|
||||
"""
|
||||
|
||||
def __init__(self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int):
|
||||
"""Initialize a CachedModelOnlyFullLoad.
|
||||
Args:
|
||||
model (torch.nn.Module | Any): The model to wrap. Should be on the CPU.
|
||||
compute_device (torch.device): The compute device to move the model to.
|
||||
total_bytes (int): The total size (in bytes) of all the weights in the model.
|
||||
"""
|
||||
# model is often a torch.nn.Module, but could be any model type. Throughout this class, we handle both cases.
|
||||
self._model = model
|
||||
self._compute_device = compute_device
|
||||
self._offload_device = torch.device("cpu")
|
||||
|
||||
# A CPU read-only copy of the model's state dict.
|
||||
self._cpu_state_dict: dict[str, torch.Tensor] | None = None
|
||||
if isinstance(model, torch.nn.Module):
|
||||
self._cpu_state_dict = model.state_dict()
|
||||
|
||||
self._total_bytes = total_bytes
|
||||
self._is_in_vram = False
|
||||
|
||||
@property
|
||||
def model(self) -> torch.nn.Module:
|
||||
return self._model
|
||||
|
||||
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
|
||||
"""Get a read-only copy of the model's state dict in RAM."""
|
||||
# TODO(ryand): Document this better.
|
||||
return self._cpu_state_dict
|
||||
|
||||
def total_bytes(self) -> int:
|
||||
"""Get the total size (in bytes) of all the weights in the model."""
|
||||
return self._total_bytes
|
||||
|
||||
def cur_vram_bytes(self) -> int:
|
||||
"""Get the size (in bytes) of the weights that are currently in VRAM."""
|
||||
if self._is_in_vram:
|
||||
return self._total_bytes
|
||||
else:
|
||||
return 0
|
||||
|
||||
def is_in_vram(self) -> bool:
|
||||
"""Return true if the model is currently in VRAM."""
|
||||
return self._is_in_vram
|
||||
|
||||
def full_load_to_vram(self) -> int:
|
||||
"""Load all weights into VRAM (if supported by the model).
|
||||
Returns:
|
||||
The number of bytes loaded into VRAM.
|
||||
"""
|
||||
if self._is_in_vram:
|
||||
# Already in VRAM.
|
||||
return 0
|
||||
|
||||
if not hasattr(self._model, "to"):
|
||||
# Model doesn't support moving to a device.
|
||||
return 0
|
||||
|
||||
if self._cpu_state_dict is not None:
|
||||
new_state_dict: dict[str, torch.Tensor] = {}
|
||||
for k, v in self._cpu_state_dict.items():
|
||||
new_state_dict[k] = v.to(self._compute_device, copy=True)
|
||||
self._model.load_state_dict(new_state_dict, assign=True)
|
||||
self._model.to(self._compute_device)
|
||||
|
||||
self._is_in_vram = True
|
||||
return self._total_bytes
|
||||
|
||||
def full_unload_from_vram(self) -> int:
|
||||
"""Unload all weights from VRAM.
|
||||
Returns:
|
||||
The number of bytes unloaded from VRAM.
|
||||
"""
|
||||
if not self._is_in_vram:
|
||||
# Already in RAM.
|
||||
return 0
|
||||
|
||||
if self._cpu_state_dict is not None:
|
||||
self._model.load_state_dict(self._cpu_state_dict, assign=True)
|
||||
self._model.to(self._offload_device)
|
||||
|
||||
self._is_in_vram = False
|
||||
return self._total_bytes
|
@ -0,0 +1,122 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
|
||||
CachedModelOnlyFullLoad,
|
||||
)
|
||||
from tests.backend.model_manager.load.model_cache.cached_model.utils import DummyModule, parameterize_mps_and_cuda
|
||||
|
||||
|
||||
class NonTorchModel:
|
||||
"""A model that does not sub-class torch.nn.Module."""
|
||||
|
||||
def __init__(self):
|
||||
self.linear = torch.nn.Linear(10, 32)
|
||||
|
||||
def run_inference(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.linear(x)
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_total_bytes(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert cached_model.total_bytes() == 100
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_is_in_vram(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert not cached_model.is_in_vram()
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
cached_model.full_load_to_vram()
|
||||
assert cached_model.is_in_vram()
|
||||
assert cached_model.cur_vram_bytes() == 100
|
||||
|
||||
cached_model.full_unload_from_vram()
|
||||
assert not cached_model.is_in_vram()
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_full_load_and_unload(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert cached_model.full_load_to_vram() == 100
|
||||
assert cached_model.is_in_vram()
|
||||
assert all(p.device.type == device for p in cached_model.model.parameters())
|
||||
|
||||
assert cached_model.full_unload_from_vram() == 100
|
||||
assert not cached_model.is_in_vram()
|
||||
assert all(p.device.type == "cpu" for p in cached_model.model.parameters())
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_get_cpu_state_dict(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert not cached_model.is_in_vram()
|
||||
|
||||
# The CPU state dict can be accessed and has the expected properties.
|
||||
cpu_state_dict = cached_model.get_cpu_state_dict()
|
||||
assert cpu_state_dict is not None
|
||||
assert len(cpu_state_dict) == len(model.state_dict())
|
||||
assert all(p.device.type == "cpu" for p in cpu_state_dict.values())
|
||||
|
||||
# Full load the model into VRAM.
|
||||
cached_model.full_load_to_vram()
|
||||
assert cached_model.is_in_vram()
|
||||
|
||||
# The CPU state dict is still available, and still on the CPU.
|
||||
cpu_state_dict = cached_model.get_cpu_state_dict()
|
||||
assert cpu_state_dict is not None
|
||||
assert len(cpu_state_dict) == len(model.state_dict())
|
||||
assert all(p.device.type == "cpu" for p in cpu_state_dict.values())
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_cached_model_full_load_and_inference(device: str):
|
||||
model = DummyModule()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert not cached_model.is_in_vram()
|
||||
|
||||
# Run inference on the CPU.
|
||||
x = torch.randn(1, 10)
|
||||
output1 = model(x)
|
||||
assert output1.device.type == "cpu"
|
||||
|
||||
# Full load the model into VRAM.
|
||||
cached_model.full_load_to_vram()
|
||||
assert cached_model.is_in_vram()
|
||||
|
||||
# Run inference on the GPU.
|
||||
output2 = model(x.to(device))
|
||||
assert output2.device.type == device
|
||||
|
||||
# The outputs should be the same for both runs.
|
||||
assert torch.allclose(output1, output2.to("cpu"))
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
def test_non_torch_model(device: str):
|
||||
model = NonTorchModel()
|
||||
cached_model = CachedModelOnlyFullLoad(model=model, compute_device=torch.device(device), total_bytes=100)
|
||||
assert not cached_model.is_in_vram()
|
||||
|
||||
# The model does not have a CPU state dict.
|
||||
assert cached_model.get_cpu_state_dict() is None
|
||||
|
||||
# Attempting to load the model into VRAM should have no effect.
|
||||
cached_model.full_load_to_vram()
|
||||
assert not cached_model.is_in_vram()
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
# Attempting to unload the model from VRAM should have no effect.
|
||||
cached_model.full_unload_from_vram()
|
||||
assert not cached_model.is_in_vram()
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
# Running inference on the CPU should work.
|
||||
output1 = model.run_inference(torch.randn(1, 10))
|
||||
assert output1.device.type == "cpu"
|
@ -1,6 +1,5 @@
|
||||
import itertools
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
|
||||
@ -8,35 +7,7 @@ from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_w
|
||||
)
|
||||
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.autocast_modules import CustomLinear
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
||||
|
||||
|
||||
class DummyModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(10, 32)
|
||||
self.linear2 = torch.nn.Linear(32, 64)
|
||||
self.register_buffer("buffer1", torch.ones(64))
|
||||
# Non-persistent buffers are not included in the state dict. We need to make sure that this case is handled
|
||||
# correctly by the partial loading code.
|
||||
self.register_buffer("buffer2", torch.ones(64), persistent=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
x = x + self.buffer1
|
||||
x = x + self.buffer2
|
||||
return x
|
||||
|
||||
|
||||
parameterize_mps_and_cuda = pytest.mark.parametrize(
|
||||
("device"),
|
||||
[
|
||||
pytest.param(
|
||||
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
|
||||
),
|
||||
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
|
||||
],
|
||||
)
|
||||
from tests.backend.model_manager.load.model_cache.cached_model.utils import DummyModule, parameterize_mps_and_cuda
|
||||
|
||||
|
||||
@parameterize_mps_and_cuda
|
||||
|
@ -0,0 +1,31 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
|
||||
class DummyModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(10, 32)
|
||||
self.linear2 = torch.nn.Linear(32, 64)
|
||||
self.register_buffer("buffer1", torch.ones(64))
|
||||
# Non-persistent buffers are not included in the state dict. We need to make sure that this case is handled
|
||||
# correctly by the partial loading code.
|
||||
self.register_buffer("buffer2", torch.ones(64), persistent=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
x = x + self.buffer1
|
||||
x = x + self.buffer2
|
||||
return x
|
||||
|
||||
|
||||
parameterize_mps_and_cuda = pytest.mark.parametrize(
|
||||
("device"),
|
||||
[
|
||||
pytest.param(
|
||||
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
|
||||
),
|
||||
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
|
||||
],
|
||||
)
|
Reference in New Issue
Block a user